Responsive To Nonelectrical External Signals (e.g., Light) Patents (Class 257/53)
  • Patent number: 8952335
    Abstract: Bias lines are provided for respective columns of pixels, and of a plurality of bias lines, bias lines provided at an interval of 10 mm are connected to a bias power source through a current detector. The remaining bias lines are connected directly to the bias power source without passing through the current detector. In each pixel, if electric charge is generated by a radiation detection element in accordance with the dose of irradiated radiation, a current flows in the bias line in accordance with the generated electric charge. The current detector detects the current flowing in the bias line, and a control unit detects, as the timing of starting irradiation of a radiation, when the detected current (current value) is equal to or greater than a threshold value, and starts radiographing of a radiological image.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: Fujifilm Corporation
    Inventor: Keiichiro Sato
  • Patent number: 8952246
    Abstract: A material is manufactured from a single piece of semiconductor material. The semiconductor material can be an n-type semiconductor. Such a manufactured material may have a top layer with a crystalline structure, transitioning into a transition layer, further transitioning into an intermediate layer, and further transitioning to the bulk substrate layer. The orientation of the crystalline pores of the crystalline structure align in layers of the material. The transition layer or intermediate layer includes a material that is substantially equivalent to intrinsic semiconductor. Also described is a method for manufacturing a material from a single piece of semiconductor material by exposing a top surface to an energy source until the transformation of the top surface occurs, while the bulk of the material remains unaltered. The material may exhibit photovoltaic properties.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 10, 2015
    Assignee: Nusola, Inc.
    Inventors: Jose Briceno, Koji Matsumaru
  • Publication number: 20150034944
    Abstract: A panel to detect X-rays includes a plurality of signal lines, a plurality of gate lines, and a plurality of cells in areas adjacent intersections of respective ones of the gate and control lines. A first area includes a first cell having a driving circuit, and a second area includes a second cell which omits a driving circuit. Data lines connected to respective ones of the cells carry signals from which an X-ray image is generated. The second cell may be located in a dummy cell area of the panel.
    Type: Application
    Filed: May 8, 2014
    Publication date: February 5, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Sung-Woo CHO
  • Patent number: 8946715
    Abstract: Problems exist in areas such as image visibility, endurance of the device, precision, miniaturization, and electric power consumption in an information device having a conventional resistive film method or optical method pen input function. Both EL elements and photoelectric conversion elements are arranged in each pixel of a display device in an information device of the present invention having a pen input function. Information input is performed by the input of light to the photoelectric conversion elements in accordance with a pen that reflects light by a pen tip. An information device with a pen input function, capable of displaying a clear image without loss of brightness in the displayed image, having superior endurance, capable of being miniaturized, and having good precision can thus be obtained.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 8946704
    Abstract: A semiconductor device in which release of oxygen from side surfaces of an oxide semiconductor film including c-axis aligned crystal parts can be prevented is provided. The semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film including c-axis aligned crystal parts, and an oxide film including c-axis aligned crystal parts. In the semiconductor device, the first oxide semiconductor film, the second oxide semiconductor film, and the oxide film are each formed using a IGZO film, where the second oxide semiconductor film has a higher indium content than the first oxide semiconductor film, the first oxide semiconductor film has a higher indium content than the oxide film, the oxide film has a higher gallium content than the first oxide semiconductor film, and the first oxide semiconductor film has a higher gallium content than the second oxide semiconductor film.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8946795
    Abstract: Embodiments of a pixel including a photosensitive region formed in a surface of a substrate and an overflow drain formed in the surface of the substrate at a distance from the photosensitive area, an electrical bias of the overflow drain being variable and controllable. Embodiments of a pixel including a photosensitive region formed in a surface of a substrate, a source-follower transistor coupled to the photosensitive region, the source-follower transistor including a drain, and a doped bridge coupling the photosensitive region to the drain of the source-follower transistor.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 3, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Sing-Chung Hu, Duli Mao, Hsin-Chih Tai, Yin Qian, Vincent Venezia, Rongsheng Yang, Howard E. Rhodes
  • Publication number: 20150014689
    Abstract: An elevated photosensor for image sensors and methods of forming the photosensor. The photosensor may have light sensors having indentation features including, but not limited to, v-shaped, u-shaped, or other shaped features. Light sensors having such an indentation feature can redirect incident light that is not absorbed by one portion of the photosensor to another portion of the photosensor for additional absorption. In addition, the elevated photosensors reduce the size of the pixel cells while reducing leakage, image lag, and barrier problems.
    Type: Application
    Filed: July 31, 2014
    Publication date: January 15, 2015
    Inventor: Salman Akram
  • Publication number: 20150008433
    Abstract: Various embodiments of a compensated photonic device structure and fabrication method thereof are described herein. In one aspect, a photonic device may include a substrate and a functional layer disposed on the substrate. The substrate may be made of a first material and the functional layer may be made of a second material that is different from the first material. The photonic device may also include a compensation region formed at an interface region between the substrate and the functional layer. The compensation region may be doped with compensation dopants such that a first carrier concentration around the interface region of function layer is reduced and a second carrier concentration in a bulk region of functional layer is reduced.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Inventors: Mengyuan Huang, Liangbo Wang, Su Li, Tuo Shi, Pengfei Cai, Wang Chen, Ching-yin Hong, Dong Pan
  • Patent number: 8921126
    Abstract: A process for manufacturing a TMR sensor is disclosed wherein the blocking temperature of the AFM layer in the TMR sensor has been raised by inserting a magnetic seed layer between the AFM layer and the bottom shield. This gives the device improved thermal stability, including improved SNR and BER.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 30, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Junjie Quan, Kunliang Zhang, Min Li, Hui-Chuan Wang
  • Patent number: 8921856
    Abstract: A TFT-PIN array substrate and an assembly structure for a flat-panel x-ray detector are provided to overcome the problem that the conventional scintillator substrate and TFT-PIN array substrate are neither penetrated by UV-light nor assembled by UV curable LOCA. The metal layer of the PIN photodiode of the TFT-PIN array substrate is perforated to have at least one hole, whereby UV-light can pass through the TFT-PIN array substrate to cure UV curable LOCA. Therefore, UV curable LOCA can be used as an adhesive layer in the assembly structure of a scintillator substrate and a TFT-PIN array substrate to promote the detective quantum efficiency and image quality of a flat-panel X-Ray detector.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: December 30, 2014
    Assignee: National Chiao Tung University
    Inventors: Pao-Yun Tang, Shu-Lin Ho, Kei-Hsiung Yang
  • Patent number: 8907923
    Abstract: The present invention provides a photo sensor, a method of forming the photo sensor, and a related optical touch device. The photo sensor includes a first electrode, a second electrode, a first silicon-rich dielectric layer and a second silicon-rich dielectric layer. The first silicon-rich dielectric layer is disposed between the first electrode and the second electrode for sensing infrared rays, and the second silicon-rich dielectric layer is disposed between the first silicon-rich dielectric layer and the second electrode for sensing visible light beams. The multi-layer structure including the first silicon-rich dielectric layer and the second silicon-rich dielectric layer enables the single photo sensor to effectively detect both infrared rays and visible light beams. Moreover, the single photo sensor is easily integrated into an optical touch device to form optical touch panel integrated on glass.
    Type: Grant
    Filed: March 7, 2010
    Date of Patent: December 9, 2014
    Assignee: AU Optronics Corp.
    Inventors: An-Thung Cho, Chia-Tien Peng, Hung-Wei Tseng, Cheng-Chiu Pai, Yu-Hsuan Li, Chun-Hsiun Chen, Wei-Ming Huang
  • Patent number: 8901691
    Abstract: A touch sensing substrate includes a substrate, a first light sensing element, a second light sensing element and a first bias line. The first light sensing element includes a first gate electrode, a first active pattern overlapping with the first gate electrode, a first source electrode partially overlapping with the first active pattern and a first drain electrode partially overlapping with the first active pattern. The second light sensing element includes a second gate electrode, a second active pattern overlapping with the second gate electrode, a second source electrode partially overlapping with the second active pattern and a second drain electrode partially overlapping with the second active pattern. The first bias line is connected to the first and second gate electrodes.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 2, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-Jong Yeo, Byeong-Hoon Cho, Ki-Hun Jeong, Hong-Kee Chin, Jung-Suk Bang, Woong-Kwon Kim, Sung-Ryul Kim, Hee-Joon Kim, Dae-Cheol Kim, Kun-Wook Han
  • Patent number: 8900891
    Abstract: A method for manufacturing interdigitated back contact photovoltaic cells is disclosed. In one aspect, the method includes providing on a rear surface of a substrate a first doped layer of a first dopant type, and providing a dielectric masking layer overlaying it. Grooves are formed through the dielectric masking layer and first doped layer, extending into the substrate in a direction substantially orthogonal to the rear surface and extending in a lateral direction underneath the first doped layer at sides of the grooves. Directional doping is performed in a direction substantially orthogonal to the rear surface, thereby providing doped regions with dopants of a second dopant type at a bottom of the grooves. Dopant diffusion is performed to form at the rear side of the substrate one of the emitter regions and back surface field regions between the grooves and the other at the bottom of the grooves.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 2, 2014
    Assignee: IMEC
    Inventors: Bartlomiej Jan Pawlak, Tom Janssens
  • Publication number: 20140346517
    Abstract: A photo detector and a method for fabricating the same are provided. The photo detector includes a first substrate and a photo conversion element. The first substrate has a sensor element array for receiving a light with a spectrum in a specific wavelength range. The photo conversion element is disposed on the sensor element array, where the photo conversion element includes a photo conversion material layer and a doped photo conversion material column structure layer. A luminescent spectrum of the doped photo conversion material layer column structure layer is overlapped with the spectrum in a specific wavelength range, and a luminescent spectrum of the photo conversion material layer is non-overlapped with the spectrum in a specific wavelength range.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: Au Optronics Corporation
    Inventors: Te-Ming Chen, Chin-Mao Lin
  • Publication number: 20140346518
    Abstract: A magnetic memory includes a magnetic memory, including a ferromagnetic underlayer including a magnetic material, a non-magnetic intermediate layer disposed on the underlayer, a ferromagnetic data recording layer formed on the intermediate layer and having a perpendicular magnetic anisotropy, a reference layer connected to the data recording layer across a non-magnetic layer, and first and second magnetization fixed layers disposed in contact with a bottom face of the underlayer. The data recording layer includes a magnetization free region having a reversible magnetization and opposed to the reference layer, a first magnetization fixed region coupled to a first border of the magnetization free layer and having a magnetization fixed in a first direction, and a second magnetization fixed region coupled to a second border of the magnetization free layer and having a magnetization fixed in a second direction opposite to the first direction.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Eiji Kariyada, Katsumi Suemitsu, Hironobu Tanigawa, Kaoru Mori, Tetsuhiro Suzuki, Kiyokazu Nagahara, Yasuaki Ozaki, Norikazu Ohshima
  • Publication number: 20140339561
    Abstract: A detecting device includes a conversion device having a substrate, a pixel electrode formed of a transparent conductive oxide, a impurity semiconductor portion, and a semiconductor portion, the pixel electrode, impurity semiconductor portion, and semiconductor portion having been formed upon the substrate in that order from the substrate side. The impurity semiconductor portion includes a first region including a place in contact with the pixel electrode, and a second region situated nearer to the semiconductor portion than the first region. Concentration of dopant in the second region is higher than concentration of dopant in the first region.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Keigo Yokoyama, Minoru Watanabe, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20140319525
    Abstract: Optoelectronic devices and methods of producing the same are disclosed. Methods may include forming a film from fused all-inorganic colloidal nanostructures, where the nanostructures may include inorganic nanoparticles and functional inorganic ligands, and the fused nanostructures may form an electrical network that is photoconductive. Other methods may provide an optoelectronic device which may include an integrated circuit or large panel thin-film transistor matrix, an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Applicant: Sunpower Technologies LLC
    Inventor: Daniel Landry
  • Patent number: 8872312
    Abstract: An integrated circuit structure includes a substrate, a photosensitive molding on a first side of the substrate, a via formed in the molding, and a conformable metallic layer deposited over the first side of the substrate and in the via. A through via may be formed through the substrate aligned with the via in the molding with an electrically conductive liner deposited in the through via in electrical contact with the conformable metallic layer. The integrated circuit structure may further include a connector element such as a solder ball on an end of the through via on a second side of the substrate opposite the first side. The integrated circuit structure may further include a die on the first side of the substrate in electrical contact with another through via or with a redistribution layer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuei-Tang Wang, Der-Chyang Yeh
  • Patent number: 8859889
    Abstract: A solar cell element is disclosed. The solar cell element comprises a semiconductor substrate, a first electrode, a second electrode, a first wiring member and a second wiring member. The semiconductor substrate with a first surface and a second surface comprises a plurality of through-holes. The first electrode comprises a plurality of conduction portions and at least one first output extracting portion. The second electrode has a resistivity of less than 2.5×10-8 ?m (ohm-meter). The first wiring member comprises a first end face in a long direction thereof. The second wiring member comprises a second end face in a long direction thereof facing the first end face.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 14, 2014
    Assignee: KYOCERA Corporation
    Inventor: Koutarou Umeda
  • Publication number: 20140299879
    Abstract: A semiconductor device is provided, which includes a display portion and a driver circuit portion configured to drive the display portion. The display portion includes a first pixel electrode, a second pixel electrode, a plurality of photo sensors between the first pixel electrode and the second pixel electrode, and a plurality of color filters. The driver circuit portion includes a transistor including a single crystal semiconductor layer.
    Type: Application
    Filed: May 22, 2014
    Publication date: October 9, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140291670
    Abstract: An image pickup device that includes: a pixel section including a plurality of pixels each configured to generate a signal charge based on radiation; a first field-effect transistor provided in the pixel section; and a second field-effect transistor provided in a peripheral circuit section of the pixel section. The first transistor has a threshold voltage and the second transistor has a threshold voltage that are different from each other.
    Type: Application
    Filed: March 19, 2014
    Publication date: October 2, 2014
    Applicant: Sony Corporation
    Inventors: Yasuhiro Yamada, Makoto Takatoku, Makoto Hashimoto, Yasuhito Kuwahara
  • Publication number: 20140284605
    Abstract: A TFT-PIN array substrate and an assembly structure for a flat-panel x-ray detector are provided to overcome the problem that the conventional scintillator substrate and TFT-PIN array substrate are neither penetrated by UV-light nor assembled by UV curable LOCA. The metal layer of the PIN photodiode of the TFT-PIN array substrate is perforated to have at least one hole, whereby UV-light can pass through the TFT-PIN array substrate to cure UV curable LOCA. Therefore, UV curable LOCA can be used as an adhesive layer in the assembly structure of a scintillator substrate and a TFT-PIN array substrate to promote the detective quantum efficiency and image quality of a flat-panel X-Ray detector.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 25, 2014
    Applicant: National Chiao Tung University
    Inventors: PAO-YUN TANG, SHU-LIN HO, KEI-HSIUNG YANG
  • Publication number: 20140264346
    Abstract: In accordance with one implementation, a photodiode may be integrated by thin film processing within a slider. In accordance with another implementation, an apparatus can be configured to include a slider, a first layer of a metal disposed within the slider, a layer of amorphous silicon disposed adjacent the first layer of metal, a second layer of metal disposed adjacent the layer of amorphous silicon, and wherein the first layer of metal, the layer of amorphous silicon, and the second layer of metal are operable as a photodiode.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Seagate Technology LLC
    Inventors: Ned Tabat, Xiaoyue Huang
  • Patent number: 8835924
    Abstract: A photo-detecting device including a plurality of pixels, each including at least one alternate stack of photodiodes and electrically conducting electrodes. Each photodiode includes one intrinsic amorphous semiconductor layer in contact with one doped amorphous semiconductor layer distinct from the amorphous semiconductor layers in other photodiodes, and is arranged between two electrodes. Each pair of photodiodes includes one of the electrodes arranged between photodiodes. In each pixel: each electrode includes an electrically conducting portion not superposed on other electrodes of the pixel and electrically connected to one interconnection hole filled with an electrically conducting material; and portions of an electrically conducting material are superposed approximately on each of non-superposed portions of electrodes.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: September 16, 2014
    Assignee: Commissariat a l'energie atomique et aux energies Alternatives
    Inventors: Pierre Gidon, Benoit Giffard, Norbert Moussy
  • Patent number: 8829337
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8823127
    Abstract: A multijunction photovoltaic (PV) cell includes a bottom flexible substrate and a bottom metal layer located on the bottom flexible substrate. The multijunction photovoltaic cell also includes a semiconductor layer located on the bottom metal layer and a stack having a plurality of junctions located on the semiconductor layer, each of the plurality of junctions having a respective bandgap. The pluralities of junctions are ordered from the junction having the smallest bandgap being located on the substrate to the junction having the largest bandgap being located on top of the stack.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Norma Sosa Cortes, Keith E. Fogel, Devendra Sadana, Davood Shahrjerdi
  • Publication number: 20140239301
    Abstract: A GeSi avalanche photodiode (APD includes an anti-reflection structure, a Ge absorption region, and a resonance cavity enhanced (RCE) reflector. The anti-reflection structure includes one or more dielectric layers and a top contact layer which is heavily doped with dopants of a first polarity. The RCE reflector includes: an intrinsic or lightly doped Si multiplication layer, a Si contact layer which is heavily doped with dopants of a second polarity opposite the first polarity, a Si cavity length compensation layer, a buried oxide (BOX) layer, and a Si substrate.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Applicant: SiFotonics Technologies Co., Ltd.
    Inventors: Mengyuan Huang, Tuo Shi, Pengfei Cai, Dong Pan
  • Patent number: 8815625
    Abstract: A pressure sensor having a structure, which includes a supporting body, a circuit arrangement and at least one circuit support. The circuit arrangement includes circuit components, amongst which detection means for generating electrical signals representing a quantity to be detected. The at least one circuit support is connected to the supporting body and has a surface, formed on which is a plurality of said circuit components, amongst which electrically conductive paths, where the circuit support is laminated on the first face of the supporting body.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Metallux SA
    Inventor: Massimo Monichino
  • Publication number: 20140231804
    Abstract: A sensor and its fabrication method are provided, the sensor comprises: a base substrate (32), a group of gate lines (30) and a group of data lines (31) arranged as crossing each other, and a plurality of sensing elements arranged in an array and defined by the group of gate lines (30) and the group of data lines (31), each sensing element comprising a TFT device and a photodiode sensing device, wherein a channel region of the TFT device is inverted and the source and drain electrodes (33, 34) are positioned between the active layer (36) and the gate electrode (38). The sensor reduces the number of mask as well as the production cost and simplifies the production process, thereby significantly improves the production capacity and the defect-free rate.
    Type: Application
    Filed: December 3, 2012
    Publication date: August 21, 2014
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Changjiang Yan, Zhenyu Xie, Shaoying Xu, Tiansheng Li
  • Patent number: 8810765
    Abstract: An electroluminescence element includes an electroluminescence substrate including a thin film transistor substrate, and a light-emitting layer provided over the thin film transistor substrate and divided by picture-element separating portions so as to correspond to unit picture elements; and a sealing substrate arranged to hermetically seal the light-emitting layer of the electroluminescence substrate. At least one of the electroluminescence substrate and the sealing substrate is a flexible substrate. Spacers are provided between the electroluminescence substrate and the sealing substrate.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 19, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Okabe, Hirohiko Nishiki
  • Publication number: 20140217408
    Abstract: Methods for forming a photovoltaic device include forming a buffer layer between a transparent electrode and a p-type layer. The buffer layer includes a doped germanium-free silicon base material. The buffer layer has a work function that falls within barrier energies of the transparent electrode and the p-type layer. An intrinsic layer and an n-type layer are formed on the p-type layer. Devices are also provided.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATON
    Inventors: Augustin J. Hong, Marinus J. Hopstaken, Jeehwan Kim, John A. Ott, Devendra K. Sadana
  • Publication number: 20140203283
    Abstract: A flat panel detector comprises a photoelectric conversion layer and a pixel detecting element disposed under the photoelectric conversion layer. The pixel detecting element comprises: a pixel electrode for receiving charges, a storage capacitor for storing the received charges, and a thin film transistor for controlling outputting of the stored charges. The storage capacitor comprises a first electrode and a second electrode. The first electrode comprises an upper electrode and a bottom electrode that are disposed opposite to each other and electrically connected. A second electrode is sandwiched between the upper electrode and the bottom electrode. It is insulated between the upper electrode and the second electrode and between the second electrode and the bottom electrode.
    Type: Application
    Filed: December 16, 2013
    Publication date: July 24, 2014
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Zhenyu XIE
  • Patent number: 8785932
    Abstract: An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: July 22, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Suk Won Jung, Byeong Hoon Cho, Sung Hoon Yang, Woong Kwon Kim, Sang Youn Han, Dae Cheol Kim, Ki-Hun Jeong, Kyung-Sook Jeon, Seung Mi Seo, Jung-Suk Bang, Kun-Wook Han
  • Patent number: 8772623
    Abstract: Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 8, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Mark W. Wanlass, Jeffrey J. Carapella
  • Publication number: 20140175441
    Abstract: A thin film transistor array panel includes a substrate, an insulation layer, a first semiconductor, and a second semiconductor. The insulation layer is disposed on the substrate and includes a stepped portion. The first semiconductor is disposed on the insulation layer. The second semiconductor is disposed on the insulation layer and includes a semiconductor material different than the first semiconductor. The stepped portion is spaced apart from an edge of the first semiconductor.
    Type: Application
    Filed: June 26, 2013
    Publication date: June 26, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hong-Kee CHIN, Yun Jong Yeo, Sang Gab Kim, Jung-Suk Bang, Byeong Hoon Cho
  • Patent number: 8759670
    Abstract: A photovoltaic converter device includes a photovoltaic conversion layer containing a plurality of nanoparticles in a first material in a dispersed state, wherein the nanoparticles include a second material in particles and a third material that coats the second material, the third material having a band gap E3 that is greater than a band gap E1 of the first material, and greater than a band gap E2 of the second material.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 24, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Masahiro Furusawa
  • Publication number: 20140167046
    Abstract: A method of fabricating a pixelated imager includes providing a substrate with bottom contact layer and sensing element blanket layers on the contact layer. The blanket layers are separated into an array of sensing elements by trenches isolating adjacent sensing elements. A sensing element electrode is formed adjacent each sensing element overlying a trench and defining a TFT. A layer of metal oxide semiconductor (MOS) material is formed on a dielectric layer overlying the electrodes and on an exposed upper surface of the blanket layers defining the sensing element adjacent each TFT. A layer of metal is deposited on each TFT and separated into source/drain electrodes on opposite sides of the sensing element electrode. The metal forming one of the S/D electrodes contacts the MOS material overlying the exposed surface of the semiconductor layer, whereby each sensing element in the array is electrically connected to the adjacent TFT by the MOS material.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Inventors: Chan- Long Shieh, Gang Yu
  • Publication number: 20140159032
    Abstract: A center region of conductive material/s may be disposed or “sandwiched” between transition regions of relatively lower conductivity materials to provide substantially low defect density interfaces for the sandwiched material. The center region and surrounding transition regions may in turn be disposed or sandwiched between dielectric insulative material to form a sandwiched and transitioned device structure. The center region of such a sandwiched structure may be implemented, for example, as a device layer such as conductive microbolometer layer for a microbolometer detector structure.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 12, 2014
    Inventors: Athanasios J. Syllaios, Michael F. Taylor, Sameer K. Ajmera
  • Patent number: 8741688
    Abstract: Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Stefan Uhlenbrock, Eugene P. Marsh
  • Patent number: 8735886
    Abstract: An image detector comprises: an active matrix-type TFT array substrate having a pixel area, in which photoelectric conversion elements and thin film transistors are arranged in a matrix shape, a data line, and a bias line; a conversion layer, which is arranged on the TFT array substrate and converts radiation into light; and a conductive cover, which covers the conversion layer, wherein the conductive cover is adhered in an adhesion area in an upper layer than an area, in which at least one of the data line and the bias line extend from the pixel area to each of terminals, and wherein inorganic insulation films configured by at least two layers are formed between the at least one of the data line and the bias line and the adhesion area.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenichi Miyamoto, Masami Hayashi, Hiromasa Morita, Isao Nojiri
  • Patent number: 8735887
    Abstract: The present invention provides an ion sensor with which an ion concentration can be stably measured with high accuracy, and a display device. The present invention is an ion sensor that includes a field effect transistor. The ion sensor also includes an ion sensor antenna and a reset device. The ion sensor antenna and the reset device are connected to a gate electrode of the field effect transistor. The reset device is capable of controlling the potential of the gate electrode and the ion sensor antenna to a predetermined potential.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: May 27, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Atsuhito Murai, Yoshiharu Kataoka, Takuya Watanabe, Yuhko Hisada, Satoshi Horiuchi
  • Patent number: 8735893
    Abstract: A display device includes an infrared sensing transistor and a visible sensing transistor. The visible sensing transistor includes a semiconductor on a substrate; an ohmic contact on the semiconductor; an etch stopping layer on the ohmic contact; a source electrode and a drain electrode on the etch stopping layer; a passivation layer on the source electrode and the drain electrode; and a gate electrode on the passivation layer. The etch stopping layer may be composed of the same material as the source electrode and the drain electrode. The infrared sensing transistor is similar to the visible sensing transistor except the etch stopping layer is absent.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 27, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dae-Cheol Kim, Sung-Ryul Kim, Yung-Jong Yeo, Hong-Kee Chin, Ki-Hun Jeong
  • Publication number: 20140110713
    Abstract: An electronic device and a method of fabricating the same are provided. The electronic device includes: a photodiode layer; a wiring layer formed on the first surface of the photodiode layer; a plurality of electrical contact pads formed on the wiring layer; a passivation layer formed on the wiring layer and the electrical contact pads; an antireflective layer formed on the second surface of the photodiode layer; a color filter layer formed on the antireflective layer; a dielectric layer formed on the antireflective layer and the color filter layer; and a microlens layer formed on the dielectric layer, allowing the color filter layer, the dielectric layer and the microlens layer to define an active region within which the electrical contact pads are positioned. As the electrical contact pads are positioned within the active region, an area of the substrate used for an inactive region can be eliminated.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: UNIMICRON TECHNOLOGY CORPORATION
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu
  • Patent number: 8698210
    Abstract: Provided is a sensor having a high sensitivity and a high degree of freedom of layout by reducing constrictions of the channel shape, the reaction field area, and the position. Provided is also a method for manufacturing the sensor. The sensor (10) includes: a source electrode (15), a drain electrode, (14), and a gate electrode (13) arranged on silicon oxide film (12a, 12b); a channel (16) arranged on the silicon oxide films (12a, 12b) and electrically connected to the source electrode (15) and the drain electrode (14); and a reaction field (20) arranged on the silicon oxide films (12a, 12b). The reaction field (20) is formed at a position on the silicon oxide film (12a), the position being different from a position for the channel (16). With this configuration, it is possible to independently select the shape of the channel (16) and the area of the reaction field (20). This enables the sensor (10) to have a high measurement sensitivity and a high degree of freedom of layout.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 15, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventors: Tomoaki Yamabayashi, Osamu Takahashi, Katsunori Kondo, Hiroaki Kikuchi
  • Patent number: 8679868
    Abstract: An improved bifacial solar cell is disclosed. In some embodiments, the front side includes an n-type field surface field, while the back side includes a p-type emitter. In other embodiments, the p-type emitter is on the front side. To maximize the diffusion of majority carriers and lower the series resistance between the contact and the substrate, the regions beneath the metal contacts are more heavily doped. Thus, regions of higher dopant concentration are created in at least one of the FSF or the emitter. These regions are created through the use of selective implants, which can be performed on one or two sides of the bifacial solar cell to improve efficiency.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: March 25, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Atul Gupta, Nicholas P. T. Bateman
  • Publication number: 20140077210
    Abstract: A p-i-n photodetector includes at least one multilayer contact structure including wide gap and narrow gap layers to reduce dark current. The multilayer contact structure includes one or more wide band gap semiconductor layers in alternating sequence with one or more narrow band gap contact layers. A fabrication method of the photodetector includes transfer-doping of the narrow band gap contact layers, which are deposited in alternating sequence with wide band gap semiconductor layers.
    Type: Application
    Filed: September 20, 2012
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8674358
    Abstract: There has been such a problem that radiation detecting elements using semiconductor elements have a low radiation detection efficiency, since the radiation detecting elements easily transmit radiation, even though the radiation detecting elements have merits, such as small dimensions and light weight. Disclosed are a radiation detecting element and a radiation detecting device, wherein a film formed of a metal, such as tungsten, is formed on the radiation incident surface of the radiation detecting element, and the incident energy of the radiation is attenuated. The efficiency of generating carriers by way of radiation incidence is improved by attenuating the incident energy, the thickness of the metal film is optimized, and the radiation detection efficiency is improved.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: March 18, 2014
    Inventor: Takehisa Sasaki
  • Patent number: 8669466
    Abstract: Electrical contact to the front side of a photovoltaic cell is provided by an array of conductive through-substrate vias, and optionally, an array of conductive blocks located on the front side of the photovoltaic cell. A dielectric liner provides electrical isolation of each conductive through-substrate via from the semiconductor material of the photovoltaic cell. A dielectric layer on the backside of the photovoltaic cell is patterned to cover a contiguous region including all of the conductive through-substrate vias, while exposing a portion of the backside of the photovoltaic cell. A conductive material layer is deposited on the back surface of the photovoltaic cell, and is patterned to form a first conductive wiring structure that electrically connects the conductive through-substrate vias and a second conductive wiring structure that provides electrical connection to the backside of the photovoltaic cell.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Yves Martin, Naim Moumen, Robert L. Sandstrom, Theodore G. van Kessel
  • Patent number: 8664533
    Abstract: A substrate having a transparent conductive layer has a transparent conductive pattern that is not easily visually recognizable by a naked human eye on a transparent substrate and can be formed by a simple and efficient method. In the case where a transparent conductive pattern is formed on a transparent substrate, the pattern region does not include conductive regions covered with uniform transparent conductive films or a high-resistance region that is not covered with the transparent conductive film, the high-resistance region electrically insulating the conductive regions. Instead of the conductive regions or the high-resistance region, the inventors use a region having a structure including a mixture of a portion covered with the transparent conductive film and a portion not covered with the transparent conductive film, thereby solving the foregoing visual recognition issue.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: March 4, 2014
    Assignee: DIC Corporation
    Inventors: Yoshikazu Yamazaki, Satoshi Hayakawa, Miho Yokokawa
  • Patent number: 8652869
    Abstract: A method of roughening a substrate surface includes forming an opening in a protection film formed on a surface of a semiconductor substrate, performing a first etching process using an acid solution by utilizing the protection film as a mask so as to form a first concave under the opening and its vicinity area, performing an etching process by using the protection film as a mask so as to remove an oxide film formed on a surface of the first concave, performing anisotropic etching by using the protection film as a mask so as to form a second concave under the opening and its vicinity area, and removing the protection film.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: February 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kunihiko Nishimura, Shigeru Matsuno, Daisuke Niinobe