Air Isolation (e.g., Beam Lead Supported Semiconductor Islands) Patents (Class 257/522)
  • Patent number: 8022455
    Abstract: In a method of fabricating a semiconductor device capable of reducing parasitic capacitance between bit lines and a semiconductor device fabricated by the method, the semiconductor device includes a semiconductor substrate having buried contact landing pads and direct contact landing pads. A lower interlayer insulating layer is disposed on the semiconductor substrate. A plurality of parallel bit line patterns are disposed on the lower interlayer insulating layer to fill the direct contact holes. A passivation layer that conformally covers the lower interlayer insulating layer and the bit line patterns is formed. An upper interlayer insulating layer for covering the semiconductor substrate having the passivation layer is formed. Buried contact plugs are disposed in the upper interlayer insulating layer between the bit line patterns and extended to contact the respective buried contact landing pads through the passivation layer and the lower interlayer insulating layer.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min-Wook Hwang
  • Patent number: 8013364
    Abstract: A structure having air gaps between interconnects is disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Publication number: 20110193176
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Application
    Filed: April 21, 2011
    Publication date: August 11, 2011
    Applicant: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 7985654
    Abstract: A key hole structure and method for forming a key hole structure to form a pore in a memory cell. The method includes forming a first dielectric layer on a semiconductor substrate having an electrode formed therein, forming an isolation layer on the first dielectric layer, forming a second dielectric layer on the isolation layer, and forming a planarization stop layer on the second dielectric layer. The method further includes forming a via to extend to the first dielectric layer and recessing the isolation layer and the stop layer with respect to the second dielectric layer, depositing a conformal film within via and over the stop layer, forming a key hole within the conformal film at a center region of the via such that a tip of the key hole is disposed at an upper surface of the second dielectric layer, and planarizing the conformal film to the stop layer.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Yu Zhu
  • Publication number: 20110156201
    Abstract: An air gap fabricating method is provided. A patterned sacrificial layer is formed over a substrate, and the material of the patterned sacrificial layer includes a germanium-antimony-tellurium alloy. A dielectric layer is formed on the patterned sacrificial layer. A reactant is provided to react with the patterned sacrificial layer and the patterned sacrificial layer is removed to form a structure with an air gap disposed at the original position of the patterned sacrificial layer.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Wei-Su Chen
  • Publication number: 20110147885
    Abstract: The present invention relates to a semiconductor-on-insulator (SOI) substrate having one or more device regions. Each device region comprises at least a base semiconductor substrate layer and a semiconductor device layer with a buried insulator layer located therebetween, while the semiconductor device layer is supported by one or more vertical insulating pillars. The vertical insulating pillars each preferably has a ledge extending between the base semiconductor substrate layer and the semiconductor device layer. The SOI substrates of the present invention can be readily formed from a precursor substrate structure with a “floating” semiconductor device layer that is spaced apart from the base semiconductor substrate layer by an air gap and is supported by one or more vertical insulating pillars. The air gap is preferably formed by selective removal of a sacrificial layer located between the base semiconductor substrate layer and the semiconductor device layer.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William K. Henson, Dureseti Chidambarrao, Kern Rim, Hsingjen Wann, Hung Y. Ng
  • Patent number: 7960272
    Abstract: A new method to form an integrated circuit device is achieved. The method comprises providing a substrate. A sacrificial layer is formed overlying the substrate. The sacrificial layer is patterned to form temporary vertical spacers where conductive bonding locations are planned. A conductive layer is deposited overlying the temporary vertical spacers and the substrate. The conductive layer is patterned to form conductive bonding locations overlying the temporary vertical spacers. The temporary vertical spacers are etched away to create voids underlying the conductive bonding locations.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: June 14, 2011
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Shih-Hsiung Lin
  • Patent number: 7956439
    Abstract: Void boundary structures, semiconductor devices having the void boundary structures, and methods of forming the same are provided. The structures, semiconductor devices and methods present a way for reducing parasitic capacitance between interconnections by forming a void between the interconnections. The interconnections may be formed on a semiconductor substrate. An upper width of each of the interconnections may be wider than a lower width thereof. A molding layer encompassing the interconnections may be formed. A void boundary layer covering the molding layer may be formed to define the void between the interconnections.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheong-Sik Yu, Kyung-Tae Lee
  • Patent number: 7947566
    Abstract: A semiconductor processing method includes providing a substrate, forming a plurality of semiconductor layers in the substrate, each of the semiconductor layers being distinct and selected from different groups of semiconductor element types. The semiconductor layers include a first, second, and third semiconductor layers. The method further includes forming a plurality of lateral void gap isolation regions for isolating portions of each of the semiconductor layers from portions of the other semiconductor layers.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Howard Hao Chen, Louis Lu-Chen Hsu, Jack Allan Mandelman
  • Publication number: 20110115048
    Abstract: Provided is a method of fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a back side, forming a first circuit and a second circuit at the front side of the semiconductor substrate, bonding the front side of the semiconductor substrate to a carrier substrate, thinning the semiconductor substrate from the back side, and forming an trench from the back side to the front side of the semiconductor substrate to isolate the first circuit from the second circuit.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 19, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Chun Wang, Tzu-Hsuan Hsu
  • Patent number: 7943480
    Abstract: Sub-lithographic dimensioned air gap formation and related structure are disclosed. In one embodiment, a method includes forming a dielectric layer including interconnects on a substrate; depositing a cap layer on the dielectric layer; depositing a photoresist over the cap layer; patterning the photoresist to include a first trench pattern at most partially overlying the interconnects; forming a spacer within the first trench pattern to form a second trench pattern having a sub-lithographic dimension; transferring the second trench pattern into the cap layer and into the dielectric layer between the interconnects; and depositing another dielectric layer to form an air gap by pinching off the trench in the dielectric layer.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Nicholas C. M. Fuller, David V. Horak, Elbert E. Huang, Wai-Kin Li, Anthony D. Lisi, Satyanarayana V. Nitta, Shom Ponoth
  • Patent number: 7944018
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: May 17, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Publication number: 20110101492
    Abstract: A semiconductor device is provided. A unit wiring level of the semiconductor device includes; first and second wiring layers spaced apart from each other on a support layer, a large space formed adjacent to the first wiring layer and including a first air gap of predetermined width as measured from a sidewall of the first wiring layer, and a portion of a thermally degradable material layer formed on the support layer, small space formed between the first and second wiring layers, wherein the small space is smaller than the large space, and a second air gap at least partially fills the small space, and a porous insulating layer formed on the first and second air gaps.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seok-jun WON, Andrew-tae KIM
  • Patent number: 7936068
    Abstract: A semiconductor device includes in an interconnect structure which includes a first interconnect made of a copper-containing metal, a first Cu silicide layer covering the upper portion of the first interconnect, a conductive first plug provided on the upper portion of the Cu silicide layer and connected to the first interconnect, a Cu silicide layer covering the upper portion of the first plug, a first porous MSQ film provided over the side wall from the first interconnect through the first plug and formed to cover the side wall of the first interconnect, the upper portion of the first interconnect, and the side wall of the first plug, and a first SiCN film disposed under the first porous MSQ film to contact with the lower portion of the side wall of the first interconnect and having the greater film density than the first porous MSQ film.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 3, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Tatsuya Usami
  • Publication number: 20110084357
    Abstract: An integrated circuit structure comprising an air gap and methods for forming the same are provided. The integrated circuit structure includes a conductive line; a self-aligned dielectric layer on a sidewall of the conductive line; an air-gap horizontally adjoining the self-aligned dielectric layer; a low-k dielectric layer horizontally adjoining the air-gap; and a dielectric layer on the air-gap and the low-k dielectric layer.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 7923760
    Abstract: A plurality of metal interconnects incorporating dielectric spacers and a method to form such dielectric spacers are described. In one embodiment, the dielectric spacers adjacent to neighboring metal interconnects are discontiguous from one another. In another embodiment, the dielectric spacers may provide a region upon which un-landed vias may effectively land.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 12, 2011
    Assignee: Intel Corporation
    Inventors: Makarem A. Hussein, Boyan Boyanov
  • Patent number: 7898057
    Abstract: A power transistor includes a plurality of transistor cells. Each transistor cell has a first electrode coupled to a first electrode interconnection region overlying a first major surface, a control electrode coupled to a control electrode interconnection region overlying the first major surface, and a second electrode coupled to a second electrode interconnection region overlying a second major surface. Each transistor cell has an approximately constant doping concentration in the channel region. A dielectric platform is used as an edge termination of an epitaxial layer to maintain substantially planar equipotential lines therein. The power transistor finds particular utility in radio frequency applications operating at a frequency greater than 500 megahertz and dissipating more than 5 watts of power. The semiconductor die and package are designed so that the power transistor can efficiently operate under such severe conditions.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: March 1, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventors: Robert Bruce Davies, Warren Leroy Seely, Jeanne S Pavio
  • Patent number: 7897506
    Abstract: The present invention discloses a MEMS device with particles blocking function, and a method for making the MEMS device. The MEMS device comprises: a substrate on which is formed a MEMS device region; and a particles blocking layer deposited on the substrate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: March 1, 2011
    Assignee: PixArt Imaging Incorporation, R.O.C.
    Inventors: Chuan Wei Wang, Sheng Ta Lee
  • Patent number: 7868415
    Abstract: An integrated circuit is described. The integrated circuit may have: an active area line formed of a material of a semiconductor substrate with a first longitudinal direction parallel to an upper surface of the semiconductor substrate; wherein the active area line has at least one form-supporting element extending in a second longitudinal direction parallel to the upper surface of the semiconductor substrate; and wherein the second longitudinal direction is arranged with regard to the first longitudinal direction in an angle unequal to 0 degree and unequal to 180 degree.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 11, 2011
    Assignee: Qimonda AG
    Inventors: Josef Willer, Michael Specht, Christoph Friederich, Doris Keitel-Schulz
  • Patent number: 7868416
    Abstract: A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: January 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh, Yoshiaki Fukuzumi, Masaru Kito, Yasuyuki Matsuoka
  • Patent number: 7847410
    Abstract: An interconnect of the group III-V semiconductor device and the fabrication method for making the same are described. The interconnect includes a first adhesion layer, a diffusion barrier layer for preventing the copper from diffusing, a second adhesion layer and a copper wire line. Because a stacked-layer structure of the first adhesion layer/diffusion barrier layer/second adhesion layer is located between the copper wire line and the group III-V semiconductor device, the adhesion between the diffusion barrier layer and other materials is improved. Therefore, the yield of the device is increased.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 7, 2010
    Assignee: National Chiao Tung University
    Inventors: Cheng-Shih Lee, Edward Yi Chang, Huang-Choung Chang
  • Patent number: 7847369
    Abstract: A power transistor includes a plurality of transistor cells. Each transistor cell has a first electrode coupled to a first electrode interconnection region overlying a first major surface, a control electrode coupled to a control electrode interconnection region overlying the first major surface, and a second electrode coupled to a second electrode interconnection region overlying a second major surface. Each transistor cell has an approximately constant doping concentration in the channel region. A dielectric platform is used as an edge termination of an epitaxial layer to maintain substantially planar equipotential lines therein. The power transistor finds particular utility in radio frequency applications operating at a frequency greater than 500 megahertz and dissipating more than 5 watts of power. The semiconductor die and package are designed so that the power transistor can efficiently operate under such severe conditions.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: December 7, 2010
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Robert Bruce Davies
  • Patent number: 7833890
    Abstract: Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, June-mo Koo, Seung-hwan Song, Suk-pil Kim, Yoon-dong Park, Jong-jin Lee
  • Patent number: 7825516
    Abstract: In integrated circuit technology; an electromigration and diffusion sensitive conductor of a metal such as copper and processing procedure therefore is provided, wherein, at a planarized chemical mechanical processed interfacing surface, the conductor metal is positioned in a region of a selectable low K eff dielectric material surrounded by a material selected to be protection from outdiffusion and a source of a film thickness cap that is to form over the conductor metal and/or serve as a catalytic layer for electroless selective deposition of a CoWP capping .
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stefanie Ruth Chiras, Michael Wayne Lane, Sandra Guy Malhotra, Fenton Reed Mc Feely, Robert Rosenberg, Carlos Juan Sambucetti, Philippe Mark Vereecken
  • Patent number: 7821086
    Abstract: A semiconductor memory device includes a first write line which is provided in a first direction, a first memory element which is connected to the first write line, a second memory element which is provided to neighbor the first memory element in the first direction, and is connected to the first write line, a first insulation film which is provided on surfaces of the first and second memory elements, and a second insulation film which is provided between the neighboring first and second memory elements and has a lower heat conductivity than the first insulation film.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Kajiyama
  • Patent number: 7811896
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method to manufacture a semiconductor structure includes forming a cavity in a substrate. A portion of the substrate is doped, or a doped material is deposited over a portion of the substrate. At least a portion of the doped substrate or at least a portion of the doped material is converted to a dielectric material to enclose the cavity. The forming of the cavity may occur before or after the doping of the substrate or the depositing of the doped material. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 12, 2010
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Bishnu Prasanna Gogoi
  • Patent number: 7811924
    Abstract: Methods for patterning films and their resulting structures. In an embodiment, an amorphous carbon mask is formed over a substrate, such as a damascene layer. A spacer layer is deposited over the amorphous carbon mask and the spacer layer is etched to form a spacer and to expose the amorphous carbon mask. The amorphous carbon mask is removed selectively to the spacer to expose the substrate layer. A gap fill layer is deposited around the spacer to cover the substrate layer but expose the spacer. The spacer is removed selectively to form a gap fill mask over the substrate. The pattern of the gap fill mask is transferred, in one implementation, into a damascene layer to remove at least a portion of an IMD and form an air gap.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: October 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Mehul Naik, Christopher D. Bencher, Kenneth MacWilliams
  • Patent number: 7804151
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Publication number: 20100237459
    Abstract: A process for manufacturing an SOI wafer, including the steps of: forming, in a wafer of semiconductor material, cavities delimiting structures of semiconductor material; thinning out the structures through a thermal process; and completely oxidizing the structures.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Flavio VILLA, Gabriele Barlocchi, Pietro Corona
  • Patent number: 7795061
    Abstract: MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 14, 2010
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Chun-Ming Wang, Jeffrey Lan, Teruo Sasagawa
  • Patent number: 7795105
    Abstract: A method is disclosed for producing an integrated circuit arrangement with an auxiliary indentation, particularly with aligning marks, and an integrated circuit arrangement. The invention also relates to a method for producing aligning marks. During the method, a planarization is carried out before material is removed from an auxiliary indentation.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: September 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Klaus Goller, Olaf Heitzsch, Marion Nichterwitz
  • Patent number: 7777295
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a structure includes a dielectric material and a void below a surface of a substrate. The structure further includes a doped dielectric material over the dielectric material, over the first void, wherein at least a portion of the dielectric material is between at least a portion of the substrate and at least a portion of the doped dielectric material. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: August 17, 2010
    Assignee: HVVI Semiconductors, Inc.
    Inventors: Bishnu Prasanna Gogoi, Michael Albert Tischler
  • Patent number: 7755160
    Abstract: A method for producing a layer arrangement is disclosed. A layer of oxygen material and nitrogen material is formed over a substrate that has a plurality of electrically conductive structures and/or over a part of a surface of the electrically conductive structures. The layer is formed using a plasma-enhanced chemical vapor deposition process with nitrogen material being supplied during the supply of silicon material and oxygen material by means of an organic silicon precursor material. The layer of oxygen material and nitrogen material is formed in such a manner that an area free of material remains between the electrically conductive structures. An intermediate layer including an electrically insulating material is formed over the layer of oxygen material and nitrogen material. A covering layer is selectively formed over the intermediate layer such that the area free of material between the electrically conductive structures is sealed from the environment and forms a cavity.
    Type: Grant
    Filed: January 22, 2005
    Date of Patent: July 13, 2010
    Assignee: Infineon Technologies AG
    Inventors: Zvonimir Gabric, Werner Pamler, Guenther Schindler
  • Patent number: 7737020
    Abstract: Fluid-based dielectric material is used to backfill multiple patterned metal layers of an IC on a wafer. The patterned metal layers are fabricated using conventional CMOS techniques, and are IMD layers in particular embodiments. The dielectric material(s) are etched out of the IC to form a metal network, and fluid dielectric material precursor, such as a polyarylene ether-based resin, is applied to the wafer to backfill the metal network with low-k fluid-based dielectric material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: June 15, 2010
    Assignee: XILINX, Inc.
    Inventors: Jonathan Jung-Ching Ho, Hong-Tsz Pan
  • Patent number: 7732891
    Abstract: A semiconductor device has a substrate, a source region formed on the surface portion of the substrate, a first insulating layer formed on the substrate, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, a body section connected with the source region, penetrating through the first insulating layer, the gate electrode and the second insulating layer, and containing a void, a gate insulating film surrounding the body section, and formed between the body section and the gate electrode, and a drain region connected with the body section.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 8, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh, Yoshiaki Fukuzumi, Masaru Kito, Yasuyuki Matsuoka
  • Patent number: 7732888
    Abstract: According to one embodiment of the present invention, a memory cell array comprises a plurality of voids, the spatial positions and dimensions of the voids being chosen such that mechanical stress occurring within the memory cell array is at least partly compensated by the voids.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: June 8, 2010
    Assignees: Qimonda AG, Altis Semiconductor, SNC
    Inventors: Wolfgang Raberg, Cay-Uwe Pinnow
  • Patent number: 7732192
    Abstract: The microreactor has a body of semiconductor material; a large area buried channel extending in the body and having walls; a coating layer of insulating material coating the walls of the channel; a diaphragm extending on top of the body and upwardly closing the channel. The diaphragm is formed by a semiconductor layer completely encircling mask portions of insulating material.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: June 8, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Barlocchi, Ubaldo Mastromatteo, Flavio Francesco Villa
  • Publication number: 20100133648
    Abstract: In sophisticated metallization systems, air gaps may be formed on the basis of a self-aligned patterning regime during which the conductive cap material of metal lines may be protected by providing one or more materials, which may subsequently be removed. Consequently, the etch behavior and the electrical characteristics of metal lines during the self-aligned patterning regime may be individually adjusted.
    Type: Application
    Filed: October 23, 2009
    Publication date: June 3, 2010
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Patent number: 7723822
    Abstract: A first electrode is formed on a semiconductor substrate. A second electrode is formed separately at a predetermined interval from the first electrode, and has at least one opening. An actuator layer is connected to the second electrode, and drives the second electrode.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: May 25, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Inaba
  • Patent number: 7723850
    Abstract: A method of forming air gaps within a solid structure is provided. In this method, a sacrificial material is covered by an overlayer. The sacrificial material is then removed through the overlayer to leave an air gap. Such air gaps are particularly useful as insulation between metal lines in an electronic device such as an electrical interconnect structure. Structures containing air gaps are also provided.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: May 25, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Michael K. Gallagher, Dana A. Gronbeck, Timothy G. Adams, Jeffrey M. Calvert
  • Publication number: 20100109121
    Abstract: A micro electromechanical system and a fabrication method thereof, which has trenches formed on a substrate to prevent circuits from interfering each other, and to prevent over-etching of the substrate when releasing a microstructure.
    Type: Application
    Filed: January 5, 2010
    Publication date: May 6, 2010
    Applicant: MEMSMART SEMICONDUCTOR CORP.
    Inventors: Li-Ken YEH, I-Hsiang CHIU
  • Publication number: 20100109120
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 6, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
  • Patent number: 7692264
    Abstract: A semiconductor device and a method for manufacturing the same are provided. A gate insulating film is formed under a vacuum condition to prevent deterioration of reliability of the device due to degradation of a gate insulating material and to have stable operating characteristics. The semiconductor device includes an element isolating film formed at element isolating regions of a semiconductor substrate, which is divided into active regions and the element isolating regions; a gate insulating film having openings with a designated width formed at the active regions of the semiconductor substrate; gate electrodes formed on the gate insulating film; and lightly doped drain regions and source/drain impurity regions formed in the surface of the semiconductor substrate at both sides of the gate electrodes.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 6, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Dong Joon Lee
  • Patent number: 7675054
    Abstract: Phase change memory devices and methods for fabricating the same are provided. A phase change memory device includes a first conductive electrode disposed in a first dielectric layer. A second dielectric layer is disposed over the first dielectric layer. A phase change material layer is disposed in the second dielectric layer and electrically connected to the first conductive electrode. A space is disposed in the second dielectric layer to at least isolate a sidewall of the phase change material layer and the second dielectric layer adjacent thereto. A second conductive electrode is disposed in the second dielectric layer and electrically connected to the phase change material layer.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: March 9, 2010
    Assignees: Industrial Technology Research Institute, Powerchip Semiconductor Corp., Nanya Technology Corporation, ProMOS Technologies Inc., Winbond Electronics Corp.
    Inventor: Li-Shu Tu
  • Patent number: 7671442
    Abstract: Air-gap insulated interconnection structures and methods of fabricating the structures, the methods including: forming a dielectric layer on a substrate; forming a capping layer on a top surface of the dielectric layer; forming a trench through the capping layer, the trench extending toward said substrate and into but not through, the dielectric layer; forming a sacrificial layer on opposing sidewalls of the trench; filling the trench with a electrical conductor; and removing a portion of the sacrificial layer from between the electrical conductor and the dielectric layer to form air-gaps.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jeffrey P. Gambino, Anthony K. Stamper
  • Publication number: 20100032796
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 11, 2010
    Inventors: Brennan J. Brown, James R. Elliott, Alvin A. Joseph, Edward J. Nowak
  • Patent number: 7659616
    Abstract: Structures and methods for forming the same. A semiconductor chip includes a substrate and a transistor. The chip includes N interconnect layers on the substrate, N being a positive integer. The chip includes a cooling pipes system inside the N interconnect layers. The cooling pipes system does not include any solid or liquid material. Given any first point and any second point in the cooling pipes system, there exists a continuous path which connects the first and second points and which is totally within the cooling pipes system. A first portion of the cooling pipes system overlaps the transistor. A second portion of the cooling pipes system is higher than the substrate and lower than a top interconnect layer. The second portion is in direct physical contact with a surrounding ambient.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kaushik A. Kumar, Andres Fernando Munoz, Michael Ray Sievers, Richard Stephen Wise
  • Publication number: 20100019345
    Abstract: An integrated circuit is described. The integrated circuit may have: an active area line formed of a material of a semiconductor substrate with a first longitudinal direction parallel to an upper surface of the semiconductor substrate; wherein the active area line has at least one form-supporting element extending in a second longitudinal direction parallel to the upper surface of the semiconductor substrate; and wherein the second longitudinal direction is arranged with regard to the first longitudinal direction in an angle unequal to 0 degree and unequal to 180 degree.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Inventors: Josef Willer, Michael Specht, Christoph Friederich, Doris Keitel-Schulz
  • Patent number: 7652346
    Abstract: A semiconductor device includes an active region formed on a semiconductor substrate, an element isolation region formed on the semiconductor substrate so as to surround the active region, and a gate electrode formed on the active region. A region that causes tensile stress so as to improve carrier mobility in the active region is provided in the element isolation region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: January 26, 2010
    Assignee: Panasonic Corporation
    Inventors: Ken Suzuki, Masafumi Tsutsui
  • Patent number: 7649239
    Abstract: A plurality of metal interconnects incorporating dielectric spacers and a method to form such dielectric spacers are described. In one embodiment, the dielectric spacers adjacent to neighboring metal interconnects are discontiguous from one another. In another embodiment, the dielectric spacers may provide a region upon which un-landed vias may effectively land.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: January 19, 2010
    Assignee: Intel Corporation
    Inventors: Makarem A. Hussein, Boyan Boyanov