Group Iii-v Compound On Si Or Ge (epo) Patents (Class 257/E21.127)
  • Patent number: 7528000
    Abstract: A wafer having a plurality of through holes is provided, and a glass wafer is disposed on the wafer. A plate having a plurality of concave cavities is disposed on the glass wafer, wherein the concave cavities corresponding to the through holes of the wafer so that a part of the plate corresponding to the through holes is not in contact with the glass wafer. A voltage source is provided, and two electrodes thereof respectively have electrical connections to the wafer and the plate. The wafer and the glass wafer are bonded to each other by the anodic bonding method so that a plurality of optical device caps are formed.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: May 5, 2009
    Assignee: Touch Micro-System Technology Inc.
    Inventor: Chun-Wei Tsai
  • Patent number: 7521723
    Abstract: A surface emitting semiconductor laser chip contains a semiconductor body, which has, at least partly, a crystal structure with principal crystal directions, a radiation exit face, and side faces laterally delimiting the semiconductor body. At least one of the side faces is disposed obliquely with respect to the principal crystal directions.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: April 21, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Werner Plass, Christian Jung, Tony Albrecht, Udo Streller
  • Patent number: 7517776
    Abstract: A method for controlling dislocation position in a silicon germanium buffer layer located on a substrate includes irradiating one or more regions of the silicon germanium layer with a dislocation inducing agent and depositing a strained silicon germanium layer on the substrate. The dislocation inducing agent may include ions, electrons, or other radiation source. Dislocations in the silicon germanium layer are located in one or more of the regions. The substrate and strained silicon germanium layer may then be subjected to an annealing process to transform the strained silicon germanium layer into a relaxed state. A top layer of strained silicon or silicon germanium may be deposited on the relaxed silicon germanium layer. Semiconductor-based devices may then be fabricated in the non-damaged regions of the strained silicon or silicon germanium layer. Threading dislocations are confined to damaged areas which may be transformed into SiO2 isolation regions.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: April 14, 2009
    Assignee: The Regents of the University of California
    Inventors: Ya-Hong Xie, Tae-Sik Yoon
  • Patent number: 7504311
    Abstract: A method for fabricating a semiconductor substrate includes epitaxially growing an elemental semiconductor layer on a compound semiconductor substrate. An insulating layer is deposited on top of the elemental semiconductor layer, so as to form a first substrate. The first substrate is wafer bonded onto a monocrystalline Si substrate, such that the insulating layer bonds with the monocrystalline Si substrate. A semiconductor device includes a monocrystalline substrate, and a dielectric layer formed on the monocrystalline substrate. A semiconductor compound is formed on the dielectric layer and an elemental semiconductor material formed in proximity of the semiconductor compound and lattice-matched to the semiconductor compound.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Steven John Koester, Devendra Kumar Sadana, Ghavam G. Shahidi
  • Patent number: 7498214
    Abstract: A semiconductor device may include first and second silicon layers formed over a semiconductor substrate. An insulating layer may be formed between first and second silicon layers. A gate insulating layer, a gate electrode, and a spacer may be formed over a second silicon layer. A source/drain impurity area may be formed over a second silicon layer on both sides of a gate electrode.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 3, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Myung Jin Jung
  • Patent number: 7488670
    Abstract: An embodiment of the invention provides a semiconductor fabrication method. The method comprises forming a strained channel region in semiconductor devices. Embodiments include forming a stressor layer over an amorphous portion of the semiconductor device at an intermediate stage of fabrication. The device is masked and strain in a portion of the stressor layer is relaxed. Recrystallizing the amorphous portion of the intermediate device transfers strain from the stressor to the substrate. At least a portion of the strain remains in the substrate through subsequent device fabrication, thereby improving performance of the completed device. In other embodiments, a tensile stressor layer is formed over a first portion of the device, and a compressive stressor layer is formed over a second portion. A tensile stressor layer forms a compressive channel in a PMOS device, and a compressive stressor forms a tensile channel in an NMOS device.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 10, 2009
    Assignee: Infineon Technologies AG
    Inventors: Roman Knoefler, Armin Tilke
  • Patent number: 7456445
    Abstract: A Group III nitride semiconductor light emitting device having a light emitting layer (6) bonded to a crystal layer composed of an n-type or p-type Group III nitride semiconductor, the Group III nitride semiconductor light emitting device being characterized by comprising an n-type Group III nitride semiconductor layer (4) having germanium (Ge) added thereto and having a resistivity of 1×10?1 to 1×10?3 ?cm. The invention provides a Ge-doped n-type Group III nitride semiconductor layer with low resistance and excellent flatness, in order to obtain a Group III nitride semiconductor light emitting device exhibiting low forward voltage and excellent light emitting efficiency.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 25, 2008
    Assignee: Showa Denko K.K.
    Inventors: Hitoshi Takeda, Syunji Horikawa
  • Publication number: 20080248603
    Abstract: A method of preparing a nitride semiconductor capable of forming a nitride-based semiconductor layer having a small number of dislocations as well as a small number of crystal defects resulting from desorption with excellent crystallinity on the upper surface of a substrate through a small number of growth steps is proposed. The method of preparing a nitride-based semiconductor comprises steps of forming a mask layer on the upper surface of a substrate to partially expose the upper surface of the substrate, forming a buffer layer on the exposed part of the upper surface of the substrate and the upper surface of the mask layer and thereafter growing a nitride-based semiconductor layer. Thus, the outermost growth surface of the nitride-based semiconductor layer laterally grown on the mask layer does not come into contact with the mask layer.
    Type: Application
    Filed: June 10, 2008
    Publication date: October 9, 2008
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Tatsuya Kunisato, Hiroki Ohbo, Nobuhiko Hayashi, Takashi Kano
  • Patent number: 7399692
    Abstract: A process for fabricating a III-nitride power semiconductor device which includes forming a gate structure while providing a protective body over areas that are to receive power electrodes.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 15, 2008
    Assignee: International Rectifier Corporation
    Inventors: Zhi He, Robert Beach
  • Patent number: 7400000
    Abstract: A light-emitting diode is built on a silicon substrate doped with a p-type impurity to possess sufficient conductivity to provide a current path. The p-type silicon substrate has epitaxially grown thereon two superposed buffer layers of aluminum nitride and n-type indium gallium nitride. Further grown epitaxially on the buffer layers is the main semiconductor region of the LED which comprises a lower confining layer of n-type gallium nitride, an active layer for generating light, and an upper confining layer of p-type gallium nitride. In the course of the growth of the main semiconductor region there occurs a thermal diffusion of aluminum, gallium and indium from the buffer layers into the p-type silicon substrate, with the consequent creation of an alloy layer of the diffused metals. Representing p-type impurities in the p-type silicon substrate, these metals do not create a pn junction in the substrate which causes a forward voltage drop.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: July 15, 2008
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Koji Otsuka, Junji Sato, Tetsuji Moku, Yoshiki Tada, Takashi Yoshida
  • Patent number: 7393736
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate dielectric of zirconium oxide (ZrO2), hafnium oxide (HfO2) and tin oxide (SnO2) acting as a single dielectric layer with a formula of ZrXHfYSn1-X-YO2, and a method of fabricating such a dielectric layer is described that produces a reliable structure with a high dielectric constant (high k). The dielectric structure is formed by depositing zirconium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing hafnium oxide onto the substrate using precursor chemicals, followed by depositing tin oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. Such a dielectric may be used as a gate insulator, a capacitor dielectric, or as a tunnel insulator in non-volatile memories, because the high dielectric constant (high k) provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7364933
    Abstract: A method for forming an image sensor is provided. The method includes providing a semiconductor substrate having a pixel region and a peripheral circuit region, forming a photoelectric transformation section at the semiconductor substrate of the pixel region, forming a plurality of interlayer dielectrics over the semiconductor substrate with interconnections interposed therebetween, forming a passivation layer, partially patterning the passivation layer at the peripheral circuit region to form a via hole exposing the interconnection and removing the passivation layer and the underlying interlayer dielectric at the pixel region. The method further includes forming a conductive layer to fill the via hole and etching the conductive layer to remove the conductive layer at the pixel region and form a via plug and a conductive pad at the peripheral circuit region. The via plug fills the via hole and the conductive pad protrudes outwardly from the via hole.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics, Co., Ltd.
    Inventor: Ki-Hong Kim
  • Patent number: 7358544
    Abstract: A nitride semiconductor light emitting device comprising an n-side nitride semiconductor layer and a p-side nitride semiconductor layer formed on a substrate, with a light transmitting electrode 10 formed on the p-side nitride semiconductor layer, and the p-side pad electrode 14 formed for the connection with an outside circuit, and the n-side pad electrode 12 formed on the n-side nitride semiconductor layer for the connection with the outside circuit, so as to extract light on the p-side nitride semiconductor layer side, wherein taper angles of end faces of the light transmitting electrode 10 and/or the p-side nitride semiconductor layer are made different depending on the position.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: April 15, 2008
    Assignee: Nichia Corporation
    Inventors: Takahiko Sakamoto, Yasutaka Hamaguchi
  • Patent number: 7288458
    Abstract: A wafer having an SOI configuration and active regions having different surface orientations for different channel type transistors. In one example, semiconductor structures having a first surface orientation are formed on a donor wafer. Semiconductor structures having a second surface orientation are formed on a second wafer. Receptor openings are formed on the second wafer. The semiconductor structures having the first surface orientation are located in the receptor openings and transferred to the second wafer. The resultant wafer has semiconductor regions having a first surface orientation for a first channel type of transistor and semiconductor regions having a second surface orientation for a second channel type transistor.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: October 30, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Robert E. Jones, Ted R. White
  • Patent number: 7279369
    Abstract: A method of forming a germanium-on-insulator (GOI). An epitaxial germanium layer is formed on top of a first substrate. A first dielectric film is formed on top of the epitaxial germanium layer. A second substrate is provided. The first substrate is bonded to the second substrate by bonding the first dielectric film to the second substrate. The bonding resulted in a bonded wafer pair. The first substrate is removed after the bonding to expose epitaxial germanium layer to form the GOI substrate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Ryan Lei, Mohamad A. Shaheen
  • Patent number: 7259084
    Abstract: This invention provides a process for growing Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and subsequently growing a GaAs layer on Ge film of the surface of said Ge epitaxial layers by using metal organic chemical vapor deposition (MOCVD). The process comprises steps of, firstly, pre-cleaning a silicon wafer in a standard cleaning procedure, dipping it with HF solution and prebaking to remove its native oxide layer. Then, growing a high Ge-composition epitaxial layer, such as Si0.1Ge0.9 in a thickness of 0.8 ?m on said Si substrate by using ultra-high vacuum chemical vapor deposition under certain conditions. Thus, many dislocations are generated and located near the interface and in the low of part of Si01.Ge0.9 due to the large mismatch between this layer and Si substrate. Furthermore, a subsequent 0.8 ?m Si0.05Ge0.95 layer, and/or optionally a further 0.8 ?m Si0.02Ge0.98 layer, are grown.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: August 21, 2007
    Assignee: National Chiao-Tung University
    Inventors: Edward Y. Chang, Guangli Luo, Tsung Hsi Yang, Chung Yen Chang
  • Patent number: 7256107
    Abstract: In fabricating a microelectromechanical structure (MEMS), a method of forming a narrow gap in the MEMS includes a) depositing a layer of sacrificial material on the surface of a supporting substrate, b) photoresist masking and at least partially etching the sacrificial material to form at least one blade of sacrificial material, c) depositing a structural layer over the sacrificial layer, and d) removing the sacrificial layer including the blade of the sacrificial material with a narrow gap remaining in the structural layer where the blade of sacrificial material was removed.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 14, 2007
    Assignee: The Regents of the University of California
    Inventors: Hideki Takeuchi, Emmanuel P. Quevy, Tsu-Jae King, Roger T. Howe
  • Patent number: 7226850
    Abstract: A semiconductor structure, comprising: a substrate; a first aluminum nitride (AlN) layer having an aluminum/reactive nitride (Al/N) flux ratio less than 1 disposed on the substrate; and a second AlN layer having an Al/reactive N flux ratio greater than 1 disposed on the first AlN layer. The substrate is a compound of silicon wherein the first AlN layer is substantially free of silicon.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: June 5, 2007
    Assignee: Raytheon Company
    Inventors: William E. Hoke, John J. Mosca
  • Patent number: 7214598
    Abstract: In order to reduce dislocation pile-ups in a virtual substrate, a buffer layer 32 is provided, between an underlying Si substrate 34 and an uppermost constant composition SiGe layer 36, which comprises alternating graded SiGe layers 38 and uniform SiGe layers 40. During the deposition of each of the graded SiGe layers 38 the Ge fraction x is linearly increased from a value corresponding to the Ge composition ratio of the preceding layer to a value corresponding to the Ge composition ratio of the following layer. Furthermore the Ge fraction x is maintained constant during deposition of each uniform SiGe layer 40, so that the Ge fraction x varies in step-wise fashion through the depth of the buffer layer. After the deposition of each pair of graded and uniform SiGe layers 38 and 40, the wafer is annealed at an elevated temperature greater than the temperature at which the layers have been deposited.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 8, 2007
    Assignee: AdvanceSis Limited
    Inventors: Adam Daniel Capewell, Timothy John Grasby, Evan Hubert Cresswell Parker, Terence Whall
  • Patent number: 7211521
    Abstract: A structure including at least one layer of germanium formed on a surface of a ceramic substrate is provided. The layer of germanium has a thickness of not larger than 10 microns and includes grains having grain size of at least 0.05 mm. A structure including at least one layer of germanium formed on a surface of a ceramic substrate and having at least one capping layer formed on a surface of the layer of germanium is also provided. In addition, a method of forming a thin film germanium structure is provided including forming at least one layer of germanium on a surface of a ceramic substrate, then forming at least one capping layer on a surface of the layer of germanium, followed by heating and then cooling the layer of germanium.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: May 1, 2007
    Assignee: Heritage Power LLC
    Inventor: Michael G. Mauk
  • Patent number: 7211455
    Abstract: A method for manufacturing a semiconductor module incorporated with an optical isolator making use of a Faraday rotator formed of a magnetic garnet film in which a magnetically saturated condition is maintained even without any external magnetic field, in which, at the time the magnetic garnet film is exposed to a temperature of 100° C. or more in a step during manufacture, an external magnetic field is applied in the same direction as the direction of magnetization of this magnetic garnet film. This manufacturing method has an advantage that the high-coercivity film magnetic garnet film is not removed from its magnetically saturated condition even when heating steps are present in the course of manufacture.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 1, 2007
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Takemi Kawazoe, Ko Yoshimura, Tadahito Kanaizuka
  • Publication number: 20070052050
    Abstract: A method and apparatus for a backside thinned image sensor with an integrated lens stack.
    Type: Application
    Filed: September 7, 2005
    Publication date: March 8, 2007
    Inventor: Bart Dierickx