With Charge Trapping Gate Insulator, E.g., Mnos Transistor (epo) Patents (Class 257/E21.423)
  • Publication number: 20130009232
    Abstract: A non-volatile memory cell includes a substrate, two charge trapping structures, a gate oxide layer, a gate and two doping regions. The charge trapping structures are disposed on the substrate separately. The gate oxide layer is disposed on the substrate between the two charge trapping structures. The gate is disposed on the gate oxide layer and the charge trapping structures, wherein the charge trapping structures protrude from two sides of the gate. The doping regions are disposed in the substrate at two sides of the gate.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Inventors: Chi-Cheng Huang, Ping-Chia Shih, Chih-Ming Wang, Chun-Sung Huang, Hsiang-Chen Lee, Chih-Hung Lin, Yau-Kae Sheu
  • Patent number: 8349662
    Abstract: An integrated circuit device (e.g., a logic device or a memory device) having (i) a memory cell array which includes a plurality of memory cells (for example, memory cells having electrically floating body transistors) arranged in a matrix of rows and columns, wherein each memory cell includes at least one transistor having a gate, gate dielectric and first, second and body regions, wherein: (i) the gate and gate dielectric are disposed on or above the first semiconductor layer that is disposed on or above an insulating layer or region, (ii) the body region of each transistor is electrically floating, (iii) the transistors of adjacent memory cells include a layout that provides a common first region, and (iv) the first regions of the transistors are comprised of a semiconductor material which is different from the material of the first semiconductor layer. Also disclosed are inventive methods of manufacturing, for example, such integrated circuit devices.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 8, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Danngis Liu
  • Patent number: 8350344
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a charge storage structure and a gate. The charge storage structure is formed on a substrate. The gate is formed on the charge storage structure. The gate includes a lower portion formed of silicon and an upper portion formed of metal silicide. The upper portion of the gate has a width greater than that of the lower portion of the gate.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Son, Woon-Kyung Lee
  • Patent number: 8350313
    Abstract: A charge retention characteristic of a nonvolatile memory transistor is improved. A first insulating film that functions as a tunnel insulating film, a charge storage layer, and a second insulating film are sandwiched between a semiconductor substrate and a conductive film. The charge storage layer is formed of two silicon nitride films. A silicon nitride film which is a lower layer is formed using NH3 as a nitrogen source gas by a CVD method and contains a larger number of N—H bonds than the upper layer. A second silicon nitride film which is an upper layer is formed using N2 as a nitrogen source gas by a CVD method and contains a larger number of Si—H bonds than the lower layer.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Noda, Nanae Sato
  • Publication number: 20130001673
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer
  • Publication number: 20130001700
    Abstract: A method is provided for forming an interconnect in a semiconductor memory device. The method includes forming a pair of source select transistors on a substrate. A source region is formed in the substrate between the pair of source select transistors. A first inter-layer dielectric is formed between the pair of source select transistors. A mask layer is deposited over the pair of source select transistors and the inter-layer dielectric, where the mask layer defines a local interconnect area between the pair of source select transistors having a width less than a distance between the pair of source select transistors. The semiconductor memory device is etched to remove a portion of the first inter-layer dielectric in the local interconnect area, thereby exposing the source region. A metal contact is formed in the local interconnect area.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: SPANSION LLC
    Inventor: Simon S. CHAN
  • Publication number: 20130005104
    Abstract: Provided are a nonvolatile memory device and a method for fabricating the same. The nonvolatile memory device may include a stacked structure, a semiconductor pattern, an information storage layer, and a fixed charge layer. The stacked structure may be disposed over a semiconductor substrate. The stacked structure may include conductive patterns and interlayer dielectric patterns alternately stacked therein. The semiconductor pattern may be connected to the semiconductor substrate by passing through the stacked structure. The information storage layer may be disposed between the semiconductor pattern and the conductive patterns. The fixed charge layer may be disposed between the semiconductor pattern and the interlayer dielectric pattern. The fixed charge layer may include fixed charges. Electrical polarity of the fixed charges may be equal to electrical polarity of majority carriers of the semiconductor pattern.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Inventors: ZongLiang HUO, Myoungbum LEE, Kihyun HWANG, Seungmok SHIN, Sunjung KIM
  • Patent number: 8343840
    Abstract: A band gap engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking layer of metal doped silicon oxide material having a medium dielectric constant, such as aluminum doped silicon oxide, and separated from the semiconductor body including the channel by an engineered tunneling dielectric.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: January 1, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Sheng-Chih Lai, Hang-Ting Lue, Chien-Wei Liao
  • Publication number: 20120326222
    Abstract: A memory structure including a memory cell is provided, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. At least one of the first charge storage structure and the second charge storage structure includes two charge storage units which are physically separated. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source and drain and a second source and drain are disposed on the first dielectric layer and located at two sides of the channel layer.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Cheng-Hsien Cheng, Wen-Jer Tsai, Shih-Guei Yan, Chih-Chieh Cheng, Jyun-Siang Huang
  • Patent number: 8338257
    Abstract: An object of the present invention is to provide a nonvolatile semiconductor storage device with a superior charge holding characteristic in which highly-efficient writing is possible at low voltage, and to provide a manufacturing method thereof. The nonvolatile semiconductor storage device includes a semiconductor film having a pair of impurity regions formed apart from each other and a channel formation region provided between the impurity regions; and a first insulating film, a charge accumulating layer, a second insulating film, and a conductive film functioning as a gate electrode layer which are provided over the channel formation region. In the nonvolatile semiconductor storage device, a second barrier formed by the first insulating film against a charge of the charge accumulating layer is higher in energy than a first barrier formed by the first insulating film against a charge of the semiconductor film.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8335111
    Abstract: A non-volatile semiconductor storage device includes: a memory string; a select transistor; and a carrier selection element. The select transistor has one end connected to one end of the memory string. The carrier selection element has one end connected to the other end of the select transistor, and selects a majority carrier flowing through respective bodies of the memory transistors and the select transistor. The carrier selection element includes: a third semiconductor layer; a metal layer; a second gate insulation layer; and a third conductive layer. The metal layer extends in the vertical direction. The metal layer extends in the vertical direction from the top of the third semiconductor layer. The second gate insulation layer surrounds the third semiconductor layer and the metal layer. The third conductive layer surrounds the third semiconductor layer and the metal layer via the second gate insulation layer and extends in a parallel direction.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Megumi Ishiduki, Hideaki Aochi
  • Patent number: 8329535
    Abstract: A memory device having at least one multi-level memory cell is disclosed, and each multi-level memory cell configured to store n multiple bits, where n is an integer, wherein the multiple bits are stored in a charge storage layer trapping charge carriers injected by application of a voltage to set or reset a threshold voltage Vt of the memory cell to one of 2n levels. Each memory cell may be programmed to one of 2n multiple levels, wherein each level represents n multiple bits.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: December 11, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventor: Chao-I Wu
  • Patent number: 8330201
    Abstract: There is provided a non-volatile semiconductor memory having a charge accumulation layer of a configuration where a metal oxide with a dielectric constant sufficiently higher than a silicon nitride, e.g., a Ti oxide, a Zr oxide, or a Hf oxide, is used as a base material and an appropriate amount of a high-valence substance whose valence is increased two levels or more (a VI-valence) is added to produce a trap level that enables entrance and exit of electrons with respect to the base material.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: December 11, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Koichi Muraoka
  • Patent number: 8330210
    Abstract: A blocking dielectric engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking dielectric including a buffer layer in contact with the charge trapping element, such as silicon dioxide which can be made with high-quality, and a second capping layer in contact with said one of the gate and the channel. The capping layer has a dielectric constant that is higher than that of the first layer, and preferably includes a high-? material. The second layer also has a conduction band offset that is relatively high. A bandgap engineered tunneling layer between the channel and the charge trapping element is provided which, in combination with the multilayer blocking dielectric described herein, provides for high-speed erase operations by hole tunneling. In an alternative, a single layer tunneling layer is used.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 11, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Sheng-Chih Lai, Hang-Ting Lue, Chien-Wei Liao
  • Publication number: 20120309138
    Abstract: The present invention provides a semiconductor device that has a shorter distance between the bit lines and easily achieves higher storage capacity and density, and a method of manufacturing such a semiconductor device. The semiconductor device includes: first bit lines formed on a substrate; an insulating layer that is provided between the first bit lines on the substrate, and has a higher upper face than the first bit lines; channel layers that are provided on both side faces of the insulating layer, and are coupled to the respective first bit lines; and charge storage layers that are provided on the opposite side faces of the channel layers from the side faces on which the insulating layers are formed.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Inventors: Yukio HAYAKAWA, Hiroyuki NANSEI
  • Patent number: 8324051
    Abstract: Methods of manufacturing NOR-type flash memory device include forming a tunnel oxide layer on a substrate, forming a first conductive layer on the tunnel oxide layer, forming first mask patterns parallel to one another on the first conductive layer in a y direction of the substrate, and selectively removing the first conductive layer and the tunnel oxide layer using the first mask patterns as an etch mask. Thus, first conductive patterns and tunnel oxide patterns are formed, and first trenches are formed to expose the surface of the substrate between the first conductive patterns and the tunnel oxide patterns. A photoresist pattern is formed to open at least one of the first trenches, and impurity ions are implanted using the photoresist pattern as a first ion implantation mask to form an impurity region extending in a y direction of the substrate. The photoresist pattern is removed.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Song, Joong-Shik Shin
  • Publication number: 20120299087
    Abstract: A non-volatile memory device includes gate structures including first insulation layers that are alternately stacked with control gate layers over a substrate, wherein the gate structures extend in a first direction, channel lines that each extend over the gate structures in a second direction different from the first direction, a memory layer formed between the gate structures and the channel lines and arranged to trap charges by electrically insulating the gate structures from the channel lines, bit line contacts forming rows that each extend in the first direction and contacting top surfaces of the channel lines, source lines that each extend in the first direction and contact the top surfaces of the channel lines, wherein the source lines alternate with the rows of bit line contacts, and bit lines that are each formed over the bit line contacts and extend in the second direction.
    Type: Application
    Filed: December 21, 2011
    Publication date: November 29, 2012
    Inventors: Han-Soo JOO, Yu-Jin PARK
  • Publication number: 20120299085
    Abstract: A select transistor for use in a memory device including a plurality of memory transistors connected in series includes a tunnel insulating layer formed on a semiconductor substrate, a charge storage layer formed on the tunnel insulating layer, a blocking insulating layer formed on the charge storage layer and configured to be irradiated with a gas cluster ion beam containing argon as source gas, a gate electrode formed on the blocking insulating layer, and a source/drain region formed within the semiconductor substrate at both sides of the gate electrode.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Yoshitsugu TANAKA
  • Patent number: 8313998
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device is disclosed. The method can include forming a stacked body by alternately stacking a plurality of insulating layers and a plurality of conductive layers above a substrate and forming a resist film above the stacked body. The method can include plasma-etching the insulating layers and the conductive layers by using the resist film as a mask. The method can include forming a hardened layer in an upper surface of the resist film by plasma treatment using a gas containing at least one selected from a group consisting of boron, phosphorus, arsenic, antimony, silicon, germanium, aluminum, gallium, and indium. The method can include slimming a plane size of the resist film by plasma treatment using an oxygen-containing gas in a state where the hardened layer is formed in the upper surface of the resist film.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoya Satonaka, Katsunori Yahashi
  • Patent number: 8314455
    Abstract: A non-volatile semiconductor storage device includes: a memory cell area in which a plurality of electrically rewritable memory cells are formed; and a peripheral circuit area in which transistors that configure peripheral circuits to control the memory cells are formed. The memory cell area has formed therein: a semiconductor layer formed to extend in a vertical direction to a semiconductor substrate; a plurality of conductive layers extending in a parallel direction to, and laminated in a vertical direction to the semiconductor substrate; and a property-varying layer formed between the semiconductor layer and the conductive layers and having properties varying depending on a voltage applied to the conductive layers. The peripheral circuit area has formed therein a plurality of dummy wiring layers that are formed on the same plane as each of the plurality of conductive layers and that are electrically separated from the conductive layers.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Shiino, Atsuhiro Sato, Takeshi Kamigaichi, Fumitaka Arai
  • Publication number: 20120280305
    Abstract: The present invention discloses a flash memory device. The flash memory device comprises a semiconductor substrate and a flash memory area located on the semiconductor substrate. The flash memory area comprises a first doped well, which is divided into a first region and a second region by an isolation region, the second region being doped with an impurity having an electrical conductivity opposite to that of the first doped well; a high-k gate dielectric layer located on the first doped well; and a metal layer located on the high-k gate dielectric layer. The present invention enables compatibility between the high-k dielectric metal gate and the erasable flash memory and increases the operation performance of the flash memory. The present invention also provides a manufacturing method of the flash memory device, which greatly increases the production efficiency and yield of flash memory devices.
    Type: Application
    Filed: September 26, 2010
    Publication date: November 8, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Publication number: 20120275220
    Abstract: The present disclosure relates to the field of microelectronics manufacture and memories. A three-dimensional multi-bit non-volatile memory and a method for manufacturing the same are disclosed. The memory comprises a plurality of memory cells constituting a memory array. The memory array may comprise: a gate stack structure; periodically and alternately arranged gate stack regions and channel region spaces; gate dielectric layers for discrete charge storage; periodically arranged channel regions; source doping regions and drain doping regions symmetrically arranged to each other; bit lines led from the source doping regions and the drain doping regions; and word lines led from the gate stack regions. The gate dielectric layers for discrete charge storage can provide physical storage spots to achieve single-bit or multi-bit operations, so as to achieve a high storage density.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 1, 2012
    Inventors: Ming Liu, Chenxi Zhu, Zongliang Huo, Feng Yan, Qin Wang, Shibing Long
  • Publication number: 20120267702
    Abstract: A device includes a first GSL, a plurality of first word lines, a first SSL, a plurality of first insulation layer patterns, and a first channel. The first GSL, the first word lines, and the first SSL are spaced apart from each other on a substrate in a first direction perpendicular to a top surface of a substrate. The first insulation layer patterns are between the first GSL, the first word lines and the first SSL. The first channel on the top surface of the substrate extends in the first direction through the first GSL, the first word lines, the first SSL, and the first insulation layer patterns, and has a thickness thinner at a portion thereof adjacent to the first SSL than at portions thereof adjacent to the first insulation layer patterns.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 25, 2012
    Inventors: Jung-Geun JEE, Jin-Gyun Kim, Jun-Kyu Yang, Ji-Hoon Choi, Dong-Kyum Kim, Ki-Hyun Hwang
  • Publication number: 20120262985
    Abstract: A method for forming a device is disclosed. The method includes providing a substrate prepared with a primary gate and forming a charge storage layer on the substrate over the primary gate. A secondary gate electrode layer is formed on the substrate over the charge storage layer. The charge storage and secondary gate electrode layers are patterned to form first and second secondary gates on first and second sides of the primary gate.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE Pte. Ltd.
    Inventors: Ying Qian WANG, Yu CHEN, Swee Tuck WOO, Bangun INDAJANG, Sung Mun JUNG
  • Patent number: 8288832
    Abstract: A method for controlling the morphology of deposited silicon on a layer of silicon dioxide and semiconductor devices incorporating such deposited silicon are provided. The method comprises the steps of: providing a layer of silicon dioxide; implanting hydrogen ions into the layer of silicon dioxide by plasma source ion implantation; and forming a layer of polycrystalline silicon on the layer of silicon dioxide.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: October 16, 2012
    Assignee: Micron Technology, Inc.
    Inventor: David L. Chapek
  • Patent number: 8288264
    Abstract: A multi-functional and multi-level memory cell comprises a tunnel layer formed over a substrate. In one embodiment, the tunnel layer comprises two layers such as HfO2 and LaAlO3. A charge blocking layer is formed over the tunnel layer. In one embodiment, this layer is formed from HfSiON. A control gate is formed over the charge blocking layer. A discrete trapping layer is embedded in either the tunnel layer or the charge blocking layer, depending on the desired level of non-volatility. The closer the discrete trapping layer is formed to the substrate/insulator interface, the lower the non-volatility of the device. The discrete trapping layer is formed from nano-crystals having a uniform size and distribution.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 16, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Publication number: 20120256248
    Abstract: Gate induced drain leakage in a tunnel field effect transistor is reduced while drive current is increased by orienting adjacent semiconductor bodies, based on their respective crystal orientations or axes, to optimize band-to-band tunneling at junctions. Maximizing band-to-band tunneling at a source-channel junction increases drive current, while minimizing band-to-band tunneling at a channel-drain junction decreases GIDL. GIDL can be reduced by an order of magnitude in an embodiment. Power consumption for a given frequency can also be reduced by an order of magnitude.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mohit Bajaj, Kota V.R.M. Murali, Edward J. Nowak, Rajan K. Pandey
  • Publication number: 20120244673
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can include selectively implanting an impurity into a underlying layer containing silicon using a mask to form a boron-added region and an etched region. The boron-added region contains boron, and a boron concentration of the etched region is lower than a boron concentration in the boron added region. The method can include forming a pair of holes reaching the etched region in the stacked body including a plurality of layers of electrode layers. The method can include forming a depression part connected to a lower end of each of the pair of holes in the underlying layer by removing the etched region through the holes using an etching solution.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroshi SHINOHARA, Daigo Ichinose
  • Publication number: 20120241843
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array part, a first contact part, and a peripheral circuit part. The first contact part is juxtaposed with the memory cell array part in a first plane. The peripheral circuit part is juxtaposed with the memory cell array part in the first plane. The memory cell array part includes a first stacked body, a first semiconductor layer, and a memory film. The first contact part includes a first contact part insulating layer, and a plurality of first contact electrodes. The peripheral circuit part includes a peripheral circuit, a structure body, a peripheral circuit part insulating layer, and a peripheral circuit part contact electrode. A width along an axis perpendicular to the first axis of the peripheral circuit part insulating layer is smaller than a diameter of the first particle.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHlKl KAISHA TOSHIBA
    Inventors: Hiromitsu IINO, Ryota KATSUMATA
  • Patent number: 8274108
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked body including a plurality of insulating films alternately stacked with a plurality of electrode films, the electrode films being divided to form a plurality of control gate electrodes aligned in a first direction; a plurality of semiconductor pillars aligned in a stacking direction of the stacked body, the semiconductor pillars being arranged in a matrix configuration along the first direction and a second direction intersecting the first direction to pierce the control gate electrodes; and a connection member connecting a lower end portion of one of the semiconductor pillars to a lower end portion of one other of the semiconductor pillars, an upper end portion of the one of the semiconductor pillars being connected to a source line, an upper end portion of the one other of the semiconductor pillars being connected to a bit line.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Yoshiaki Fukuzumi, Hideaki Aochi
  • Publication number: 20120235223
    Abstract: According to one embodiment, a nonvolatile semiconductor memory including a first gate insulating film formed on a channel region of a semiconductor substrate, a first particle layer formed in the first gate insulating film, a charge storage part formed on the first gate insulating film, a second gate insulating film which is formed on the charge storage part, a second particle layer formed in the second gate insulating film, and a gate electrode formed on the second gate insulating film. The first particle layer includes first conductive particles that satisfy Coulomb blockade conditions. The second particle layer includes second conductive particles that satisfy Coulomb blockade conditions and differs from the first conductive particles in average particle diameter.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 20, 2012
    Inventors: Ryuji OHBA, Daisuke Matsushita
  • Publication number: 20120231593
    Abstract: A method for fabricating a 3D-nonvolatile memory device includes forming a sub-channel over a substrate, forming a stacked layer over the substrate, the stacked layer including a plurality of interlayer dielectric layers that are alternatively stacked with conductive layers, selectively etching the stacked layer to form a first open region exposing the sub-channel, forming a main-channel conductive layer to gap-fill the first open region, selectively etching the stacked layer and the main-channel conductive layer to form a second open region defining a plurality of main channels, and forming an isolation layer to gap-fill the second open region.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 13, 2012
    Inventors: Han-Soo JOO, Sang-Hyun OH, Yu-Jin PARK
  • Patent number: 8263463
    Abstract: A split gate nonvolatile memory cell on a semiconductor layer is made by forming a gate dielectric over the semiconductor layer. A first layer of gate material is deposited over the gate dielectric. The first layer of gate material is etched to remove a portion of the first layer of gate material over a first portion of the semiconductor layer and to leave a select gate portion having a sidewall adjacent to the first portion. A treatment is applied over the semiconductor layer to reduce a relative oxide growth rate of the sidewall to the first portion. Oxide is grown on the sidewall to form a first oxide on the sidewall and on the first portion to form a second oxide on the first portion after the applying the treatment. A charge storage layer is formed over the first oxide and along the second oxide. A control gate is formed over the second oxide and adjacent to the sidewall.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: September 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Brian A. Winstead
  • Patent number: 8264026
    Abstract: Nonvolatile memory devices and related methods of manufacturing the same are provided. A nonvolatile memory device includes a tunneling layer on a substrate, a floating gate on the tunneling layer, an inter-gate dielectric layer structure on the floating gate, and a control gate on the inter-gate dielectric layer structure. The inter-gate dielectric layer structure includes a first silicon oxide layer, a high dielectric layer on the first silicon oxide layer, and a second silicon oxide layer on the high dielectric layer opposite to the first silicon oxide layer The high dielectric layer may include first and second high dielectric layers laminated on each other, and the first high dielectric layer may have a lower density of electron trap sites than the second high dielectric layer and may have a larger energy band gap or conduction band-offset than the second high dielectric layer.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hae Lee, Byong-Sun Ju, Suk-Jin Chung, Young-Sun Kim
  • Patent number: 8263465
    Abstract: Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: September 11, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai, Tuan D. Pham
  • Publication number: 20120223380
    Abstract: There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
    Type: Application
    Filed: May 10, 2012
    Publication date: September 6, 2012
    Applicant: SanDisk 3D LLC
    Inventors: Thomas H. Lee, Vivek Subramanian, James M. Cleeves, Andrew J. Walker, Christopher J. Petti, Igor G. Kouznetzov, Mark G. Johnson, Paul Michael Farmwald, Brad Herner
  • Publication number: 20120223381
    Abstract: A non-volatile memory structure is disclosed. LDD regions may be optionally formed through an ion implantation using a mask for protection of a gate channel region of an active area. Two gates are apart from each other and disposed on an isolation structure on two sides of a middle region of the active area, respectively. The two gates may be each entirely disposed on the isolation structure or partially to overlap a side portion of the middle region of the active area. A charge-trapping layer and a dielectric layer are formed between the two gates and on the active area to serve for a storage node function. They may be further formed onto all sidewalls of the two gates to serve as spacers. Source/drain regions are formed through ion implantation using a mask for protection of the gates and the charge-trapping layer.
    Type: Application
    Filed: July 26, 2011
    Publication date: September 6, 2012
    Inventors: Hau-Yan Lu, Hsin-Ming Chen, Ching-Sung Yang
  • Patent number: 8258574
    Abstract: A semiconductor device including a plurality of decoupling capacitors formed on a semiconductor substrate, and a plurality of decoupling capacitor contact plugs disposed between the semiconductor substrate and the plurality of decoupling capacitors, the plurality of decoupling capacitor contact plugs being electrically connected to the plurality of decoupling capacitors and including an array of first decoupling capacitor contact plugs and second decoupling capacitor contact plugs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-hyun Han
  • Patent number: 8258033
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a plurality of gate electrodes provided on the substrate, extended in a first direction parallel to an upper surface of the substrate, arranged in a matrix in an up-to-down direction perpendicular to the upper surface and a second direction, and having a through-hole respectively extended in the up-to-down direction, the second direction being orthogonal to both the first direction and the up-to-down direction; an insulation plate provided between the gate electrodes in the second direction and extended in the first direction and the up-to-down direction; a block insulation film provided on an interior surface of the through-hole and on an upper surface and a lower surface of the gate electrodes and being contact with the insulation plate; a charge storage film provided on the block insulation film; a tunnel insulation film provided on the charge storage film; and a semiconductor pillar provided in the through-hole and extended in the up-to-down
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nobutaka Watanabe
  • Publication number: 20120217573
    Abstract: A first dielectric is formed over a semiconductor layer, a first gate layer over the first dielectric, a second dielectric over the first gate layer, and a third dielectric over the second dielectric. An etch is performed to form a first sidewall of the first gate layer. A second etch is performed to remove portions of the first dielectric between the semiconductor layer and the first gate layer to expose a bottom corner of the first gate layer and to remove portions of the second dielectric between the first gate layer and the third dielectric layer to expose a top corner of the first gate layer. An oxide is grown on the first sidewall and around the top and bottom corners to round the corners. The oxide is then removed. A charge storage layer and second gate layer is formed over the third dielectric layer and overlapping the first sidewall.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Inventor: SUNG-TAEG KANG
  • Publication number: 20120211821
    Abstract: According to one embodiment, a method for manufacturing a semiconductor memory device includes forming a first stacked body on a substrate by alternately stacking a first film and a second film, forming a second stacked body on the first stacked body by alternately stacking a third film and a fourth film, making a through-hole to pierce the second stacked body and the first stacked body by performing etching, an etching rate of the third film being lower than an etching rate of the first film in the etching, forming a charge storage film on an inner surface of the through-hole, and forming a semiconductor member in the through-hole. The first film and the second film are formed of mutually different materials. The third film and the fourth film are formed of mutually different materials. And, the first film and the third film are formed of mutually different materials.
    Type: Application
    Filed: September 20, 2011
    Publication date: August 23, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Takanori MATSUMOTO
  • Patent number: 8247857
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor member; a memory film provided on a surface of the semiconductor member and being capable of storing charge; and a plurality of control gate electrodes provided on the memory film, spaced from each other, and arranged along a direction parallel to the surface. Average dielectric constant of a material interposed between one of the control gate electrodes and a portion of the semiconductor member located immediately below the control gate electrode adjacent to the one control gate electrode is lower than average dielectric constant of a material interposed between the one control gate electrode and a portion of the semiconductor member located immediately below the one control gate electrode.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Fumiki Aiso
  • Patent number: 8247860
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a stacked body with a plurality of dielectric films and electrode films alternately stacked therein, the stacked body being provided on the substrate and having a step in its end portion for each of the electrode films; an interlayer dielectric film burying the end portion of the stacked body; a plurality of semiconductor pillars extending in the stacking direction of the stacked body and penetrating through a center portion of the stacked body; a charge storage layer provided between one of the electrode films and one of the semiconductor pillars; and a plug buried in the interlayer dielectric film and connected to a portion of each of the electrode films constituting the step, a portion of each of the dielectric films in the center portion having a larger thickness than a portion of each of the dielectric films in the end portion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Tadashi Iguchi
  • Publication number: 20120206979
    Abstract: A non-volatile memory device includes channel structures that each extend in a first direction, wherein the channel structures each include channel layers and interlayer dielectric layers that are alternately stacked; source structure extending in a second direction crossing the first direction and connected to ends of the channel structures, wherein the source structure includes source lines and interlayer dielectric layers that are alternately stacked; and word lines extending in the second direction and formed to surround the channel structures.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 16, 2012
    Inventors: Hack Seob Shin, Sang Hyun Oh
  • Publication number: 20120202329
    Abstract: There is provided a charge trap type non-volatile memory device and a method for fabricating the same, the charge trap type non-volatile memory device including: a tunnel insulation layer formed over a substrate; a charge trap layer formed over the tunnel insulation layer, the charge trap layer including a charge trap polysilicon thin layer and a charge trap nitride-based layer; a charge barrier layer formed over the charge trap layer; a gate electrode formed over the charge barrier layer; and an oxide-based spacer formed over sidewalls of the charge trap layer and provided to isolate the charge trap layer.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Cha-Deok DONG
  • Patent number: 8236650
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality to of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 7, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20120187471
    Abstract: A method of manufacturing a semiconductor device comprises forming memory cells on a memory cell region, alternately forming a sacrificial layer and an insulating interlayer on a connection region for providing wirings configured to electrically connect the memory cells, forming an etching mask pattern including etching mask pattern elements on a top sacrificial layer, forming blocking sidewalls on either sidewalls of each of the etching mask pattern element, forming a first photoresist pattern selectively exposing a first blocking sidewall furthermost from the memory cell region and covering the other blocking sidewalls, etching the exposed top sacrificial layer and an insulating interlayer to expose a second sacrificial layer, forming a second photoresist pattern by laterally removing the first photoresist pattern to the extent that a second blocking sidewall is exposed, and etching the exposed top and second sacrificial layers and the insulating interlayers to form a staircase shaped side edge portion.
    Type: Application
    Filed: December 8, 2011
    Publication date: July 26, 2012
    Inventors: Han-Geun YU, Gyung-Jin MIN, Seong-Soo LEE, Suk-Ho JOO, Yoo-Chul KONG, Dae-Hyun JANG
  • Patent number: 8222111
    Abstract: A method for semiconductor fabrication. The method includes providing a silicon substrate and forming a tunnel oxide layer over the silicon substrate. Thereafter, a nitride layer is formed over the tunnel oxide layer. The nitride layer and the tunnel oxide layer are etched except where at least one nonvolatile silicon oxide nitride oxide silicon (SONOS) transistor is formed. Additionally, oxide layers are simultaneously formed over the nitride layer corresponding to where at bast one SONOS memory transistor is formed and over the exposed silicon substrate corresponding to where at least one metal oxide semiconductor (MOS) transistor is formed.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 17, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventor: Jeong-Mo Hwang
  • Patent number: 8222688
    Abstract: A semiconductor device includes a substrate, a first oxide layer formed on the substrate, an oxygen-rich nitride layer formed on the first oxide layer, a second oxide layer formed on the oxygen-rich nitride layer, and an oxygen-poor nitride layer formed on the second oxide layer.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 17, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Fredrick Jenne, Krishnaswamy Ramkumar
  • Patent number: 8222112
    Abstract: A method for manufacturing NAND memory cells includes providing a substrate having a first doped region formed therein; forming a first dielectric layer, a storage layer and a patterned hard mask on the substrate; forming a STI in the substrate through the patterned hard mask and removing the patterned hard mask to define a plurality of recesses; forming a second dielectric layer and a first conductive layer filling the recesses on the substrate; and performing a planarization process to remove a portion of the first conductive layer and the second dielectric layer to form a plurality of self-aligned islanding gate structures.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: July 17, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Sung Huang, Ping-Chia Shih, Chiao-Lin Yang, Chi-Cheng Huang