The Substrate Is Crystalline Conducting Material, E.g., Metallic Silicide (epo) Patents (Class 257/E21.13)
-
Patent number: 10309010Abstract: Cobalt-containing compounds, their synthesis, and their use for the deposition of cobalt containing films are disclosed. The disclosed cobalt-containing compounds have one of the following formulae: wherein each of R1, R2, R3, R4 and R5 is independently selected from the group consisting of hydrogen and linear, cyclic, or branched hydrocarbon groups; provided that (a) R1?R2 and/or R3 when R1 and R2 and R3 are a hydrocarbon group; (b) R1 and R2 are a hydrocarbon group when R3 is H; or (c) R1 is a C2-C4 hydrocarbon group when R2 and R3 are H.Type: GrantFiled: January 31, 2014Date of Patent: June 4, 2019Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventors: Satoko Gatineau, Changhee Ko, Jean-Marc Girard, Julien Gatineau
-
Patent number: 8916483Abstract: Methods of fabricating semiconductor structures include the formation of molybdenum nitride at one or more surfaces of a substrate comprising molybdenum, and providing a layer of III-V semiconductor material, such as GaN, over the substrate. Semiconductor structures formed by methods described herein may include a substrate comprising molybdenum, molybdenum nitride at one or more surfaces of the substrate, and a layer of GaN bonded to the molybdenum nitride.Type: GrantFiled: March 9, 2012Date of Patent: December 23, 2014Assignee: SOITECInventor: Christiaan J. Werkhoven
-
Patent number: 8865556Abstract: Techniques for forming a smooth silicide without the use of a cap layer are provided. In one aspect, a FET device is provided. The FET device includes a SOI wafer having a SOI layer over a BOX and at least one active area formed in the wafer; a gate stack over a portion of the at least one active area which serves as a channel of the device; source and drain regions of the device adjacent to the gate stack, wherein the source and drain regions of the device include a semiconductor material selected from: silicon and silicon germanium; and silicide contacts to the source and drain regions of the device, wherein an interface is present between the silicide contacts and the semiconductor material, and wherein the interface has an interface roughness of less than about 5 nanometers.Type: GrantFiled: September 12, 2012Date of Patent: October 21, 2014Assignee: International Business Machines CorporationInventors: Joseph S. Newbury, Kenneth Parker Rodbell, Zhen Zhang, Yu Zhu
-
Patent number: 8803274Abstract: A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle ?, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.Type: GrantFiled: June 18, 2010Date of Patent: August 12, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Masahiro Adachi, Shinji Tokuyama
-
Patent number: 8796851Abstract: The description relates to a bonding pad for a semiconductor device deposited. The first region comprising aluminum deposited at a high temperature having a large grain size. The second region comprising aluminum deposited at a lower temperature having a smaller grain size.Type: GrantFiled: January 5, 2012Date of Patent: August 5, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chiang-Ming Chuang, Chun Che Huang, Shih-Chieh Chang
-
Patent number: 8653621Abstract: A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle ?, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.Type: GrantFiled: June 18, 2010Date of Patent: February 18, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Masahiro Adachi, Shinji Tokuyama
-
Patent number: 7965444Abstract: An optical filter structure for an imager which has customized sub-wavelength elements used to maintain the filter characteristics accordingly across a photo-conversion device to optimize the structure for the angle of incidence as it changes across the imager photo-conversion device. In particular, the layout (e.g., grating period among other parameters) of the sub-wavelength elements used in the structure design are customized to change with the angle of incidence of the optics used to project the image. The sub-wavelength elements are typically built by high resolution lithographic processes such as optical or imprint lithography.Type: GrantFiled: August 31, 2006Date of Patent: June 21, 2011Assignee: Micron Technology, Inc.Inventor: Ulrich C. Boettiger
-
Patent number: 7880253Abstract: The disclosure relates to an integrated circuit comprising at least one photosensitive cell. The cell includes a photosensitive element, an input face associated with the said photosensitive element, an optical filter situated in at least one optical path leading to the photosensitive element and an interconnection part situated between the photosensitive element and the input face. The optical filter is disposed between the photosensitive element and the surface of the interconnection part closest to the input face. In particular, the optical filter can be disposed within the interconnection part. The disclosure also proposes that the filter be formed using a glass comprising cerium sulphide or at least one metal oxide.Type: GrantFiled: June 13, 2008Date of Patent: February 1, 2011Assignee: STMicroelectronics SAInventors: Francois Roy, Tarek Lule, Samir Guerroudj
-
Patent number: 7829435Abstract: A GaN-based thin film (thick film) is grown using a metal buffer layer grown on a substrate. (a) A metal buffer layer (210) made of, for example, Cr or Cu is vapor-deposited on a sapphire substrate (120). (b) A substrate obtained by vapor-depositing the metal buffer layer (210) on the sapphire substrate (120) is nitrided in an ammonia gas ambient, thereby forming a metal nitride layer (212). (c) A GaN buffer layer (222) is grown on the nitrided metal buffer layers (210, 212). (d) Finally, a GaN single-crystal layer (220) is grown. This GaN single-crystal layer (220) can be grown to have various thicknesses depending on the objects. A freestanding substrate can be fabricated by selective chemical etching of the substrate fabricated by the above steps. It is also possible to use the substrate fabricated by the above steps as a GaN template substrate for fabricating a GaN-based light emitting diode or laser diode.Type: GrantFiled: August 21, 2009Date of Patent: November 9, 2010Assignees: Tohoku Techno Arch Co., Ltd., Furukawa Co., Ltd., Mitsubishi Chemical Corporation, Dowa Holdings Co., Ltd., Epivalley Co., Ltd., Wavesquare Inc.Inventors: Takafumi Yao, Meoung-Whan Cho
-
Patent number: 7791133Abstract: A semiconductor device includes a vertically extending semiconductor portion above a semiconductor substrate, first and second diffusion regions being disposed near the bottom and top portions of the vertically extending semiconductor portion, respectively. A gate insulating film extends along the side surface of the vertically extending semiconductor portion which is separated by the gate insulating film from a gate electrode. The level of the top portion of the gate electrode is nearly equal to or lower than the level of the bottom portion of the second diffusion regions and the level of the bottom portion of the gate electrode is nearly equal to or higher than the level of the top portion of the first diffusion region.Type: GrantFiled: September 23, 2008Date of Patent: September 7, 2010Assignee: Elpida Memory, Inc.Inventor: Hiroyuki Fujimoto
-
Patent number: 7754600Abstract: Various embodiments of the present invention are directed to methods of forming nanostructures on non-single crystal substrates, and resulting nanostructures and nanoscale functional devices. In one embodiment of the present invention, a method of forming nanostructures includes forming a multi-layer structure comprising a metallic layer and a silicon layer. The multi-layer structure is subjected to a thermal process to form metal-silicide crystallites. The nanostructures are grown on the metal-silicide crystallites. In another embodiment of the present invention, a structure includes a non-single-crystal substrate and a layer formed over the non-single-crystal substrate. The layer includes metal-silicide crystallites. A number of nanostructures may be formed on the metal-silicide crystallites. The disclosed structures may be used to form a number of different types of functional devices for use in electronics and/or optoelectronics devices.Type: GrantFiled: March 1, 2007Date of Patent: July 13, 2010Assignee: Hewlett-Packard Development Company, L.P.Inventors: Nobuhiko Kobayashi, Shih-Yuan Wang
-
Patent number: 7727878Abstract: A method for forming a passivation layer is disclosed. In the method, a substrate containing a top surface and a bottom surface opposite to the top surface is first provided, wherein a plurality of conductive pads are disposed on the top surface thereof. Thereafter, a first passivation layer is formed on the top surface of the substrate, wherein the first passivation layer has a characteristic of photoresist. A first exposure/develop step is then performed to form a plurality of first openings in the first passivation layer, wherein the conductive pads are exposed through the first openings. Then, a second passivation layer is formed on the first passivation layer, wherein the second passivation layer has a characteristic of photoresist. A second exposure/develop step is then performed to form a plurality of second openings in the second passivation layer, wherein the conductive pads are exposed through the second openings.Type: GrantFiled: December 28, 2006Date of Patent: June 1, 2010Assignee: Advanced Semiconductor Engineering Inc.Inventors: Cheng-Hsueh Su, Hsing-Fu Lu, Tsung-Chieh Ho, Shyh-Ing Wu
-
Publication number: 20100009516Abstract: A GaN-based thin film (thick film) is grown using a metal buffer layer grown on a substrate. (a) A metal buffer layer (210) made of, for example, Cr or Cu is vapor-deposited on a sapphire substrate (120). (b) A substrate obtained by vapor-depositing the metal buffer layer (210) on the sapphire substrate (120) is nitrided in an ammonia gas ambient, thereby forming a metal nitride layer (212). (c) A GaN buffer layer (222) is grown on the nitrided metal buffer layers (210, 212). (d) Finally, a GaN single-crystal layer (220) is grown. This GaN single-crystal layer (220) can be grown to have various thicknesses depending on the objects. A freestanding substrate can be fabricated by selective chemical etching of the substrate fabricated by the above steps. It is also possible to use the substrate fabricated by the above steps as a GaN template substrate for fabricating a GaN-based light emitting diode or laser diode.Type: ApplicationFiled: August 21, 2009Publication date: January 14, 2010Inventors: Takafumi Yao, Meoung-Whan Cho
-
Publication number: 20090289330Abstract: A III group nitride semiconductor substrate according to the present invention is fabricated by forming a metal film or metal nitride film 2? with mesh structure in which micro voids are provided on a starting substrate 1, and growing a III group nitride semiconductor crystal layer 3 via the metal film or metal nitride film 2?.Type: ApplicationFiled: July 30, 2009Publication date: November 26, 2009Inventor: Masatomo SHIBATA
-
Patent number: 7601635Abstract: For improving the reliability of a semiconductor device having a stacked structure of a polycrystalline silicon film and a tungsten silicide film, the device is manufactured by forming a polycrystalline silicon film, a tungsten silicide film and an insulating film successively over a gate insulating film disposed over the main surface of a semiconductor substrate, and patterning them to form a gate electrode having a stacked structure consisting of the polycrystalline silicon film and tungsten silicide film. The polycrystalline silicon film has two regions, one region formed by an impurity-doped polycrystalline silicon and the other one formed by non-doped polycrystalline silicon. The tungsten silicide film is deposited so that the resistivity of it upon film formation would exceed 1000 ??cm.Type: GrantFiled: July 3, 2007Date of Patent: October 13, 2009Assignee: Renesas Technology Corp.Inventors: Kentaro Yamada, Masato Takahashi, Tatsuyuki Konagaya, Takeshi Katoh, Masaki Sakashita, Koichiro Takei, Yasuhiro Obara, Yoshio Fukayama
-
Patent number: 7541280Abstract: A method of forming a micromechanical structure, wherein at least one micromechanical structural layer is provided above a substrate. The micromechanical structural layer is sustained between a lower sacrificial silicon layer and an upper sacrificial silicon layer, wherein a metal silicide layer is formed between the lower and upper sacrificial silicon layers to increase interface adhesion therebetween. The upper sacrificial silicon layer, the metal silicide layer and the lower sacrificial silicon layer are then removed to release the micromechanical structural layer.Type: GrantFiled: August 13, 2004Date of Patent: June 2, 2009Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ching-Heng Po, Shen-Ping Wang, Chia-Chiang Chen
-
Patent number: 7399670Abstract: A method of forming transistor gate structures in an integrated circuit device can include forming a high-k gate insulating layer on a substrate including a first region to include PMOS transistors and a second region to include NMOS transistors. A polysilicon gate layer can be formed on the high-k gate insulating layer in the first and second regions. A metal silicide gate layer can be formed directly on the high-k gate insulating layer in the first region and avoiding forming the metal-silicide in the second region. Related gate structures are also disclosed.Type: GrantFiled: July 18, 2005Date of Patent: July 15, 2008Assignee: Samsung Electronics Co., LtdInventors: Taek-Soo Jeon, Yu-Gyun Shin, Sang-Bom Kang, Hong-Bae Park, Hag-Ju Cho, Hye-Lan Lee, Beom-Jun Jin, Seong-Geon Park
-
Patent number: 7348222Abstract: It is an object of the present invention to provide a method for removing the metal element from the semiconductor film which is different from the conventional gettering step for removing the metal element from the semiconductor film. In the present invention, when Ni element (Ni) is used as the metal element and a silicon-based film (referred to as a silicon film) is used as the semiconductor film, nickel silicide segregates in the ridge formed in the silicon film by irradiating the pulsed laser light. Next, etching solution of hydrofluoric acid based etchant is used to remove the nickel silicide segregated in the ridge. When the surface of the semiconductor film is rough after removing the metal element by means of etching, the laser light may be irradiated to the semiconductor film under the insert atmosphere to flatten the surface thereof.Type: GrantFiled: June 29, 2004Date of Patent: March 25, 2008Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Akihisa Shimomura, Hideto Ohnuma, Hironobu Shoji
-
Patent number: 7256125Abstract: For improving the reliability of a semiconductor device having a stacked structure of a polycrystalline silicon film and a tungsten silicide film, the device is manufactured by forming a polycrystalline silicon film, a tungsten silicide film and an insulating film successively over a gate insulating film disposed over the main surface of a semiconductor substrate, and patterning them to form a gate electrode having a stacked structure consisting of the polycrystalline silicon film and tungsten silicide film. The polycrystalline silicon film has two regions, one region formed by an impurity-doped polycrystalline silicon and the other one formed by non-doped polycrystalline silicon. The tungsten silicide film is deposited so that the resistivity of it upon film formation would exceed 1000 ??cm.Type: GrantFiled: August 23, 2004Date of Patent: August 14, 2007Assignee: Renesas Technology Corp.Inventors: Kentaro Yamada, Masato Takahashi, Tatsuyuki Konagaya, Takeshi Katoh, Masaki Sakashita, Koichiro Takei, Yasuhiro Obara, Yoshio Fukayama
-
Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
Patent number: 7223641Abstract: A method for manufacturing a semiconductor device by a small number of processes and by a means with high usability of materials to have high-definition and a gate insulating with a high step coverage property is disclosed. According to the present invention, a method for manufacturing a semiconductor device comprises the steps of forming a plurality of first conductive layers over a substrate; forming a first insulating layer to fill the gaps of the plurality of the first conductive layers; forming a second insulating layer over the first insulating layer and the plurality of the first conductive layers; and forming a semiconductor region and a second conductive layer over the second insulating layer.Type: GrantFiled: March 9, 2005Date of Patent: May 29, 2007Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Shinji Maekawa -
Patent number: 7220632Abstract: An integration process where a first semiconductor protective layer and a second semiconductor protective layer are formed to protect the first and second semiconductor materials, respectfully, during processing to form an optical device, such as a photodetector, and a transistor on the same semiconductor. The first semiconductor protective layer protects the semiconductor substrate during formation of the second semiconductor layer, and the second semiconductor layer protects the second semiconductor material during subsequent processing of the first semiconductor. In one embodiment, the first semiconductor includes silicon and the second semiconductor material includes germanium.Type: GrantFiled: February 24, 2005Date of Patent: May 22, 2007Assignee: Freescale Semiconductor, Inc.Inventor: Robert E. Jones
-
Patent number: 7183585Abstract: To provide a semiconductor device that excels in the manufacturing efficiency and device reliability, and a method for the manufacture thereof. The side of a device is composed of scribed grooves 13 and a cleavage plane 100.Type: GrantFiled: October 28, 2004Date of Patent: February 27, 2007Assignee: NEC CorporationInventor: Masaru Kuramoto