With Discrete Components Patents (Class 257/724)
  • Patent number: 8987885
    Abstract: Microdevices and methods for packaging microdevices. One embodiment of a packaged microdevice includes a substrate having a mounting area, contacts in the mounting area, and external connectors electrically coupled to corresponding contacts. The microdevice also includes a die located across from the mounting area and spaced apart from the substrate by a gap. The die has an integrated circuit and pads electrically coupled to the integrated circuit. The microdevice further includes first and second conductive elements in the gap that form interconnects between the contacts of the substrate and corresponding pads of the die. The first conductive elements are electrically connected to contacts on the substrate, and the second conductive elements are electrically coupled to corresponding pads of the die.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Stuart L. Roberts, Tracy V. Reynolds, Rich Fogal, Matt E. Schwab
  • Patent number: 8987765
    Abstract: Light emitting devices and methods of integrating micro LED devices into light emitting device are described. In an embodiment a light emitting device includes a reflective bank structure within a bank layer, and a conductive line atop the bank layer and elevated above the reflective bank structure. A micro LED device is within the reflective bank structure and a passivation layer is over the bank layer and laterally around the micro LED device within the reflective bank structure. A portion of the micro LED device and a conductive line atop the bank layer protrude above a top surface of the passivation layer.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: March 24, 2015
    Assignee: Luxvue Technology Corporation
    Inventors: Andreas Bibl, Charles R. Griggs
  • Patent number: 8987884
    Abstract: A device includes a first package component, and a second package component underlying the first package component. The second package component includes a first electrical connector at a top surface of the second package component, wherein the first electrical connector is bonded to the first package component. The second package component further includes a second electrical connector at the top surface of the second package component, wherein no package component is overlying and bonded to the second electrical connector.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 8987896
    Abstract: An apparatus includes a coreless mounting substrate and an interposer disposed on the coreless mounting substrate with a chip disposed in a recess in the interposer and upon the coreless substrate. The apparatus may include an inter-package solder bump in contact with an interconnect channel in the interposer, and a top chip package including a top package substrate and a top die disposed on the top package substrate. The top package substrate is in contact with the inter-package solder bump.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Bok Eng Cheah, Shanggar Periaman, Kooi Chi Ooi
  • Patent number: 8980697
    Abstract: A reconfigured wafer of resin-encapsulated semiconductor packages is obtained by supporting with a resin, thereafter, a grinding process is performed on top and backside surfaces to expose only a bump interconnection electrode on a surface of a semiconductor chip. Further, a chip-scale package is obtained by a dicing process along a periphery of the chip.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Yamada, Yutaka Onozuka, Atsuko Iida, Kazuhiko Itaya
  • Patent number: 8975735
    Abstract: A redistribution board includes a first conductive layer including a redistribution structure for low voltage signals, a second conductive layer including a redistribution structure for high voltage signals, and a non-conductive layer. The second conductive layer is spaced apart from the first conductive layer by the non-conductive layer. The redistribution board further includes a conductive connector extending from a mounting surface of the redistribution board to the second conductive layer. The conductive connector is surrounded by a low voltage trace of the first conductive layer.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 10, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Höglauer
  • Patent number: 8975744
    Abstract: A three-dimensional, reconfigurable system package is provided for an electronic system. The system package includes a plurality of layers of active electronic components integrated both vertically and horizontally into a single circuit, with the layers being vertically stacked and spaced apart from one another. The layers include a base layer whose active electronic components include a reconfigurable system-on-chip configured to at least partially implement the electronic system, and an upper layer whose active electronic components include electronic components configured to signal process RF signals. The system package also includes a RF tunnel that extends vertically between the base layer and upper layer, and that is configured to provide structural support and vertical separation for the upper layer, and transport at least some RF signals between the base layer and upper layer. And a cover is secured to the base layer and encases the active electronic components and RF tunnel.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 10, 2015
    Assignee: The Boeing Company
    Inventor: Jaime Lerma
  • Patent number: 8970025
    Abstract: Provided is a method of forming a package-on-package. An encapsulation is formed to cover a wafer using a wafer level molding process. The wafer includes a plurality of semiconductor chips and a plurality of through silicon vias (TSVs) passing through the semiconductor chips. The encapsulant may have openings aligned with the TSVs. The encapsulant and the semiconductor chips are divided to form a plurality of semiconductor packages. Another semiconductor package is stacked on one selected from the semiconductor packages. The other semiconductor package is electrically connected to the TSVs.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hun Kim, Jin-Woo Park, Dae-Young Choi, Mi-Yeon Kim, Sun-Hye Lee
  • Patent number: 8963322
    Abstract: An electric power conversion apparatus includes a stacked body, a capacitor, a metal frame and a case. The stacked body is formed by stacking semiconductor modules with coolant passages formed therebetween. The frame has both the stacked body and the capacitor fixed therein. The case has all of the stacked body, the capacitor and the frame received therein. Further, the frame has a separation wall that separates the stacked body and the capacitor from each other, a stacked body-surrounding wall that surrounds the stacked body with the help of the separation wall, and a capacitor-surrounding that surrounds the capacitor with the help of the separation wall. The capacitor has a pair of end portions that are opposite to each other in a predetermined direction, in which control terminals of the semiconductor modules of the stacked body protrude, and each at least partially exposed from the capacitor-surrounding wall of the frame.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: February 24, 2015
    Assignee: Denso Corporation
    Inventors: Yuuya Kiuchi, Akira Nakasaka
  • Patent number: 8957497
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 17, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8957512
    Abstract: An embodiment of an interposer is disclosed. For this embodiment of the interposer, a first circuit portion is created responsive to a first printing region. A second circuit portion is created responsive to a second printing region. The interposer has at least one of: (a) a length dimension greater than a maximum reticle length dimension, and (b) a width dimension greater than a maximum reticle width dimension.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Xilinx, Inc.
    Inventor: Toshiyuki Hisamura
  • Patent number: 8952540
    Abstract: A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventors: Mihir K. Roy, Mathew J. Manusharow
  • Patent number: 8952527
    Abstract: Of three chips (2A), (2B), and (2C) mounted on a main surface of a package substrate (1) in a multi-chip module (MCM), a chip (2A) with a DRAM formed thereon and a chip (2B) with a flash memory formed thereon are electrically connected to wiring lines (5) of the package substrate (1) through Au bumps (4), and a gap formed between main surfaces (lower surfaces) of the chips (2A), (2B) and a main surface of the package substrate (1) is filled with an under-fill resin (6). A chip (2C) with a high-speed microprocessor formed thereon is mounted over the two chips (2A) and (2B) and is electrically connected to bonding pads (9) of the package substrate (1) through Au wires (8).
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: February 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Kado, Takahiro Naito, Toshihiko Sato, Hikaru Ikegami, Takafumi Kikuchi
  • Patent number: 8951834
    Abstract: Methods of forming solder balls for semiconductor packages using film-assisted molding include providing a substrate, forming a plurality of solder balls on the substrate where each solder ball has an initial profile, and coupling a substantially planar film to the solder balls. As an encapsulation is deposited over the substrate and around the solder balls, the substantially planar film and the encapsulation, along with the molding process, can cause each solder ball to morph from its initial profile to a final profile, where the final profile is generally different from the initial profile.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 10, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Kyung Moon Kim, Il Kwon Shim, HeeJo Chi, HanGil Shin
  • Patent number: 8941235
    Abstract: A semiconductor device has a first substrate with a central region. A plurality of bumps is formed around a periphery of the central region of the first substrate. A first semiconductor die is mounted to the central region of the first substrate. A second semiconductor die is mounted to the first semiconductor die over the central region of the first substrate. A height of the first and second die is less than or equal to a height of the bumps. A second substrate has a thermal conduction channel. A surface of the second semiconductor die opposite the first die is mounted to the thermal conductive channel of the second substrate. A thermal interface layer is formed over the surface of the second die. The bumps are electrically connected to contact pads on the second substrate. A conductive plane is formed over a surface of the second substrate.
    Type: Grant
    Filed: March 18, 2012
    Date of Patent: January 27, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8937377
    Abstract: A package-on-package proximity sensor module including a infrared transmitter package and a infrared receiver package is presented. The proximity sensor module may include a fully-assembled infrared transmitter package and a fully-assembled infrared receiver package disposed on a quad flat pack no-lead (QFN) lead frame molded with an IR cut compound housing. A bottom surface of the QFN lead frame may be etched and covered with the IR cut compound to provide a locking feature between the QFN lead frame and the IR cut compound housing.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 20, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Yufeng Yao, Chi Boon Ong, Chee Heng Wong
  • Patent number: 8933549
    Abstract: A dual-leadframe multi-chip package comprises a first leadframe with a first die pad, and a second leadframe with a second die pad; a first chip mounted on the first die pad functioning as a high-side MOSFET and second chip mounted on the second die pad functioning as a low-side MOSFET. The package may further comprises a bypass capacity configured as a third chip mounted on the first die pad or integrated with the first chip. The package may further comprise a three-dimensional connecting plate formed as an integrated structure as the second die pad for electrically connecting a top contact area of the first chip to a bottom contact area of the second chip. A top connecting plate connects a top contact area of the second chip and a top contact area of the third chip to an outer pin of the first leadframe.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: January 13, 2015
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Kai Liu, Lei Shi, Jun Lu, Anup Bhalla
  • Patent number: 8933551
    Abstract: A package includes an interposer, which includes a first substrate free from through-vias therein, redistribution lines over the first substrate, and a first plurality of connectors over and electrically coupled to the redistribution lines. A first die is over and bonded to the first plurality of connectors. The first die includes a second substrate, and through-vias in the second substrate. A second die is over and bonded to the plurality of connectors. The first die and the second die are electrically coupled to each other through the redistribution lines. A second plurality of connectors is over the first die and the second die. The second plurality of connectors is electrically coupled to the first plurality of connectors through the through-vias in the second substrate.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 8928115
    Abstract: A semiconductor device package is formed of DBC in which thinned MOSgated and/or diode die are soldered to the bottom of an etched depression in the upper conductive layer. A via in the insulation layer of the DBC is filled with a conductive material to form a resistive shunt. Plural packages may be formed in a DBC card and may be separated individually or in clusters. The individual packages are mounted in various arrays on a support DBC board and heat sink. Integrated circuits may be mounted on the assembly and connected to the die for control of the die conduction.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventor: Henning M. Hauenstein
  • Patent number: 8928138
    Abstract: A complete power management system implemented in a single surface mount package. The system may be drawn to a DC to DC converter system and includes, in a leadless surface mount package, a driver/controller, a MOSFET transistor, passive components (e.g., inductor, capacitor, resistor), and optionally a diode. The MOSFET transistor may be replaced with an insulated gate bipolar transistor, IGBT in various embodiments. The system may also be a power management system, a smart power module or a motion control system. The passive components may be connected between the leadframe connections. The active components may be coupled to the leadframe using metal clip bonding techniques. In one embodiment, an exposed metal bottom may act as an effective heat sink.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: January 6, 2015
    Assignee: Vishay-Siliconix
    Inventors: King Owyang, Mohammed Kasem, Yuming Bai, Frank Kuo, Sen Mao, Sam Kuo
  • Patent number: 8922001
    Abstract: A semiconductor device in which warpage is less likely to occur. In the semiconductor device, two semiconductor chips are mounted over a diagonal of a substrate and one of the semiconductor chips lies over the intersection of the two diagonals of the substrate. The semiconductor device gives a solution to the following problem. In order to implement a semiconductor device with a plurality of semiconductor chips mounted on a substrate, generally the substrate must have a larger area. If the area of the substrate is increased without an increase in its thickness, warpage or deformation of the semiconductor device is more likely to occur. It is difficult or impossible to mount a warped or deformed semiconductor device over a wiring substrate.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: December 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Makoto Okada, Shuuichi Kariyazaki, Wataru Shiroi, Masafumi Suzuhara, Naoko Sera
  • Patent number: 8921161
    Abstract: A semiconductor device has a first semiconductor die and first encapsulant deposited around the first semiconductor die. A first insulating layer is formed over the first semiconductor die and first encapsulant. A first conductive layer is formed over the first insulating layer and electrically connected to a contact pad of the first semiconductor die. A second semiconductor die is mounted to the first insulating layer and first conductive layer. A second encapsulant is deposited around the second semiconductor die. A second insulating layer is formed over the second semiconductor die and second encapsulant. A second conductive layer is formed over the second insulating layer and electrically connected to a contact pad of the second semiconductor die. A plurality of conductive vias is formed continuously through the first and second encapsulants outside a footprint of the first and second semiconductor die electrically connected to the first and second conductive layers.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: December 30, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Zigmund R. Camacho
  • Patent number: 8916968
    Abstract: An electronic device includes a first chip carrier and a second chip carrier isolated from the first chip carrier. A first power semiconductor chip is mounted on and electrically connected to the first chip carrier. A second power semiconductor chip is mounted on and electrically connected to the second chip carrier. An electrically insulating material is configured to at least partially surround the first power semiconductor chip and the second power semiconductor chip. An electrical interconnect is configured to electrically connect the first power semiconductor chip to the second power semiconductor chip, wherein the electrical interconnect has at least one of a contact clip and a galvanically deposited conductor.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Thomas Bemmerl, Anton Prueckl
  • Publication number: 20140367736
    Abstract: A semiconductor device is a composite module in which three power semiconductor modules are arranged at a predetermined interval in the same plane and pin-shaped conductors that are drawn from the power semiconductor modules to the outside are connected to three main terminal plates such that they are integrated with each other. When the entire composite module is accommodated in a protective case and a radiation fin is provided, bolts are inserted into through holes to fix the protective case to the radiation fin. In this way, it is possible to accommodate the composite module in the protective case while reliably bringing the bottom of an insulating substrate into close contact with the radiation fin.
    Type: Application
    Filed: August 8, 2014
    Publication date: December 18, 2014
    Inventors: Yuji IIZUKA, Masafumi HORIO, Hideyo NAKAMURA
  • Patent number: 8912662
    Abstract: A wafer-level package and a method of manufacturing the same. The wafer-level package includes a first semiconductor chip on an upper side of which an active surface facing downward is disposed, a redistribution formed on the active surface of the first semiconductor chip, a second semiconductor chip disposed on the redistribution using a flip-chip bonding (FCP) technique, a copper (Cu) post and a first solder ball sequentially disposed on the redistribution, a molding member formed on the active surface of the first semiconductor chip to expose a bottom surface of the first solder ball and an inactive surface of the second semiconductor chip, and a second solder ball disposed on the first solder ball and electrically connected to an external apparatus.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: December 16, 2014
    Assignee: STS Semiconductor & Telecommunications Co., Ltd.
    Inventor: Jung Hwan Chun
  • Patent number: 8907451
    Abstract: A semiconductor chip includes a semiconductor substrate having one and the other surfaces and formed with a plurality of semiconductor devices; an internal wiring layer having multi-layered internal wiring lines which are formed over the one surface and are electrically connected with the plurality of semiconductor devices, an uppermost internal wiring line among the internal wiring lines being formed with a power supply pad and a ground pad; a dielectric layer formed over the uppermost internal wiring line in such a way as to expose the power supply pad and the ground pad; an external connection reinforcing line formed over the power supply pad or the ground pad which is exposed, and extending onto the dielectric layer; and an embedded capacitor constituted by the external connection reinforcing line, and the dielectric layer and a portion of the uppermost internal wiring line which correspond to the external connection reinforcing line.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jong Hoon Kim
  • Patent number: 8907464
    Abstract: A three dimensional (3D) package includes a helix substrate having a columnar part including a top surface, a bottom surface and a sidewall, and a plurality of steps arranged along the sidewall of the columnar part in the form of a helix. Semiconductor integrated circuits (dies) may be attached on supporting surfaces of the steps. The columnar part, the steps and the dies can be covered with a mold compound. I/Os are formed at either the sides of the steps and/or the top and/or bottom of the columnar part.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 9, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Huan Wang, Meiquan Huang, Hejin Liu
  • Patent number: 8902123
    Abstract: To provide a semiconductor device in which wireless communication is performed between devices formed over different substrates and connection defects of wirings are reduced. A first device having a first antenna is provided over a first substrate, a second device having a second antenna which can communicate with the first antenna is provided over a second substrate, and the first substrate and the second substrate are bonded to each other to manufacture a semiconductor device. The first substrate and the second substrate are bonded to each other by bonding with a bonding layer interposed therebetween, anodic bonding, or surface activated bonding.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Konami Izumi
  • Patent number: 8896034
    Abstract: Radio frequency and microwave devices and methods of use are provided herein. According to some embodiments, the present technology may comprise an ohmic layer for use in a field effect transistor that includes a plurality of strips disposed on a substrate, the plurality of strips comprising alternating source strips and drain strips, with adjacent strips being spaced apart from one another to form a series of channels, a gate finger segment disposed in each of the series of channels, and a plurality of gate finger pads disposed in an alternating pattern around a periphery of the plurality of strips such that each gate finger segment is associated with two gate finger pads.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8890314
    Abstract: An electronic component includes a high voltage switching transistor encased in a package. The high voltage switching transistor comprises a source electrode, a gate electrode, and a drain electrode all on a first side of the high voltage switching transistor. The source electrode is electrically connected to a conducting structural portion of the package. Assemblies using the abovementioned transistor with another transistor can be formed, where the source of one transistor can be electrically connected to a conducting structural portion of a package containing the transistor and a drain of the second transistor is electrically connected to the second conductive structural portion of a package that houses the second transistor. Alternatively, the source of the second transistor is electrically isolated from its conductive structural portion, and the drain of the second transistor is electrically isolated from its conductive structural portion.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: November 18, 2014
    Assignee: Transphorm, Inc.
    Inventor: Yifeng Wu
  • Patent number: 8890286
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 8890305
    Abstract: The semiconductor device 100 comprises a first semiconductor element 113 provided on a face on one side of a flat plate shaped interconnect component 101, an insulating resin 119 covering a face of a side where the first semiconductor element 113 of the interconnect component 101 is provided and a side face of the first semiconductor element 113, and a second semiconductor element 111 provided on a face on the other side of the interconnect component 101. The interconnect component 101 has a constitution where an interconnect layer 103, a silicon layer 105 and an insulating film 107 are sequentially formed. The interconnect layer 103 has a constitution where the interconnect layer 103 has a flat plate shaped insulating component and a conductive component extending through the insulating component. The first semiconductor element 113 is electrically connected with the second semiconductor element 111 through the conductive component.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 18, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yoichiro Kurita
  • Patent number: 8890306
    Abstract: A light-emitting diode includes a carrier with a mounting face and includes a metallic basic body and at least two light-emitting diode chips affixed to the carrier at least indirectly at the mounting face, wherein an outer face of the metallic basic body includes the mounting face, the at least two light-emitting diode chips connect in parallel with one another, the at least two light-emitting diode chips are embedded in a reflective coating, the reflective coating covering the mounting face and side faces of the light-emitting diode chips, and the light-emitting diode chips protrude with their radiation exit surfaces out of the reflective coating, and the radiation exit surfaces face away from the carrier.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 18, 2014
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Joachim Reill, Georg Bogner, Stefan Grötsch
  • Patent number: 8890313
    Abstract: An electronic device includes a first chip and a second chip, where each chip has a first conduction terminal on a first surface and a second conduction terminal on a second surface. An insulating body surrounds the first and second chip, a first heat-sink coupled with the first conduction terminals of the first and second chip, and a second heat-sink coupled with the second conduction terminals of the first and second chip. A portion of the first heat-sink and/or the second heat-sink being exposed from the insulating body. The electronic device includes a first conductive lead and a second conductive lead exposed from the insulating body for through-hole mounting of the electronic device on an electronic board, the first conductive lead being coupled with the first heat-sink and the second conductive lead being coupled with the second heat-sink.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 18, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Cristiano Gianluca Stella, Gaetano Pignataro, Maurizio Maria Ferrara
  • Patent number: 8884414
    Abstract: An integrated circuit module including a generally flat die attachment pad (DAP) positioned substantially in a first plane; and a generally flat lead bar positioned substantially in a second plane above and parallel to said first plane and having at least one downwardly and outwardly extending lead bar lead projecting therefrom and terminating substantially in the first plane; a top leadframe having a plurality of generally flat contact pads positioned substantially in a third plane above and parallel to the second plane and a plurality of leads having proximal end portions connected to the pad portions and having downwardly and outwardly extending distal end portions terminating substantially in said first plane; an IC die connected to the top leadframe, and the DAP; and encapsulation material encapsulating at least portions of the DAP, the lead bar, the top lead frame, and the IC die.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Lee Han Meng@Eugene Lee, Anis Fauzi bin Abdul Aziz, Susan Goh Geok Ling, Ng Swee Tiang
  • Patent number: 8883561
    Abstract: A semiconductor device has a carrier or first conductive layer with a plurality of TSV semiconductor die mounted over the carrier or first conductive layer. An encapsulant is deposited around the first semiconductor die and over the carrier or first conductive layer to embed the first semiconductor die. A conductive TMV is formed through the encapsulant. A second conductive layer is formed over a first surface of the encapsulant. A first insulating layer is formed over the first surface of the encapsulant while exposing portions of the second conductive layer. A second insulating layer is formed over the second surface of the encapsulant while exposing portions of the first conductive layer. Alternatively, a first interconnect structure is formed over the first surface of the encapsulant. The carrier is removed and a second interconnect structure is formed over a second surface of the encapsulant.
    Type: Grant
    Filed: April 30, 2011
    Date of Patent: November 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DongSam Park, YongDuk Lee
  • Patent number: 8884421
    Abstract: A multi-chip package may include a package substrate, an interposer chip, a first semiconductor chip, a thermal dissipation structure and a second semiconductor chip. The interposer chip may be mounted on the package substrate. The first semiconductor chip may be mounted on the interposer chip. The first semiconductor chip may have a size smaller than that of the interposer chip. The thermal dissipation structure may be arranged on the interposer chip to surround the first semiconductor chip. The thermal dissipation structure may transfer heat in the first semiconductor chip to the interposer chip. The second semiconductor chip may be mounted on the first semiconductor chip. Thus, the heat in the first semiconductor chip may be effectively transferred to the interposer chip through the thermal dissipation line.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Un-Byoung Kang, Jong-Joo Lee, Yong-Hoon Kim, Tae-Hong Min
  • Patent number: 8884427
    Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
  • Patent number: 8871570
    Abstract: A method for fabricating an optical interconnect includes producing a semiconductor wafer that includes multiple first dies. Each first die includes circuitry disposed over a surface of the wafer and connected to conductive vias arranged in rows. The multiple first dies are diced by cutting the wafer across the rows of the vias, such that, in each first die, the cut vias form respective contact pads on a side face of the first die that is perpendicular to the surface. A second semiconductor die including one or more optoelectronic transducers is attached to the contact pads, so as to connect the transducers to the circuitry.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Mellanox Technologies Ltd.
    Inventors: Shmuel Levy, Shai Rephaeli
  • Patent number: 8866274
    Abstract: In one embodiment, a method of forming a semiconductor package comprises providing a first die having contact regions on a top surface but not on an opposite bottom surface. A dielectric liner layer is deposited under the bottom surface of the first die. The first die is attached with the deposited dielectric liner layer to a die paddle of a substrate. A bond layer is disposed between the substrate and the dielectric liner layer.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hermann Gruber, Joachim Mahler, Uwe Hoeckele, Anton Prueckl, Thomas Fischer, Matthias Schmidt
  • Patent number: 8860207
    Abstract: A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 14, 2014
    Assignees: STMicroelectronics Pte Ltd, STMicroelectronics Grenoble 2 SAS
    Inventors: Yonggang Jin, Romain Coffy, Jerome Teysseyre
  • Patent number: 8860194
    Abstract: One exemplary disclosed embodiment comprises a semiconductor package including a vertical conduction control transistor and a vertical conduction sync transistor. The vertical conduction control transistor may include a control source, a control gate, and a control drain that are all accessible from a bottom surface, thereby enabling electrical and direct surface mounting to a support surface. The vertical conduction sync transistor may include a sync drain on a top surface, which may be connected to a conductive clip that is coupled to the support surface. The conductive clip may also be thermally coupled to the control transistor. Accordingly, all terminals of the transistors are readily accessible through the support surface, and a power circuit, such as a buck converter power phase, may be implemented through traces of the support surface. Optionally, a driver IC may be integrated into the package, and a heatsink may be attached to the conductive clip.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 14, 2014
    Assignee: International Rectifier Corporation
    Inventors: Ling Ma, Andrew N. Sawle, David Paul Jones, Timothy D. Henson, Niraj Ranjan, Vijay Viswanathan, Omar Hassen
  • Patent number: 8861217
    Abstract: This relates to systems and methods for providing one or more vias through a module of an electrical system. For example, in some embodiments, the module can include one or more passive elements and/or active of the electrical system around which a packaging has been plastic molded. The module can be stacked under another component of the electrical system. Vias can then be provided that extend through the module. The vias can include, for example, electrically conductive pathways. In this manner, the vias can provide electrical pathways for coupling the component stacked on top of the module to other entities of an electronic device including the electrical system. For example, the component can be coupled to other entities such as other components, other modules, printed circuit boards, other electrical systems, or to any other suitable entity.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Apple Inc.
    Inventors: Gloria Lin, William Bryson Gardner, Jr., Joseph Fisher, Jr., Dennis Pyper, Amir Salehi
  • Patent number: 8860195
    Abstract: An apparatus and method for incorporating discrete passive components into an integrated circuit package. A first surface of a substrate is coated with a material to mechanically protect the first surface. A first metal layer and then an insulating layer are formed on a second surface of the substrate. Selected areas are removed from the insulating and a second metal layer is formed over the insulating layer and the exposed metal layer. Selected areas of the second metal layer are removed to form a plurality of structures, including at least one of a wirebonding pad, a solder-bonding pad, a device interconnect circuit, or an attach pad to which an electronic component may be attached. An electronic component may be attached to at least one of the structures. The resulting integrated circuit die may be incorporated into an electronic package.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: October 14, 2014
    Assignee: Atmel Corporation
    Inventor: Ken M. Lam
  • Patent number: 8853846
    Abstract: In a non-insulated DC-DC converter having a circuit in which a power MOS•FET high-side switch and a power MOS•FET low-side switch are connected in series, the power MOS•FET low-side switch and a Schottky barrier diode to be connected in parallel with the power MOS•FET low-side switch are formed within one semiconductor chip. The formation region SDR of the Schottky barrier diode is disposed in the center in the shorter direction of the semiconductor chip, and on both sides thereof, the formation regions of the power MOS•FET low-side switch are disposed. From the gate finger in the vicinity of both long sides on the main surface of the semiconductor chip toward the formation region SDR of the Schottky barrier diode, a plurality of gate fingers are disposed so as to interpose the formation region SDR between them.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: October 7, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masaki Shiraishi, Tomoaki Uno, Nobuyoshi Matsuura
  • Patent number: 8853564
    Abstract: In some examples, a semiconductor package can be configured to electrically couple to a printed circuit board. The semiconductor package can include: (a) a lid having one or more first electrically conductive leads; (b) a base having a top, a bottom and one or more sides between the top and the bottom, the base having one or more second electrically conductive leads electrically coupled to the one or more first electrically conductive leads; (c) one or more first semiconductor devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads; and (d) one or more first micro-electrical-mechanical system devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads. The lid can be coupled to the base and at least one of the lid or the base has at least one port hole.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: October 7, 2014
    Assignee: Ubotic Intellectual Property Co. Ltd.
    Inventors: Chi Kwong Lo, Lik Hang Wan, Ming Wa Tam
  • Patent number: 8847383
    Abstract: An integrated circuit package strip employs a stiffener layer that houses a passive electronic component to maintain mechanical properties when a thinner substrate is used. The use of either a retention wall or a stiffener allows for the manufacture of these integrated circuit package using strip, matrix, or array technology where a larger board with a plurality of integrated circuit packages is produced industrially and then cut to individual units.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 30, 2014
    Assignee: ATI Technologies ULC
    Inventors: Neil R. McLellan, Vincent K. Chan, Roden R. Topacio, III
  • Patent number: 8847385
    Abstract: A chip arrangement is provided, the chip arrangement including: a first chip carrier; a second chip carrier; a first chip electrically connected to the first chip carrier; a second chip disposed over the first chip carrier and electrically insulated from the first chip carrier; and a third chip electrically connected to the second chip carrier; wherein at least one of the first chip and the second chip is electrically connected to the third chip.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: September 30, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Ralf Wombacher, Anton Prueckl
  • Patent number: 8841765
    Abstract: A microelectronic assembly can include a substrate having first and second surfaces, at least two logic chips overlying the first surface, and a memory chip having a front surface with contacts thereon, the front surface of the memory chip confronting a rear surface of each logic chip. The substrate can have conductive structure thereon and terminals exposed at the second surface for connection with a component. Signal contacts of each logic chip can be directly electrically connected to signal contacts of the other logic chips through the conductive structure of the substrate for transfer of signals between the logic chips. The logic chips can be adapted to simultaneously execute a set of instructions of a given thread of a process. The contacts of the memory chip can be directly electrically connected to the signal contacts of at least one of the logic chips through the conductive structure of the substrate.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: September 23, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Piyush Savalia
  • Patent number: 8841776
    Abstract: In a semiconductor chip, a first semiconductor chip 21 is provided on a chip-mounting component 11, and bonding wires 36 connected to electrode pads 21E of the first semiconductor chip 21 are fixed by being covered with a first insulating adhesive 31. A second semiconductor chip 22 is mounted by being stacked on the first semiconductor chip 21, with the first insulating adhesive 31 therebetween. This structure can prevent problems such as breaking and short-circuits of bonding wires of the chip disposed directly on a substrate when another chip is mounted by being stacked.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 23, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takao Nishimura, Yoshiaki Narisawa