Encapsulation Of Active Face Of Flip Chip Device, E.g., Under Filling Or Under Encapsulation Of Flip-chip, Encapsulation Perform On Chip Or Mounting Substrate (epo) Patents (Class 257/E21.503)
  • Patent number: 8597978
    Abstract: A method for forming a semiconductor device includes physically attaching a first semiconductor die to front surface of a first substrate. The first die is electrically connected to routings on front surface of the first substrate. The routings are electrically connected with conductive pads on back surface of the first substrate. A second semiconductor die is physically attached to front surface of a second substrate. The die is electrically connected to routings on front surface of second substrate. These routings are electrically connected with conductive pads on front surface of the second substrate. A third semiconductor die is physically attached to the second die. The third die is electrically attached to the second die through a plurality of through substrate vias (TSVs) within the second die. The conductive pads on back surface of first substrate are electrically connected to the conductive pads on front surface of second substrate.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kurt Wachtler, Margaret Rose Simmons-Matthews
  • Publication number: 20130307152
    Abstract: A fabrication method of a semiconductor package is provided, which includes the steps of: forming a packaging substrate on a first carrier; bonding a second carrier to the packaging substrate; removing the first carrier; disposing a chip on the packaging substrate; forming an encapsulant on the packaging substrate for encapsulating the chip; and removing the second carrier. The first and second carriers provide the thin-type packaging substrate with sufficient rigidity for undergoing the fabrication processes without cracking or warpage, thereby meeting the miniaturization requirement and improving the product yield.
    Type: Application
    Filed: August 17, 2012
    Publication date: November 21, 2013
    Inventors: Wei Chung Hsiao, Chun Hsien Lin, Yu Cheng Pai, Liang Yi Hung, Ming Chen Sun, Shao Tzu Tang, Ying Chou Tsai, Chang Yi Lan
  • Patent number: 8586467
    Abstract: In flip chip attach of electronic components, underfill is filled between the component and the substrate to alleviate, for example, thermal stress. In electronic component mounting using copper pillars conducted so far, filler contained in the underfill may cause separation in the process of heating and curing the resin. Disclosed is plating the surfaces of the copper pillars with solder. Mobilization of the filler charged in the underfill due to electric fields produced by local cells that are developed upon contact between dissimilar metals, is suppressed, and occurrence of crack at connection portions is obviated. Thus, connection reliability is increased.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 19, 2013
    Assignee: Namics Corporation
    Inventors: Osamu Suzuki, Seiichi Ishikawa, Haruyuki Yoshii
  • Patent number: 8581421
    Abstract: According to one embodiment, there is provided a semiconductor package manufacturing method utilizing a support body in which a first layer is stacked on a second layer, the method including: a first step of forming an opening in the first layer to expose the second layer therethrough; a second step of arranging a semiconductor chip on the second layer through the opening; a third step of forming a resin portion on the first layer to cover the semiconductor chip; and a fourth step of forming a wiring structure on the resin portion so as to be electrically connected to the semiconductor chip.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Noriyoshi Shimizu, Akio Rokugawa, Hirokazu Yoshino
  • Patent number: 8580673
    Abstract: Underfill flow guide structures and methods of using the same are provided with a module. In particular the underfill flow guide structures are integrated with a substrate and are configured to prevent air entrapment from occurring during capillary underfill processes.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 12, 2013
    Assignee: Ultratech, Inc.
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Marie-Claude Paquet, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8580614
    Abstract: A method includes providing a carrier with an adhesive layer disposed thereon; and providing a die including a first surface, a second surface opposite the first surface. The die further includes a plurality of bond pads adjacent the second surface; and a dielectric layer over the plurality of bond pads. The method further includes placing the die on the adhesive layer with the first surface facing toward the adhesive layer and dielectric layer facing away from the adhesive layer; forming a molding compound to cover the die, wherein the molding compound surrounds the die; removing a portion of the molding compound directly over the die to expose the dielectric layer; and forming a redistribution line above the molding compound and electrically coupled to one of the plurality of bond pads through the dielectric layer.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Jing-Cheng Lin
  • Patent number: 8581403
    Abstract: In an electronic component mounting structure, a semiconductor element (an electronic component) provided with an electrode pad and a board provide with an electrode pad corresponding to the electrode pad are connected via a conductive material portion. On a surface of the board, there is formed solder resist having an opening regulating an area of the electrode pad. The conductive material portion is formed to protrude from a surface of the solder resist. An elastic coefficient of the conductive material portion is lower than that of the solder resist. A solder bump and the conductive material portion are connected via a metal layer. The conductive material portion is formed to have an area larger than that of the opening of the solder resist. An edge of the conductive material portion is adhered to a portion of the surface of the solder resist. Thus, in a case of mounting an electronic component on a board by flip-chip connection, a reliability of connection can be secured.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: November 12, 2013
    Assignee: NEC Corporation
    Inventor: Akira Ouchi
  • Patent number: 8574966
    Abstract: A semiconductor device having a semiconductor chip having an active surface with flip-chip contacts and a passive surface is disclosed. The flip-chip contacts are surrounded by an electrically insulating layer as underfill material, the layer having a UV B-stageable material. The UV B-stageable material is applied on the active surface of the semiconductor wafer.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Infineon Technologies AG
    Inventors: Michael Bauer, Edward Fuergut
  • Publication number: 20130280861
    Abstract: Methods for forming semiconductor device packages include applying an underfill material over a semiconductor wafer including conductive elements such that an average thickness of the underfill material is at least about 80% of an average height of the conductive elements and each conductive element is covered by underfill material. Underfill material covering tips of conductive elements is removed. Other methods include positioning a stencil over a semiconductor wafer and applying an underfill material to a major surface of the semiconductor wafer through the stencil. Additional methods include aligning and associating conductive elements having a surface substantially free of underfill material with bond pads of a substrate, melting and flowing the underfill material, and heating the conductive elements and underfill material to melt tip portions of the conductive elements and cure the underfill material.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Zhaohui Ma, Wei Zhou, Aibin Yu
  • Patent number: 8564012
    Abstract: A method for manufacturing an optoelectronic apparatus includes attaching bottom surfaces of first and second packaged optoelectronic semiconductor devices (POSDs) to a carrier substrate (e.g., a tape) so that there is a space between the first and second POSDs. An opaque molding compound is molded around portions of the first and second POSDs attached to the carrier substrate, so that peripheral surfaces of the first POSD and the second POSD are surrounded by the opaque molding compound, the space between the first and second POSDs is filled with the opaque molding compound, and the first and second POSDs are attached to one another by the opaque molding compound. The carrier substrate is thereafter removed so that electrical contacts on the bottom surfaces of the first and second POSDs are exposed. A window for each of the POSDs is formed during the molding process or thereafter.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 22, 2013
    Assignee: Intersil Americas LLC
    Inventors: Seshasayee S. Ankireddi, Lynn K. Wiese
  • Patent number: 8558399
    Abstract: A dual molded multi-chip package system is provided including forming an embedded integrated circuit package system having a first encapsulation partially covering a first integrated circuit die and a lead connected thereto, mounting a semiconductor device over the first encapsulation and connected to the lead, and forming a second encapsulation over the semiconductor device and the embedded integrated circuit package system.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 15, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Kambhampati Ramakrishna, Il Kwon Shim, Seng Guan Chow
  • Patent number: 8552553
    Abstract: The present invention relates to a semiconductor device. The semiconductor device includes a substrate and a chip. The chip is electrically connected to the substrate. The chip includes a chip body, at least one chip pad, a first passivation, an under ball metal layer and at least one metal pillar structure. The chip pad is disposed adjacent to an active surface of the chip body. The first passivation is disposed adjacent to the active surface, and exposes part of the chip pad. The under ball metal layer is disposed adjacent to the chip pad. The metal pillar structure contacts the under ball metal layer to form a first contact surface having a first diameter. The metal pillar structure is electrically connected to a substrate pad of the substrate to form a second contact surface having a second diameter. The ratio of the first diameter to the second diameter is between 0.7 and 1.0.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 8, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Jian-Wen Lo, Chien-Fan Chen
  • Publication number: 20130256915
    Abstract: A semiconductor package includes a packaging substrate having a die attach area, a plurality of flow-guiding blocks disposed around an outer periphery of the die attach area, a first semiconductor element mounted on the die attach area, a second semiconductor element mounted on the first semiconductor element, and an underfill formed between the packaging substrate and the second semiconductor element. During filling of the underfill between the packaging substrate and the second semiconductor element, the flow-guiding blocks can guide a portion of the underfill to flow between the first semiconductor element and the second semiconductor element such that only one dispensing process is required for the underfill to completely encapsulate all conductive bumps used for flip-chip interconnection, thereby simplifying the fabrication process and improving the production efficiency.
    Type: Application
    Filed: September 13, 2012
    Publication date: October 3, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Huei-Nuan Huang, Chun-Tang Lin, Chien-Feng Chan, Chi-Hsin Chiu
  • Patent number: 8541259
    Abstract: A disclosed semiconductor device includes a wiring board, a semiconductor element mounted on a principal surface of the wiring board with flip chip mounting, a first conductive pattern formed on the principal surface along at least an edge portion of the semiconductor element, a second conductive pattern formed on the principal surface along the first conductive pattern and away from the first conductive pattern, a passive element bridging between the first conductive pattern and the second conductive pattern on the principal surface of the wiring board, and a resin layer filling a space between the wiring board and the semiconductor chip, wherein the resin layer extends between the semiconductor element and the first conductive pattern on the principal surface of the wiring board.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takumi Ihara
  • Patent number: 8530280
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a carrier; mounting an integrated circuit die on a top side of the carrier; connecting the integrated circuit die with the carrier; forming an encapsulation having a multi-sloped side over the integrated circuit die for reducing ejection stress; and forming a first external interconnect on the top side of the carrier adjacent to and separated from the encapsulation including forming a second external interconnect on a bottom side of the carrier opposite the first external interconnect.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 10, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Choong Bin Yim, Young Cheol Kim
  • Patent number: 8531019
    Abstract: A semiconductor device with efficient heat dissipating structures is disclosed. The semiconductor device includes a first semiconductor chip that is flip-chip mounted on a first substrate, a heat absorption portion that is formed between the first semiconductor chip and the first substrate, an outer connection portion that connects the first semiconductor chip to an external device and a heat conduction portion formed between the heat absorption portion and the outer connection portion to dissipate heat generated by the first semiconductor chip.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 10, 2013
    Assignee: Spansion LLC
    Inventor: Masanori Onodera
  • Patent number: 8530277
    Abstract: A method of manufacture of an integrated packaging system includes: providing a substrate; mounting a die over the substrate; mounting an interposer having a slot over the die; covering a first encapsulant over the die and the interposer, a central region of the interposer exposed from the first encapsulant; and forming a hole through the first encapsulant to expose a peripheral portion of the interposer.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 10, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: ChanHoon Ko, SangJin Lee
  • Patent number: 8524595
    Abstract: A semiconductor structure includes a plurality of solder structures between a first substrate and a second substrate. A first encapsulation material is substantially around a first one of the solder structures and a second encapsulation material is substantially around a second one of the solder structures. The first one and the second one of the solder structures are near to each other and a gap is between the first encapsulation material and the second encapsulation material.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mirng-Ji Lii, Hsin-Hui Lee
  • Patent number: 8525217
    Abstract: A device for resin coating is used for producing an LED package including an LED element covered with resin containing phosphor. In a state in which a trial coating material 43 is located by a clamp unit 63, a trial coating of resin applied to the trial coating material 43 is irradiated with excitation light and light emitted from the phosphor contained in the resin is measured by an emission characteristic measuring unit 39. A deviation of the measurement result of the emission characteristic measuring unit from a prescribed emission characteristic is determined, and then a proper amount of resin to be applied to the LED element is derived for actual production based on the deviation.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Kentaro Nishiwaki, Tomonori Itoh, Masaru Nonomura
  • Patent number: 8525353
    Abstract: In a system for providing temporary or permanent connection of an integrated circuit die to a base substrate using electrical microsprings, a thermal element is provided that assists with cooling of the pad structure during use. The thermal element may be formed of the same material and my similar processes as the microsprings. The thermal element may be one or more block structures or one or more thermal microsprings. The thermal element may be provided with channels to contain and/or direct the flow of a thermal transfer fluid. Cooling of components associated with the pad structure (e.g., ICs) may be provided.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 3, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eugene M. Chow, Eric J. Shrader, John S. Paschkewitz
  • Patent number: 8518722
    Abstract: A method for detecting the under-fill void of the flip chip ball grid array package structure is provided, which includes providing a substrate having an interconnect structure and a plurality of interposers therein; providing a chip having an active surface and a back side, and a plurality of first connecting elements on the active surface of the chip; mounting and electrically connecting the active surface of the chip on the substrate; performing at least once IR reflow to fix the plurality of first connecting elements on the substrate; filling an encapsulate material to cover the active surface of the chip and the plurality of first connecting elements; performing a detecting process to detect that void is not formed between the active surface of the chip and the plurality of first elements; and forming a plurality of second connecting elements on the back side of the substrate to obtain a flip chip ball grid array package structure.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 27, 2013
    Assignee: Global Unichip Corporation
    Inventors: Chien-Wen Chen, Chia-Jen Kao, Jui-Cheng Chuang
  • Publication number: 20130214419
    Abstract: A semiconductor packaging method includes providing a substrate having a plurality of connection pads; mounting a chip on the substrate, wherein the chip comprises a plurality of copper-containing bumps directly coupled to the connection pads, and each of the copper-containing bumps comprises a ring surface; forming an anti-dissociation gel between the substrate and the chip, wherein the anti-dissociation gel comprises a plurality of anti-dissociation substances, and the ring surfaces of the copper-containing bumps are covered by the anti-dissociation substances.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Cheng-Fan Lin, Yung-Wei Hsieh, Ming-Yi Liu
  • Patent number: 8513057
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a routable layer having a column; mounting an integrated circuit structure in direct contact with the column; and forming a gamma connector to electrically connect the column to the integrated circuit structure.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 20, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Oh Han Kim, Ki Youn Jang, DaeSik Choi, DongSoo Moon
  • Patent number: 8513063
    Abstract: According to an embodiment disclosed herein, a microelectronic device to be encapsulated is built on, or alternatively in, a substrate. The device is then coated with a sacrificial layer. A lid layer is deposited over the sacrificial layer, and then appropriately perforated to optimize the removal of the sacrificial layer. The sacrificial layer is then removed using one of several etching or other processes. The perforations in the lid layer are then sealed using a viscous sealing material, thereby fixing the environment that encapsulates the device. The sealing material is then cured or hardened. An optional moisture barrier may be deposited over the cured sealing layer to provide further protection for the encapsulation if needed.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 20, 2013
    Assignee: Newport Fab, LLC
    Inventors: Michael J DeBar, David J Howard, Daniel M. So
  • Patent number: 8497165
    Abstract: Systems and methods for lead frame locking design features are provided. In one embodiment, a method comprises: fabricating a lead frame for a chip package, the lead frame having a paddle comprising a step-out bottom locking feature profile across at least a first segment of an edge of the paddle that provides an interface with a mold compound; etching the paddle to have at least a second segment of the edge having either an extended-step-out bottom locking feature profile or an overhanging top locking feature profile; and alternating first and second segments along the edge of the paddle.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 30, 2013
    Assignee: Intersil Americas Inc.
    Inventor: Randolph Cruz
  • Patent number: 8497575
    Abstract: A method of manufacture of a semiconductor packaging system includes: providing a base substrate having edges; mounting an electrical interconnect on the base substrate; and applying an encapsulant having a reference marker and an opening over the electrical interconnect, the reference marker around the electrical interconnect based on physical locations of the edges.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: July 30, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: In Sang Yoon, JoHyun Bae, DeokKyung Yang
  • Patent number: 8492204
    Abstract: A method for manufacturing a multiple encapsulation integrated circuit package-in-package system includes: dicing a top integrated circuit wafer having a bottom encapsulant thereon to form a top integrated circuit die with the bottom encapsulant; positioning internal leadfingers adjacent and connected to a bottom integrated circuit die; pressing the bottom encapsulant on to the bottom integrated circuit die; connecting the top integrated circuit die to external leadfingers adjacent the internal leadfingers; and forming a top encapsulant over the top integrated circuit die.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: July 23, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Patent number: 8492171
    Abstract: A method for rejoining an IC die, removed from an existing substrate, to a new substrate, is disclosed herein. In one embodiment, such a method includes grinding an existing substrate from an IC die to create a substantially planar surface exposing interconnects and surrounding underfill material. A new substrate is provided having electrically conductive pedestals protruding therefrom. The electrically conductive pedestals are positioned to align with the exposed interconnects and have a melting point substantially higher than the melting point of the interconnects. The method places the exposed interconnects in contact with the electrically conductive pedestals. The method then applies a reflow process to melt and electrically join the exposed interconnects with the electrically conductive pedestals. A structure produced by the method is also disclosed.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michel Deschenes, Marco Gauvin, Eric Giguère
  • Patent number: 8476135
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base carrier having a base carrier hole from a base carrier interconnection side to a base carrier device side; mounting a base integrated circuit over the base carrier; forming an encapsulation over the base carrier covering the base integrated circuit, the encapsulation having an encapsulation top side and having an encapsulation hole directly over the base carrier hole; and forming an interconnection structure as a single integral structure through the base carrier hole and the encapsulation hole, the interconnection structure directly on the encapsulation top side and directly on the base carrier interconnection side.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: July 2, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JinGwan Kim, Hyunil Bae
  • Patent number: 8471373
    Abstract: A resin-sealed semiconductor device includes a power element (1), a control element (4), a first lead frame (3) having a first die pad (3A) which holds the power element (1), a second lead frame (5) having a second die pad (5A) which holds the control element (4), and a housing (6) made of a resin material and sealing the power element, the first die pad, the control element, and the second die pad. A lower surface of the second die pad is higher than an upper surface of the first element, and at least part of the first die pad and at least part of the second die pad overlap each other when viewed from the top. One of the first leads and one of the second leads are directly joined together by a joint portion (23) and electrically coupled together in the housing.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 25, 2013
    Assignee: Panasonic Corporation
    Inventors: Masanori Minamio, Shinichi Ijima
  • Patent number: 8470621
    Abstract: A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: June 25, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chester Kuo, Lung Hsin Chen, Wen Liang Tseng, Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Shih Hsiung Chan
  • Patent number: 8466552
    Abstract: A manufacturing method of a semiconductor device includes: forming a columnar electrode on a semiconductor wafer; flip-chip bonding a second semiconductor chip onto the semiconductor wafer; forming a molding portion on the semiconductor wafer, the molding portion covering and molding the columnar electrode and the second semiconductor chip; grinding or polishing the molding portion and the second semiconductor chip so that an upper face of the columnar electrode and an upper face of the semiconductor chip are exposed; and cutting the molding portion and the semiconductor wafer so that a first semiconductor chip, where the second semiconductor chip is flip-chip bonded and the columnar electrode is formed, is formed.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Spansion LLC
    Inventors: Masanori Onodera, Kouichi Meguro
  • Patent number: 8461698
    Abstract: An integrated circuit assembly (ex.—a flip chip package, a wire bond chip package) is provided which includes a substrate (ex.—a printed circuit board) and a die assembly. The die assembly includes an integrated circuit chip which is connected to the printed circuit board. Further, an external dielectric layer (ex.—a solder mask layer) of the printed circuit board is at least substantially coated with a conductive coating (ex.—a low sintering temperature, nano-particle silver coating). The conductive coating is not in contact with the die assembly and/or passive electronics which are connected to the printed circuit board, however the conductive coating is electrically connected to the printed circuit board. The conductive coating provides (ex—acts as) an external ground plane for the printed circuit board.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 11, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Brandon C. Hamilton, Alan P. Boone, Guy N. Smith
  • Publication number: 20130122659
    Abstract: A method comprises attaching a first side of an interposer on a carrier wafer. The first side of the interposer comprises a plurality of bumps. The carrier wafer comprises a plurality of cavities formed in the carrier wafer. Each bump on the first side of the interposer can fit into its corresponding cavity on the carrier wafer. Subsequently, the method comprises attaching a semiconductor die on the second side of the interposer to form a wafer stack, detaching the wafer stack from the carrier wafer and attaching the wafer stack to a substrate.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Wu, Szu Wei Lu, Jing-Cheng Lin, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8441123
    Abstract: A semiconductor device has a first semiconductor die having at least one metal pillar formed along an inner perimeter and at least one bond pad formed along an outer perimeter. A second semiconductor die has at least one metal pillar. A conductive bump connects the at least one metal pillar of the first semiconductor die to the at least one metal pillar of the second semiconductor die. At least one metal dam is formed on the first semiconductor die between the at least one metal pillar of the first semiconductor die and the at least one bond pad.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 14, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Dong Hee Lee, Min Yoo, Dae Byoung Kang, Bae Yong Kim
  • Patent number: 8435834
    Abstract: A semiconductor die has a conductive layer including a plurality of trace lines formed over a carrier. The conductive layer includes a plurality of contact pads electrically continuous with the trace lines. A semiconductor die has a plurality of contact pads and bumps formed over the contact pads. A plurality of conductive pillars can be formed over the contact pads of the semiconductor die. The bumps are formed over the conductive pillars. The semiconductor die is mounted to the conductive layer with the bumps directly bonded to an end portion of the trace lines to provide a fine pitch interconnect. An encapsulant is deposited over the semiconductor die and conductive layer. The conductive layer contains wettable material to reduce die shifting during encapsulation. The carrier is removed. An interconnect structure is formed over the encapsulant and semiconductor die. An insulating layer can be formed over the conductive layer.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 7, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Rajendra D. Pendse, Jun Mo Koo
  • Patent number: 8435839
    Abstract: A method of manufacturing a semiconductor device which can reduce the number of times of resin-injection, thereby facilitating the miniaturization of the semiconductor device, and the semiconductor device. After resin is injected into a space between at least two second semiconductor chips flip-chip joined to a first semiconductor chip through an injection opening, the resin is hardened.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 7, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Yoshimi Egawa
  • Patent number: 8432025
    Abstract: The invention provides a semiconductor device including a rectangular chip provided on a mounting region of a substrate, a liquid resin layer provided under the rectangular chip and on a side surface of the chip, and a plurality of dams formed on the substrate so as to extend along the side surface of the rectangular chip. The configuration allows the semiconductor device to be provided with the substrate having a reduced size which is achieved by preventing a liquid resin from flowing out.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: April 30, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Yoshihiro Saeki
  • Patent number: 8426255
    Abstract: A method for manufacturing a semiconductor package structure is disclosed. In one embodiment, the method includes the steps of forming a plurality of conductive pastes on a matrix lead frame with a groove located within a predetermined distance from each conductive paste on the lead; partially curing the conductive pastes so that the conductive pastes are in a semi-cured state; preparing at least one chip with a plurality of bumps thereon; electrically connecting the chip and the lead by implanting the bumps into the semi-cured conductive pastes, wherein the groove on the lead of the matrix lead frame is configured to receive overflowed semi-cured conductive pastes; curing the semi-cured conductive pastes to completely secure the bumped chip; and forming an encapsulating material covering the lead frame and the chip. The method can also be applied in pre-molded lead frame package.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 23, 2013
    Assignee: Chipmos Technologies, Inc.
    Inventor: Geng-Shin Shen
  • Patent number: 8421089
    Abstract: A light emitting device includes a substrate, a first lead frame and a second lead frame on the substrate, an installation portion electrically connected to the first lead frame or the second lead frame, the installation portion being thinner than the first lead frame or the second lead frames, a light emitting diode on the installation portion, and a conductive member electrically connecting at least one of the lead frames to the light emitting diode.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 16, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Wan Ho Kim
  • Patent number: 8409918
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias formed through the substrate and conductive layer formed over the substrate. A first encapsulant is deposited over the substrate outside a die attach area of the substrate. The first encapsulant surrounds each die attach area over the substrate and the die attach area is devoid of the first encapsulant. A channel connecting adjacent die attach areas is also devoid of the first encapsulant. A first semiconductor die is mounted over the substrate within the die attach area after forming the first encapsulant. A second semiconductor die is mounted over the first die within the die attach area. An underfill material can be deposited under the first and second die. A second encapsulant is deposited over the first and second die and first encapsulant. The first encapsulant reduces warpage of the substrate during die mounting.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 2, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeWook Yang, SeungWon Kim, MinJung Kim
  • Patent number: 8410587
    Abstract: An integrated circuit package system includes a leadframe with leads configured to provide electrical contact between an integrated circuit chip and an external electrical source. Configuring the leads to include outer leads, down set transitional leads, and down set inner leads. Connecting the integrated circuit chip electrically to the down set inner leads. Depositing an encapsulating material to prevent exposure of the down set inner leads.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 2, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Taesung Lee, Jae Soo Lee, Geun Sik Kim
  • Patent number: 8410598
    Abstract: A semiconductor package is formed having a substrate juxtaposed on at least two sides of a semiconductor die. Both the substrate and the semiconductor die are affixed to a conductive layer that draws heat generated during use of the semiconductor package away from the semiconductor die and the substrate. There are also electrical contacts affixed to the substrate and the semiconductor die. The electrical contacts facilitate electrical connection between the semiconductor die, the substrate, and any external devices or components making use of the semiconductor die. The substrate, semiconductor die, and at least a portion of some of the electrical contacts are enclosed by an encapsulating layer insulating the components. Portions of the electrical contacts not enclosed by the encapsulating layer are affixed to an outside device, such as a printed circuit board.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 2, 2013
    Assignee: STMicroeletronics Pte. Ltd.
    Inventor: Kim-Yong Goh
  • Patent number: 8410596
    Abstract: A single metal layer tape substrate includes a patterned metal layer affixed to a patterned dielectric layer. The dielectric layer is patterned to provide openings exposing lands and bond sites on bond fingers on the land side of the metal layer. The metal layer is patterned to provide circuit traces as appropriate for interconnection with the die and with other elements. Interconnection with a die is made by wire bonding to exposed traces on a die attach side of the metal layer, and bond fingers and lands for access to testing the package are provided on the land side of the metal layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 2, 2013
    Assignee: Stats Chippac Ltd.
    Inventor: Marcos Karnezos
  • Patent number: 8409980
    Abstract: Underfill flow guide structures and methods of using the same are provided with a module. The method includes mounting bumps on a substrate. The method also includes forming underfill flow guide structures on the substrate by patterning wires with an overlay of hard substance. The underfill flow guide structures are integrated with the substrate and formed between adjacent bumps. The underfill flow guide structures are further formed to uniformly guide underfill along the substrate during capillary underfill processing.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Marie-Claude Paquet, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8410593
    Abstract: A process for manufacturing a semiconductor device envisages the steps of: positioning a frame structure, provided with a supporting plate carrying a die of semiconductor material, within a molding cavity of a mold; and introducing encapsulating material within the molding cavity for the formation of a package, designed to encapsulate the die. The frame structure is further provided with a prolongation element mechanically coupled to the supporting plate inside the molding cavity and coming out of the molding cavity, and the process further envisages the steps of: controlling positioning of the supporting plate within the molding cavity with the aid of the prolongation element; and, during the step of introducing encapsulating material, separating and moving the prolongation element away from the supporting plate.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 2, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventor: Agatino Minotti
  • Publication number: 20130069221
    Abstract: A semiconductor device has a semiconductor die mounted to a substrate. A plurality of conductive pillars is formed over a semiconductor die. A plurality of conductive protrusions is formed over the conductive pillars. Bumps are formed over the conductive protrusions and conductive pillars. Alternatively, the conductive protrusions are formed over the substrate. A conductive layer is formed over the substrate. The semiconductor die is mounted to the substrate by reflowing the bumps at a temperature that is less than a melting point of the conductive pillars and conductive protrusions to metallurgically and electrically connect the bumps to the conductive layer while maintaining a fixed offset between the semiconductor die and substrate. The fixed offset between the semiconductor die and substrate is determined by a height of the conductive pillars and a height of the conductive protrusions. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: JaeHyun Lee, KyungHoon Lee, SeongWon Park, KiYoun Jang
  • Patent number: 8399977
    Abstract: A method of producing a resin-sealed package is provided with: providing an electronic component which has a plurality of terminals on one face, a first support member and a second support member; temporarily fixing said electronic component to a surface of said first support member by a first adhesive agent layer, to face said terminals with said first support member; fixing said second support member having a second adhesive agent layer to said electronic component while interposing said electronic component between said first support member and said second support member to face said second adhesive agent layer with a back face side of said electronic component; resin sealing said electronic component between said first support member and said second support member; peeling said first support member and said first adhesive agent layer from said electronic component and a sealing resin; and stacking an insulating resin layer and a wiring layer which is electrically connected to said terminals of said electr
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 19, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yuji Kunimoto, Akihiko Tateiwa
  • Patent number: 8399300
    Abstract: A semiconductor device has a flipchip or PoP semiconductor die mounted to a die attach area interior to a substrate. The substrate has a contact pad area around the die attach area and flow control area between the die attach area and contact pad area. A first channel is formed in a surface of the substrate within the flow control area. The first channel extends around a periphery of the die attach area. A first dam material is formed adjacent to the first channel within the flow control area. An underfill material is deposited between the die and substrate. The first channel and first dam material control outward flow of the underfill material to prevent excess underfill material from covering the contact pad area. A second channel can be formed adjacent to the first dam material. A second dam material can be formed adjacent to the first channel.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 19, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungHoon Lee, KiYoun Jang, JoonDong Kim
  • Patent number: 8399966
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 19, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James