With Specified Crystal Plane Or Axis Patents (Class 257/627)
  • Patent number: 7282738
    Abstract: A method of forming crystalline or polycrystalline layers includes providing a substrate and a patterning over the substrate. The method also includes providing nucleation material and forming the crystalline layer over the nucleation material. The crystalline material disposed over the substrate may be monocrystalline or polycrystalline.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: October 16, 2007
    Assignee: Corning Incorporated
    Inventors: James G. Couillard, Kishor P. Gadkaree, Youchun Shi
  • Patent number: 7282379
    Abstract: Provided is a nitride semiconductor having a larger low-defective region on a surface thereof, a semiconductor device using the nitride semiconductor, a method of manufacturing a nitride semiconductor capable of easily reducing surface defects in a step of forming a layer through lateral growth, and a method of manufacturing a semiconductor device manufactured by the use of the nitride semiconductor. A seed crystal portion is formed into stripes on a substrate with a buffer layer sandwiched therebetween. Then, a crystal is grown from the seed crystal portion in two steps of growth conditions to form a nitride semiconductor layer. In a first step, a low temperature growth portion having a trapezoidal-shaped cross section in a layer thickness direction is formed at a growth temperature of 1030° C., and in a second step, lateral growth predominantly takes place at a growth temperature of 1070° C. Then, a high temperature growth potion is formed between the low temperature growth portions.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: October 16, 2007
    Assignee: Sony Corporation
    Inventors: Osamu Goto, Takeharu Asano, Motonobu Takeya, Katsunori Yanashima
  • Publication number: 20070222038
    Abstract: A method for manufacturing is: forming an insulating film over a substrate; forming an amorphous semiconductor film over the insulating film; forming over the amorphous semiconductor film, a silicon nitride film in which a film thickness is equal to or more than 200 nm and equal to or less than 1000 nm, equal to or less than 10 atomic % of oxygen is included, and a relative proportion of nitrogen to silicon is equal to or more than 1.3 and equal to or less than 1.5; irradiating the amorphous semiconductor film with a continuous-wave laser light or a laser light with repetition rate of equal to or more than the wave length of 10 MHz transmitting the silicon nitride film to melt and later crystallize the amorphous semiconductor film to form a crystalline semiconductor film.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 27, 2007
    Inventor: Tomoaki Moriwaka
  • Patent number: 7271467
    Abstract: Structures are provided for multiple oxide thicknesses on a single silicon wafer. In particular, structures are provided for multiple gate oxide thicknesses on a single chip. The chip can include circuitry including but not limited to the memory and logic technologies. These structures for multiple oxide thickness on a single silicon wafer can be used in conjunction with existing fabrication and processing techniques with minimal or no added complexity. One structure includes a top layer of SiO2 on a top surface of a silicon wafer and a trench layer of SiO2 on a trench wall of the silicon wafer. The trench wall of the silicon wafer has a different order plane-orientation than the top surface. The thickness of the top layer is different from a thickness of the trench layer.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Wendell P. Noble, Leonard Forbes
  • Patent number: 7271043
    Abstract: The present invention provides a strained Si directly on insulator (SSDOI) substrate having multiple crystallographic orientations and a method of forming thereof. Broadly, but in specific terms, the inventive SSDOI substrate includes a substrate; an insulating layer atop the substrate; and a semiconducting layer positioned atop and in direct contact with the insulating layer, the semiconducting layer comprising a first strained Si region and a second strained Si region; wherein the first strained Si region has a crystallographic orientation different from the second strained Si region and the first strained Si region has a crystallographic orientation the same or different from the second strained Si region. The strained level of the first strained Si region is different from that of the second strained Si region.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Huajie Chen, Patricia M. Mooney, Stephen W. Bedell
  • Patent number: 7268377
    Abstract: The present invention provides a method of integrating semiconductor devices such that different types of devices are formed upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. Specifically, the present invention provides a method of integrating semiconductor devices such that pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane of a planar hybrid substrate. The method of the present invention also improves the performance of creating SOI-like devices with a combination of a buried insulator and counter-doping layers. The present invention also relates to semiconductor structures that are formed utilizing the method of the present invention.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: September 11, 2007
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Min Yang
  • Patent number: 7256478
    Abstract: There is provided a notched compound semiconductor crystal having the same specification even if it is turned over. With respect to a compound semiconductor wafer produced by slicing a compound semiconductor crystal having a crystal plane of (100) plane, the crystal is sliced so as to be tilted from the (100) plane in a direction of [101] or [10-1] when a notch is formed in a direction of [010], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [0-10] or [010] when a notch is formed in a direction of [001], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [001] or [00-1] when a notch is formed in a direction of [0-10], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [010] or [0-10] when a notch is formed in a direction of [00-1].
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 14, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Ryuichi Toba, Naoya Sunachi
  • Patent number: 7256476
    Abstract: There is provided a notched compound semiconductor crystal having the same specification even if it is turned over. With respect to a compound semiconductor wafer produced by slicing a compound semiconductor crystal having a crystal plane of (100) plane, the crystal is sliced so as to be tilted from the (100) plane in a direction of [101] or [10-1] when a notch is formed in a direction of [010], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [0-10] or [010] when a notch is formed in a direction of [001], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [001] or [00-1] when a notch is formed in a direction of [0-10] , or the crystal is sliced so as to be tilted from the (100) plane in a direction of [010] or [0-10] when a notch is formed in a direction of [00-1].
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 14, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Ryuichi Toba, Naoya Sunachi
  • Patent number: 7256477
    Abstract: There is provided a notched compound semiconductor crystal having the same specification even if it is turned over. With respect to a compound semiconductor wafer produced by slicing a compound semiconductor crystal having a crystal plane of (100) plane, the crystal is sliced so as to be tilted from the (100) plane in a direction of [101] or [10-1] when a notch is formed in a direction of [010], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [0-10] or [010] when a notch is formed in a direction of [001], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [001] or [00-1] when a notch is formed in a direction of [0-10], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [010] or [0-10] when a notch is formed in a direction of [00-1].
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 14, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Ryuichi Toba, Naoya Sunachi
  • Patent number: 7226805
    Abstract: An epitaxial silicon carbide layer is fabricated by forming first features in a surface of a silicon carbide substrate having an off-axis orientation toward a crystallographic direction. The first features include at least one sidewall that is orientated nonparallel (i.e., oblique or perpendicular) to the crystallographic direction. A first epitaxial silicon carbide layer is then grown on the surface of the silicon carbide substrate that includes first features therein. Second features are then formed in the first epitaxial layer. The second features include at least one sidewall that is oriented nonparallel to the crystallographic direction. A second epitaxial silicon carbide layer is then grown on the surface of the first epitaxial silicon carbide layer that includes the second features therein.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: June 5, 2007
    Assignee: Cree, Inc.
    Inventors: Christer Hallin, Heinz Lendenmann, Joseph John Sumakeris
  • Patent number: 7208815
    Abstract: In preferred embodiments of the present invention, a method of forming CMOS devices using SOI and hybrid substrate orientations is described. In accordance with a preferred embodiment, a substrate may have multiple crystal orientations. One logic gate in the substrate may comprise at least one N-FET on one crystal orientation and at least one P-FET on another crystal orientation. Another logic gate in the substrate may comprise at least one N-FET and at least one P-FET on the same orientation. Alternative embodiments further include determining the preferred cleavage planes of the substrates and orienting the substrates relative to each other in view of their respective preferred cleavage planes. In a preferred embodiment, the cleavage planes are not parallel.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: April 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Wei Chen, Ping-Kun Wu, Chao-Hsiung Wang, Fu-Liang Yang, Chenming Hu
  • Patent number: 7208803
    Abstract: A method of forming a raised source/drain proximate a spacer of a gate of a transistor on a substrate, and a semiconductor device of an integrated circuit employing the same. In one embodiment, the method includes orienting the gate substantially along a <100> direction of the substrate. The method also includes providing a semiconductor material adjacent the spacer of the gate to form a raised source/drain layer of the raised source/drain oriented substantially along a <100> direction of the substrate.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: April 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Steve Ming Ting
  • Patent number: 7199451
    Abstract: An assembly and method of making the same wherein the assembly incorporates a rare-earth oxide film to form a [110] crystal lattice orientation semiconductor film. The assembly comprises a substrate, a rare-earth oxide film formed on the substrate, and a [110]-oriented semiconductor film formed on the rare-earth oxide film. The rare-earth oxide film having a [110] crystal lattice orientation. The substrate has a [001] crystal lattice orientation.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: April 3, 2007
    Assignee: Intel Corporation
    Inventor: Maxim B. Kelman
  • Patent number: 7196400
    Abstract: An object is to enhance the orientation ratio of a crystalline semiconductor film obtained by crystallizing an amorphous semiconductor film while using as a substrate a less-heat-resistive material such as glass thereby providing a semiconductor device using a crystalline semiconductor film with high quality equivalent to a single crystal. A first crystalline semiconductor film and a second crystalline semiconductor film are formed overlying a substrate, which integrally structure a crystalline semiconductor layer. The first and second crystalline semiconductor films are polycrystalline bodies aggregated with a plurality of crystal grains. However, the crystal grains are aligned toward a (101)-plane orientation at a ratio of 30 percent or greater, preferably 80 percent or greater.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: March 27, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Mitsuki, Kenji Kasahara
  • Patent number: 7190076
    Abstract: A GaN layer is formed on a sapphire substrate through an AlN buffer layer and doped with Mg to prepare a laminate (referred to as “GaN substrate”). A metal (Pt and Ni) electrode 50 nm thick is formed on the GaN substrate by (1) vapor deposition after the GaN substrate is heated to a temperature of 300° C. or by (2) vapor deposition while the GaN substrate is left at room temperature. (3) The electrode obtained in (2) is heated to 300° C. in a nitrogen atmosphere. The contact resistance of the electrode obtained in (1) is lower by two or three digits than that of the electrode obtained in (2) or (3). That is, the electric characteristic of the electrode obtained in (1) is improved greatly.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: March 13, 2007
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Ippei Fujimoto, Tsutomu Sekine, Miki Moriyama, Masanori Murakami, Naoki Shibata
  • Patent number: 7190050
    Abstract: By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: March 13, 2007
    Assignee: Synopsys, Inc.
    Inventors: Tsu-Jae King, Victor Moroz
  • Patent number: 7187059
    Abstract: A structure for conducting carriers and method for forming is described incorporating a single crystal substrate of Si or SiGe having an upper surface in the <110> and a psuedomorphic or epitaxial layer of SiGe having a concentration of Ge different than the substrate whereby the psedomorphic layer is under strain. A method for forming semiconductor epitaxial layers is described incorporating the step of forming a psuedomorphic or epitaxial layer in a rapid thermal chemical vapor deposition (RTCVD) tool by increasing the temperature in the tool to about 600° C. and introducing both a Si containing gas and a Ge containing gas.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: March 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Kathryn W. Guarini, Meikel Ieong, Kern Rim, Min Yang
  • Patent number: 7183629
    Abstract: During the formation of a metallization layer of a semiconductor device, a cap layer is formed above a metal line and subsequently an implantation process is performed so as to modify the metal in the vicinity of the interface between the cap layer and the metal line. Consequently, an improved behavior in view of electromigration of the metal line may be obtained, thereby increasing device reliability.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: February 27, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Hans-Juergen Engelmann, Ehrenfried Zschech, Peter Huebler
  • Patent number: 7164172
    Abstract: There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a <110> crystal direction of a support substrate (1) with a <100> crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the <100> crystal direction of the SOI layer (3). Since hole mobility is higher in the <100> crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: January 16, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Shigeto Maegawa, Takuji Matsumoto
  • Patent number: 7148559
    Abstract: An integrated semiconductor structure having different types of complementary metal oxide semiconductor devices (CMOS), i.e., PFETs and NFETs, located atop a semiconductor substrate, wherein each CMOS device is fabricated such that the current flow for each device is optimal is provided. Specifically, the structure includes a semiconductor substrate that has a (110) surface orientation and a notch pointing in a <001> direction of current flow; and at least one PFET and at least one NFET located on the semiconductor substrate. The at least one PFET has a current flow in a <110> direction and the at least one NFET has a current flow in a <100> direction. The <110> direction is perpendicular to the <100> direction. A method of fabricating such as integrated semiconductor structure is also provided.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: December 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Victor W. C. Chan, Meikei Leong, Min Yang
  • Patent number: 7132730
    Abstract: The invention relates to a substrate for epitaxy, especially for preparation of nitride semiconductor layers. Invention covers a bulk nitride mono-crystal characterized in that it is a mono-crystal of gallium nitride and its cross-section in a plane perpendicular to c-axis of hexagonal lattice of gallium nitride has a surface area greater than 100 mm2, it is more than 1.0 ?m thick and its C-plane surface dislocation density is less than 106/cm2, while its volume is sufficient to produce at least one further-processable non-polar A-plane or M-plane plate having a surface area at least 100 mm2. More generally, the present invention covers a bulk nitride mono-crystal which is characterized in that it is a mono-crystal of gallium-containing nitride and its cross-section in a plane perpendicular to c-axis of hexagonal lattice of gallium-containing nitride has a surface area greater than 100 mm2, it is more 1.0 ?m thick and its surface dislocation density is less than 106/cm2.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: November 7, 2006
    Assignees: Ammono Sp. z.o.o., Nichia Corporation
    Inventors: Robert Dwiliński, Roman Doradziński, Jerzy Garczyński, Leszek P. Sierzputowski, Yasuo Kanbara
  • Patent number: 7109568
    Abstract: In a semiconductor device including n-channel field-effect transistors and p-channel field-effect transistors, in which the channel direction is parallel to a axis, a semiconductor device in provided which has excellent drain current characteristics at both n-channel field-effect transistors and p-channel field-effect transistors. In a semiconductor device including n-channel field-effect transistors N1 and N2 and p-channel field-effect transistors P1 and P2, a stress control film that covers the gate electrodes of the n-channel and p-channel field-effect transistors from upper surfaces thereof is not formed, or is made thin, above shallow trench isolations adjacent to active regions formed by the p-channel field-effect transistors P1 and P2, in a case where the stress control film is a tensile film stress. Thus, improvement of the drain currents of both the n-channel and p-channel transistors can be expected. For this reason, it is possible to improve overall characteristics.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: September 19, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Yukihiro Kumagai, Hiroyuki Ohta, Shingo Nasu
  • Patent number: 7102166
    Abstract: A hybrid orientation semiconductor structure and method of forming the same. The structure includes (a) a semiconductor substrate comprising a first semiconductor material having a first lattice orientation; (b) a back gate region on the semiconductor substrate; (c) a back gate dielectric layer on the back gate region; (d) a semiconductor region on the back gate dielectric layer, wherein the semiconductor region is electrically insulated from the back gate region by the back gate dielectric layer, and wherein the semiconductor region comprises a second semiconductor material having a second lattice orientation different from the first lattice orientation; and (e) a field effect transistor (FET) formed on the semiconductor region, wherein changing a voltage potential applied to the back gate region causes a change in a threshold voltage of the FET.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: September 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., Edward J. Nowak
  • Patent number: 7095062
    Abstract: A substrate includes non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops and the trenches include non-gallium floors. Gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops. Preferably, gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium nitride pyramids. The gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature. The first temperature preferably is about 1000° C. or less and the second temperature preferably is about 1100° C. or more. However, other than temperature, the same processing conditions preferably are used for both growth steps. The grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: August 22, 2006
    Assignee: North Carolina State University
    Inventors: Kevin J. Linthicum, Thomas Gehrke, Robert F. Davis
  • Patent number: 7087477
    Abstract: The present invention provides a device design and method for forming the same that results in Fin Field Effect Transistors having different gains without negatively impacting device density. The present invention forms relatively low gain FinFET transistors in a low carrier mobility plane and relatively high gain FinFET transistors in a high carrier mobility plane. Thus formed, the FinFETs formed in the high mobility plane have a relatively higher gain than the FinFETs formed in the low mobility plane. The embodiments are of particular application to the design and fabrication of a Static Random Access Memory (SRAM) cell. In this application, the bodies of the n-type FinFETs used as transfer devices are formed along the {110} plane. The bodies of the n-type FinFETs and p-type FinFETs used as the storage latch are formed along the {100}. Thus formed, the transfer devices will have a gain approximately half that of the n-type storage latch devices, facilitating proper SRAM operation.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Randy W. Mann, K. Paul Muller, Edward J. Nowak
  • Patent number: 7087965
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Patent number: 7087932
    Abstract: A semiconductor light-emitting element is provided which has a structure that does not complicate a fabrication process, can be formed in high precision and does not invite any degradation of crystallinity. A light-emitting element is formed, which includes a selective crystal growth layer formed by selectively growing a compound semiconductor of a Wurtzite type, a clad layer of a first conduction type, an active layer and a clad layer of a second conduction type, which are formed on the selective crystal growth layer wherein the active layer is formed so that the active layer extends in parallel to different crystal planes, the active layer is larger in size than a diffusion length of a constituent atom of a mixed crystal, or the active layer has a difference in at least one of a composition and a thickness thereof, thereby forming the active layer having a number of light-emitting wavelength regions whose emission wavelengths differ from one another.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 8, 2006
    Assignee: Sony Corporation
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Toyoharu Oohata
  • Patent number: 7075052
    Abstract: A photoelectric conversion device capable of improving an open-circuit voltage is obtained. In this photoelectric conversion device, many of crystal grains contained in a third non-single-crystalline semiconductor layer have major axes substantially perpendicular to a main surface of a substrate on an interfacial portion between at least either a first non-single-crystalline semiconductor layer or a second non-single-crystalline semiconductor layer and the third non-single-crystalline semiconductor layer, and many of crystal grains contained in either semiconductor layer have major axes substantially parallel to the main surface of the substrate on the aforementioned interfacial portion.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: July 11, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masaki Shima, Shigeharu Taira
  • Patent number: 7063751
    Abstract: A trench is formed in a semiconductor substrate through a mask composed of a silicon oxide film formed on the semiconductor substrate. Then, an edge portion at an opening portion of the mask is etched so that the width of the mask opening width is greater than the width of the trench. After that, the inner surface of the trench is smoothed by thermal treatment around at 1000° C. in non-oxidizing or non-nitriding atmosphere under low pressure. Then, the trench is filled with an epitaxial film. After that, the epitaxial film is polished to complete the substrate.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: June 20, 2006
    Assignee: Denso Corporation
    Inventors: Yasushi Urakami, Shoichi Yamauchi, Hitoshi Yamaguchi, Nobuhiro Tsuji
  • Patent number: 7051430
    Abstract: Methods of manufacturing a printed board assembly. In one embodiment, a substrate is coated with an electrically conducting material; electrical components are mounted on some areas of the substrate; non-conducting material is disposed in areas between the electrical components; the substrate, electrical components and non-conducting material are sandwiched between two sheets of resin coated conducting foil, wherein the resin on the foils faces the substrate and buries the electrical components; circuit patterns are etched in the exposed surfaces of the resin coated conducting foils; and, electrical connections are established between at least one of the resin coated conducting foils and the electronic components.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 30, 2006
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Leif Bergstedt, Per Ligander, Katarina Boustedt
  • Patent number: 7042009
    Abstract: A high mobility semiconductor assembly. In one exemplary aspect, the high mobility semiconductor assembly includes a first substrate having a first reference orientation located at a <110> crystal plane location on the first substrate and a second substrate formed on top of the first substrate. The second substrate has a second reference orientation located at a <100> crystal plane location on the second substrate, wherein the first reference orientation is aligned with the second reference orientation. In another exemplary aspect, the second substrate has a second reference orientation located at a <110> crystal plane location on the second substrate, wherein the second substrate is formed over the first substrate with the second reference orientation being offset to the first reference orientation by about 45 degrees.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 9, 2006
    Assignee: Intel Corporation
    Inventors: Mohamad A. Shaheen, Brian Doyle, Suman Dutta, Robert S. Chau, Peter Tolchinsky
  • Patent number: 7042141
    Abstract: A lead zirconate titanate-based thin film is an epitaxial crystal thin film and has a chemical composition represented by the general formula Pb1-xLnxZryTi1-yO3 (wherein Ln represents any one selected from the group consisting of lanthanum, lanthanoid elements, niobium, calcium, barium, strontium, iron, manganese and tin; and 0?x<1, 0.43?y?0.65) and whose orientation is {111} (including orientations whose tilt angle from the direction perpendicular to the substrate surface is within 15°).
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 9, 2006
    Assignees: The Circle for the Promotion of Science and Engineering, National Institute of Advanced Industrial Science and Technology, Canon Kabushiki Kaisha
    Inventors: Hiroshi Funakubo, Takashi Iijima, Shintaro Yokoyama, Hirofumi Matsuda
  • Patent number: 7034362
    Abstract: A SOI MOSFET structure having a reduced step height between the various semiconductor layers without adversely affecting the junction capacitance of the semiconductor device formed on the uppermost semiconductor layer as well as a method of fabricating the same are provided. The structure of the present invention includes an elevated device region having at least one semiconductor device located on a second semiconductor layer. The elevated device region further includes a source/drain junction that extends from the second semiconductor layer down to a first buried insulator layer that is located on an upper surface of the semiconductor substrate. The structure also includes a recessed device region having at least one semiconductor device located atop a first semiconductor layer which is located on an upper surface of the first buried insulator. An isolation region separates the elevated device region from the recessed device region.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: April 25, 2006
    Assignee: International Business Machines Corporation
    Inventor: Kern Rim
  • Patent number: 7023068
    Abstract: In a MOS transistor, the drain capacitance is reduced by forming a lateral trench underneath the drain. This is typically done by using an anisotropic wet etch process in a <110> direction of a <100> orientation wafer.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: April 4, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Philipp Lindorfer, Vladislav Vashchenho, Peter Johnson
  • Patent number: 7023055
    Abstract: A method in which semiconductor-to-semiconductor direct wafer bonding is employed to provide a hybrid substrate having semiconductor layers of different crystallographic orientations that are separated by a conductive interface is provided. Also provided are the hybrid substrate produced by the method as well as using the direct bonding method to provide an integrated semiconductor structure in which various CMOS devices are built upon a surface orientation that enhances device performance.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Alexander Reznicek, Min Yang
  • Patent number: 7023021
    Abstract: The present invention improves the aperture ratio of a pixel of a reflection-type display device or a reflection type display device without increasing the number of masks and without using a blackmask. A pixel electrode (167) is arranged so as to partially overlap a source wiring (137) for shielding the gap between pixels from light, and a thin film transistor is arranged so as to partially overlap a gate wiring (166) for shielding a channel region of the thin film transistor from light, thereby realizing a high pixel aperture ratio.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: April 4, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 7002237
    Abstract: A spherical shaped semiconductor device has a protective insulating film thereon and input/output connection openings that are located along a intersected portion on the protective insulating film where a plane face running through a center of the spherical shaped semiconductor device intersects the protective insulating film. More input/output connection openings are provided on the spherical shaped semiconductor device compared with a conventional square semiconductor device. The spherical shaped semiconductor device is connected to a flat circuit substrate through a flexible printed wiring substrate. A lower portion of the flexible printed wiring substrate is cut into divided sections for connecting input/output terminals of the flat circuit substrate. Connection between the spherical shaped semiconductor device and the flat circuit substrate does not cause any cracks or disconnection due to flexibility of the flexible printed wiring substrate.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: February 21, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masakatsu Takaishi
  • Patent number: 6998700
    Abstract: There is provided a notched compound semiconductor crystal having the same specification even if it is turned over. With respect to a compound semiconductor wafer produced by slicing a compound semiconductor crystal having a crystal plane of (100) plane, the crystal is sliced so as to be tilted from the (100) plane in a direction of [101] or [10?1] when a notch is formed in a direction of [010], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [0?10] or [010] when a notch is formed in a direction of [001], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [001] or [00?1] when a notch is formed in a direction of [0?10], or the crystal is sliced so as to be tilted from the (100) plane in a direction of [010] or [0?10] when a notch is formed in a direction of [00?1].
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: February 14, 2006
    Assignee: Dowa Mining Co., LTD
    Inventors: Ryuichi Toba, Naoya Sunachi
  • Patent number: 6998684
    Abstract: Disclosed is an integrated circuit structure that has a substrate having at least two types of crystalline orientations. First-type transistors (e.g., NFETs) are formed on first portions of the substrate having a first type of crystalline orientation, and second-type transistors (e.g., PFETs) are formed on second portions of the substrate having a second type of crystalline orientation. Some of the first portions of the substrate comprise non-floating substrate portions, and the remaining ones of the first portions and all of the second portions of the substrate comprise floating substrate portions.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: February 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, MeiKei Leong, Edward J. Nowak
  • Patent number: 6995456
    Abstract: Disclosed is an integrated circuit structure that has a substrate having at least two types of crystalline orientations. The first-type transistors are on first portions of the substrate that have a first type of crystalline orientation and second-type transistors are on second portions of the substrate that have a second type of crystalline orientation. The straining layer is above the first-type transistors and the second-type transistors. Further, the straining layer can be strained above the first-type transistors and relaxed above the second-type transistors.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: February 7, 2006
    Assignee: International Business Machines Corporation
    Inventor: Edward J. Nowak
  • Patent number: 6972478
    Abstract: An integrated circuit and methods for its manufacture are provided. The integrated circuit comprises a bulk silicon substrate having a first region of <100> crystalline orientation and a second region of <110> crystalline orientation. A layer of silicon on insulator overlies a portion of the bulk silicon substrate. At least one field effect transistor is formed in the layer of silicon on insulator, at least one P-channel field effect transistor is formed in the second region of <110> crystalline orientation, and at least one N-channel field effect transistor is formed in the first region of <100> crystalline orientation.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: December 6, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andrew M. Waite, Scott Luning
  • Patent number: 6967359
    Abstract: Disclosed are a nitride semiconductor substrate and a production method thereof. Seed crystals made of GaN or AlGaN with a relatively low AlN molar fraction is selectively grown on a first group-III nitride semiconductor, such as GaN, to have a specific crystal face. Then, on the seed crystals, an AlGaN with a high AlN molar fraction is grown through a second group-III nitride semiconductor, such as AlN deposited at a low temperature. The present invention can provide an AlGaN-crystal substrate having a low dislocation density in a wide area without any crack, and a high-performance short-wavelength optical device using the substrate.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: November 22, 2005
    Assignee: Japan Science and Technology Agency
    Inventors: Satoshi Kamiyama, Hiroshi Amano
  • Patent number: 6960821
    Abstract: Improved methods and structures are provided that are lateral to surfaces with a (110) crystal plane orientation such that an electrical current of such structures is conducted in the <110> direction. Advantageously, improvements in hole carrier mobility of approximately 50% can be obtained by orienting the structure's channel in a (110) plane such that the electrical current flow is in the <110> direction. Moreover, these improved methods and structures can be used in conjunction with existing fabrication and processing techniques with minimal or no added complexity.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: November 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Wendell P. Noble, Leonard Forbes, Alan R. Reinberg
  • Patent number: 6943381
    Abstract: A light-emitting semiconductor device comprises a III-Nitride active region and a III-Nitride layer formed proximate to the active region and having a thickness that exceeds a critical thickness for relaxation of strain in the III-Nitride layer. The III-Nitride layer may be a carrier confinement layer, for example. In another aspect of the invention, a light-emitting semiconductor device comprises a III-Nitride light emitting layer, an InxAlyGa1-x-yN (0?x?1, 0?y?1, x+y?1), and a spacer layer interposing the light emitting layer and the InxAlyGa1-x-yN layer. The spacer layer may advantageously space the InxAlyGa1-x-yN layer and any contaminants therein apart from the light emitting layer. The composition of the III-Nitride layer may be advantageously selected to determine a strength of an electric field in the III-Nitride layer and thereby increase the efficiency with which the device emits light.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 13, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Nathan F. Gardner, Christopher P. Kocot, Stephen A. Stockman
  • Patent number: 6936865
    Abstract: A visible light transmitting structure with photovoltaic effect comprises a transparent substrate and a PN junction layer having a P type semiconductor and an N type semiconductor, which is formed on the substrate. The visible light transmitting structure with photovoltaic effect may be used as a windowpane of a house or a business place for shutting out harmful ultraviolet rays by passing visible light through the windowpane.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: August 30, 2005
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Kazuhiko Tonooka
  • Patent number: 6927416
    Abstract: A wafer support plate comprises a support surface on which a semiconductor wafer is supported, and a crystal orientation mark which indicates the crystal orientation of the semiconductor wafer. Even the semiconductor wafer thinned by grinding can be stably held on the support surface, and the crystal orientation can be recognized even when the outer periphery of the semiconductor wafer has chipped.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 9, 2005
    Assignee: Disco Corporation
    Inventors: Kazuhisa Arai, Masatoshi Nanjo, Masahiko Kitamura, Shinichi Namioka, Koichi Yajima
  • Patent number: 6924509
    Abstract: Monoatomic and monocrystalline layer of large size, in diamond type carbon, and method for the manufacture of this layer. According to the invention, a monocrystalline substrate (2) is formed in SiC terminated by an atomic plane of carbon according to a reconstruction c(2×2) and at least one annealing is carried out, capable of transforming this atomic plane, which is a plane of dimers C?C (4) of sp configuration, into a plane of dimers C—C (8) of sp3 configuration. Application to microelectronics, optics, optoelectronics, micromechanics and biomaterials.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 2, 2005
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Vincent Derycke, Gérald Dujardin, Andrew Mayne, Patrick Soukiassian
  • Patent number: 6909165
    Abstract: A mirror-polished obverse surface and a roughened reverse surface of the conventional GaN wafers have been discriminated by difference of roughness on the surfaces with human eyesight. The difference of the surfaces is rather ambiguous. Cracks/breaks and distortion of the wafers have been likely to occur because the roughness of the reverse surface is apt to bring fine particles. To discern an obverse from a reverse without making use of the difference of the surface roughness, the present invention provides an obverse/reverse discriminative rectangular nitride semiconductor wafer having a longer slanting edge and a shorter slanting edge at obversely-clockwise neighboring corners, or having an asymmetric slanting edge at a corner, or having asymmetrically bevelled parts or having discriminating characters marked by laser. The present invention can make the reverse surface mirror-polished and smooth, so that particles on the reverse surface and distortion, cracks or breaks of the wafer decrease.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: June 21, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masahiro Nakayama, Tetsuya Hirano
  • Patent number: 6900503
    Abstract: An SRAM capable of reducing the overall area consumed by the circuit and capable of improving the mobility and operational characteristics of a PMOS transistor is provided. The SRAM is formed on an SOI substrate having first and second active areas. A first access NMOS transistor and a first inverter, which is constituted by a first drive NMOS transistor and a first load PMOS transistor, are formed on the first active area of the SOI substrate. A second access NMOS transistor and a second inverter, which is constituted by a first drive NMOS transistor and a first load PMOS transistor, are formed on the second active area of the SOI substrate. Here, the channels of the first and second load PMOS transistors extend so that carriers move in a [110] silicon crystallization growth direction. In each active area, the drain (or source) of an access NMOS transistor, the drain of a drive NMOS transistor, and the drain of a load PMOS transistor contact one another in a shared region.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: May 31, 2005
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Chang-bong Oh, Young-wug Kim
  • Patent number: 6870226
    Abstract: There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a <110> crystal direction of a support substrate (1) with a <100> crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the <100> crystal direction of the SOI layer (3). Since hole mobility is higher in the <100> crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: March 22, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Shigeto Maegawa, Takuji Matsumoto