Insulative Mounting Semiconductor Device On Support (epo) Patents (Class 257/E21.505)
  • Patent number: 9698160
    Abstract: A method for transferring micro devices is provided. The method includes the following operations: providing a carrier substrate and forming micro devices on the carrier substrate; forming a fixing layer on the carrier substrate, in which the fixing layer is at least in contact with bottom parts of the micro devices; patterning the fixing layer to selectively expose a portion of the micro devices; providing a transfer device correspondingly located on the carrier substrate, and picking up the exposed micro devices by the transfer device; and providing a receiving substrate and transferring the exposed micro devices to the receiving substrate.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: July 4, 2017
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Tsung-Tien Wu, Kang-Hung Liu, Tsung-Yi Lin
  • Patent number: 9691726
    Abstract: A method includes forming a first composite wafer including molding a plurality of device dies and a plurality of through-vias in a first molding material, and forming redistribution lines on opposite sides of the first molding material. The redistribution lines are inter-coupled through the plurality of through-vias. The method further includes forming a second composite wafer including stacking a plurality of dies to form a plurality of die stacks, and molding the plurality of die stacks in a second molding material. The second molding material fills gaps between the plurality of die stacks. The first composite wafer is bonded to the second composite wafer to form a third composite wafer.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Da Cheng, Hsien-Wei Chen, Cheng-Lin Huang, Meng-Tse Chen, Chung-Shi Liu
  • Patent number: 9679867
    Abstract: A semiconductor device includes a low-adhesion film, a pair of substrates, and a metal electrode. The low-adhesion film has lower adhesion to metal than a semiconductor oxide film. The pair of substrates is provided with the low-adhesion film interposed therebetween. The metal electrode passes through the low-adhesion film and connects the pair of substrates, and includes, between the pair of substrates, a part thinner than parts embedded in the pair of substrates. A portion of the metal electrode embedded in one substrate is provided with a gap interposed between the portion and the low-adhesion film on the other substrate.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 13, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroaki Ashidate, Kazumasa Tanida
  • Patent number: 9676968
    Abstract: A heat resistant adhesive sheet is provided that does not easily develop deformation of an adhesive sheet due to heating. Such an adhesive sheet made by laminating an adhesive layer to a substrate is provided, characterized in that the substrate is heat shrinkable and the adhesive layer contains a (meth)acrylate copolymer, a photopolymerizable compound, a polyfunctional isocyanate curing agent, and a photopolymerization initiator and does not substantially contain a tackifying resin. This adhesive sheet is not deformed even when heated. Since the adhesive does not substantially contain a tackifying resin, softening of the adhesive layer does not occur even when the sheet is heated.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: June 13, 2017
    Assignee: DENKA COMPANY LIMITED
    Inventors: Gosuke Nakajima, Masanobu Kutsumi
  • Patent number: 9666376
    Abstract: A solid electrolytic capacitor that includes a valve action metal base, an insulating layer, a solid electrolyte layer, a carbon layer and an electrode layer sequentially formed in one of two parts of the valve action metal base. The electrode layer is formed from a conductive paste that includes at least a conductive filler, a thermosetting resin containing a phenoxy resin, and a curing agent.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: May 30, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Koutarou Mishima, Akihiro Nomura
  • Patent number: 9536805
    Abstract: A hybrid package having a processor module disposed on a substrate and an auxiliary module disposed on a patterned lid. The auxiliary module may be a memory module, a power management integrated circuit (PMIC) module, and/or other suitable module, that are located in the package along with the processor module. Having the auxiliary module in the package with the processor module reduces the noise at the solder bump between the processor module and the substrate. Having the auxiliary module in the package with the processor module also allows other modules to be added to the package without increasing the area of the package.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: January 3, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Siamak Fazelpour, Jiantao Zheng, Mario Francisco Velez, Sun Yun, Rajneesh Kumar, Houssam Wafic Jomaa
  • Patent number: 9458283
    Abstract: Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: October 4, 2016
    Assignee: INTEL CORPORATION
    Inventors: Dingying Xu, Nisha Ananthakrishnan, Hong Dong, Rahul N. Manepalli, Nachiket R. Raravikar, Gregory S. Constable
  • Patent number: 9419156
    Abstract: A package for holding a plurality of heterogeneous integrated circuits includes a first chip having a first conductive pad and a first substrate including a first semiconductor, and a second chip having a second conductive pad and a second substrate including a second semiconductor. The second semiconductor is different from the first semiconductor. The package also includes a molding structure in which the first chip and the second chip are embedded, a conductive structure over the first chip and conductively coupled to the first conductive pad and over the second chip and conductively coupled to the second conductive pad, and a passivation layer over the conductive structure. The passivation layer comprises an opening defined therein which exposes a portion of the second chip.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yu Lee, Chun-Hao Tseng, Jui Hsieh Lai, Tien-Yu Huang, Ying-Hao Kuo, Kuo-Chung Yee
  • Patent number: 9389362
    Abstract: Embodiments include a method for interconnecting components of an optical circuit. The method includes arranging the components on a support layer and embedding them within a material, such that portions of the material that is between the components contact the support layer. The obtained components are positioned with a certain inaccuracy with respect to ideal nominal positions thereof. Next, the support layer is removed to reveal one side of the components, on which side the components are level with said portions of said material. Positions of the components are identified and a set of optical polymer waveguides are adaptively fabricated, on the one side, so as for each of the fabricated polymer waveguides to optically connect subsets of two or more of the components, according to the identified positions of the components. The present invention is further directed to related optical circuits or electro-optical circuits of interconnected components.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Brunschwiler, Antonio La Porta, Bert J. Offrein, Jonas R. Weiss
  • Patent number: 9373569
    Abstract: A method of forming packaged semiconductor devices includes providing a lead frame sheet of flat no-lead lead frames having a semiconductor die on a die pad, terminals, and plastic encapsulation except on a back side of the sheet to provide an exposed thermal die pad and exposed back sides of the terminals. Partial sawing in saw lanes begins from the back side through the terminals terminating within the plastic encapsulation to provide exposed side walls of the terminals and of the plastic encapsulation. The exposed thermal pad and exposed back side of the terminals are all shorted together to form exposed electrically interconnected metal surfaces (interconnected surfaces). The interconnected surfaces are electroplated with a solder wetable metal or metal alloy plating layer. The interconnected surfaces are decoupled. A second sawing in the saw lanes finishes sawing through the plastic encapsulation to provide singulation, forming a plurality of packaged semiconductor devices.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 21, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATION
    Inventors: Reynaldo Corpuz Javier, Alok Kumar Lohia, Andy Quang Tran
  • Patent number: 9360623
    Abstract: A method of fabricating a heterogeneous semiconductor wafer includes depositing a III-V type semiconductor epitaxial layer on a first wafer having a semiconductor substrate. The first wafer is then bonded to a second wafer having a patterned silicon layer formed on a semiconductor substrate, wherein the III-V type semiconductor epitaxial layer is bonded to the patterned silicon layer of the second wafer. The semiconductor substrate associated with the first wafer is removed to expose the III-V type semiconductor epitaxial layer.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 7, 2016
    Assignee: The Regents of the University of California
    Inventors: John E. Bowers, Jock Bovington
  • Patent number: 9362247
    Abstract: A method of ultrasonically bonding semiconductor elements includes the steps of: (a) aligning surfaces of a plurality of first conductive structures of a first semiconductor element to respective surfaces of a plurality of second conductive structures of a second semiconductor element, wherein the surfaces of each of the plurality of first conductive structures and the plurality of second conductive structures include aluminum; and (b) ultrasonically bonding ones of the first conductive structures to respective ones of the second conductive structures.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: June 7, 2016
    Assignee: Kulicke and Soffa Industries, Inc.
    Inventors: Robert N. Chylak, Dominick A. DeAngelis
  • Patent number: 9300222
    Abstract: A power converter sub-assembly/module includes a power switching assemblage defining a cavity within which can be mounted a driver IC. The power switching assemblage includes a load inductor component stack attached to a power transistor block and an interconnect spacer block, defining a cavity between the two blocks. The power transistor block includes a high and low side FETs attached side-by-side to a switch-node metal carrier that includes an attach-surface opposite the FETs. The power switching assemblage is mountable to an interconnect surface that includes connection pads VIN, VOUT, GND, HG (high-side gate) and LG low-side gate). For a module configuration, the power switching assemblage is combined with a driver IC that provides high (HG) and low (LG) gate driveā€”the power switching assemblage and the driver IC are mounted to a module interconnect substrate, with the driver IC mounted within the cavity of the power switching assemblage.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: March 29, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Ignatius Moss
  • Patent number: 9029928
    Abstract: A semiconductor device includes a wafer having a frontside and a backside. The wafer is formed from at least one integrated circuit chip having an electrical connection frontside co-planar with the wafer frontside and a backside co-planar with the wafer backside. A passive component including at least one conductive plate and a dielectric plate is positioned adjacent the integrated circuit chip. An encapsulation block embeds the integrated circuit chip and the passive component, the block having a frontside co-planar with the wafer frontside and a backside co-planar with the wafer backside. An electrical connection is made between the electrical connection frontside and the passive component. That electrical connection includes connection lines placed on the wafer frontside and wafer backside. The electrical connection further includes at least one via passing through the encapsulation block.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 12, 2015
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Laurent Marechal, Yvon Imbs, Romain Coffy
  • Patent number: 8994162
    Abstract: A single metal layer tape substrate includes a patterned metal layer affixed to a patterned dielectric layer. The dielectric layer is patterned to provide openings exposing lands and bond sites on bond fingers on the land side of the metal layer. The metal layer is patterned to provide circuit traces as appropriate for interconnection with the die (on the die attach side) and with other elements (such as other packages in a multi-package module). Interconnection with a die is made by wire bonding to exposed traces on a die attach side of the metal layer, and bond fingers and lands for access to testing the package are provided on the opposite (land) side of the metal layer.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Marcos Karnezos
  • Patent number: 8980689
    Abstract: Provided is a method of fabricating a multi-chip stack package. The method includes preparing single-bodied lower chips having a single-bodied lower chip substrate having a first surface and a second surface disposed opposite the first surface, bonding unit package substrates onto the first surface of the single-bodied lower chip substrate to form a single-bodied substrate-chip bonding structure, separating the single-bodied substrate-chip bonding structure into a plurality of unit substrate-chip bonding structures, preparing single-bodied upper chips having a single-bodied upper chip substrate, bonding the plurality of unit substrate-chip bonding structures onto a first surface of the single-bodied upper chip substrate to form a single-bodied semiconductor chip stack structure, and separating the single-bodied semiconductor chip stack structure into a plurality of unit semiconductor chip stack structures.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-Soo Kwak, Cha-Jea Jo, Tae-Je Cho, Sang-Uk Han
  • Patent number: 8975734
    Abstract: A semiconductor package without a chip carrier formed thereon and a fabrication method thereof. A metallic carrier is half-etched to form a plurality of grooves and metal studs corresponding to the grooves. The grooves are filled with a first encapsulant and a plurality of bonding pads are formed on the metal studs. The first encapsulant is bonded with the metal studs directly. Each of the bonding pads and one of the metal studs corresponding to the bonding pad form a T-shaped structure. Therefore, bonding force between the metal studs and the first encapsulant is enhanced such that delamination is avoided. Die mounting, wire-bonding and molding processes are performed subsequently. Since the half-etched grooves are filled with the first encapsulant, the drawback of having pliable metallic carrier that makes transportation difficult to carry out as encountered in prior techniques is overcome, and the manufacturing cost is educed by not requiring the use of costly metals as an etching resist layer.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 10, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8970049
    Abstract: A module having multiple die includes a first die on a first substrate and an inverted second package stacked over the first die, with, where necessary, provision is made for a standoff between the second package and the first die. Also, methods for making the module include steps of providing a first package having a first die attached onto an upward facing side of a first package substrate, and stacking an inverted second package over the die on the first package, provision being made where necessary for a standoff between the second package and the first package die to avoid damaging impact between the downward-facing side of the second package and wire bonds connecting the first die to the first package substrate.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 3, 2015
    Assignee: ChipPAC, Inc.
    Inventor: Marcos Karnezos
  • Patent number: 8963323
    Abstract: An apparatus 100 comprising a first substrate 130 having a first surface 125, a second substrate 132 having a second surface 127 facing the first surface and an array 170 of metallic raised features 170 being located on the first surface, each raised feature being in contact with the first surface to the second surface, a portion of the raised features being deformed via a compressive force 305.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 24, 2015
    Assignee: Alcatel Lucent
    Inventors: Roger Scott Kempers, Shankar Krishnan, Alan Michael Lyons, Todd Richard Salamon
  • Patent number: 8946885
    Abstract: A semiconductor arrangement includes a ceramic mount and at least one semiconductor component fixed-to the ceramic mount. The ceramic mount includes a first section, and the first section is electrically conductive.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 3, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Andreas Krauss
  • Patent number: 8940586
    Abstract: The present disclosure relates to a bump processing method and/or resulting MEMS-CMOS structure, in which one or more anti-stiction bumps are formed within a substrate prior to the formation of a cavity in which the one or more anti-stiction bumps reside. By forming the one or more anti-stiction bumps prior to a cavity, the sidewall angle and the top critical dimension (i.e., surface area) of the one or more anti-stiction bumps are reduced. The reduction in sidewall angle and critical dimension reduces stiction between a substrate and a moveable part of a MEMS device. By reducing the size of the anti-stiction bumps through a processing sequence change, lithographic problems such as reduction of the lithographic processing window and bump photoresist collapse are avoided.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chris Kuo, Lee-Chuan Tseng
  • Patent number: 8936966
    Abstract: Methods of packaging semiconductor devices are disclosed. In one embodiment, a packaging method for semiconductor devices includes providing a workpiece including a plurality of first dies, and coupling a plurality of second dies to the plurality of first dies. The plurality of second dies and the plurality of first dies are partially packaged and separated. Top surfaces of the second dies are coupled to a carrier, and the partially packaged plurality of second dies and plurality of first dies are fully packaged. The carrier is removed, and the fully packaged plurality of second dies and plurality of first dies are separated.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Pin Hung, Jing-Cheng Lin
  • Patent number: 8927344
    Abstract: Various semiconductor chip package substrates with reinforcement and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a package substrate that has a first side and a second side opposite to the first side. The first side has a central area adapted to receive a semiconductor chip. A solder reinforcement structure is formed on the first side of the package substrate outside of the central area to resist bending of the package substrate.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 6, 2015
    Assignee: ATI Technologies ULC
    Inventors: Roden Topacio, Adam Zbrzezny
  • Patent number: 8921824
    Abstract: A three-dimensional graphene structure, and methods of manufacturing and transferring the same including forming at least one layer of graphene having a periodically repeated three-dimensional shape. The three-dimensional graphene structure is formed by forming a pattern having a three-dimensional shape on a surface of a substrate, and forming the three-dimensional graphene structure having the three-dimensional shape of the pattern by growing graphene on the substrate on which the pattern is formed. The three-dimensional graphene structure is transferred by injecting a gas between the three-dimensional graphene structure and the substrate, separating the three-dimensional graphene structure from the substrate by bonding the three-dimensional graphene structure to an adhesive support, combining the three-dimensional graphene structure with an insulating substrate, and removing the adhesive support.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeon-jin Shin, Jae-young Choi, Ji-hoon Park, Joung-real Ahn
  • Patent number: 8912646
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface. A first active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the first active layer and formed on the second surface of the insulating layer. A substrate having a first surface and a second surface, with a second active layer formed in the first surface, is provided such that the first active layer is coupled to the second surface of the substrate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 16, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Patent number: 8906740
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting an integrated circuit, having a device through via and a device interconnect, over a substrate with the device through via traversing the integrated circuit and the device interconnect attached to the device through via; attaching a conductive support over the substrate with the conductive support adjacent to the integrated circuit; providing a pre-formed interposer, having an interposer through via and a pre-attached interconnect, with the pre-attached interconnect attached to the interposer through via; mounting the pre-formed interposer over the integrated circuit and the conductive support with the pre-attached interconnect over the device through via; and forming an encapsulation over the substrate covering the integrated circuit, the conductive support, and partially covering the pre-formed interposer.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 9, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Chan Hoon Ko, Soo-San Park, YoungChul Kim
  • Patent number: 8871568
    Abstract: A method includes forming a dielectric layer over a substrate, forming an interconnect structure over the dielectric layer, and bonding a die to the interconnect structure. The substrate is then removed, and the dielectric layer is patterned. Connectors are formed at a surface of the dielectric layer, wherein the connectors are electrically coupled to the die.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ching Shih, Szu Wei Lu, Jing-Cheng Lin
  • Patent number: 8872333
    Abstract: A millimeter wave integrated waveguide interface package device may comprise: (1) a package comprising a printed wiring board (PWB) and a monolithic microwave integrate circuit (MMIC), wherein the MMIC is in communication with the PWB; and (2) a waveguide interface integrated with the package. The package may be adapted to operate at high frequency and high power, where high frequency includes frequencies greater than about 5 GHz, and high power includes power greater than about 0.5 W.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 28, 2014
    Assignee: ViaSat, Inc.
    Inventors: Noel A Lopez, Michael R Lyons, Dave Laidig, Kenneth V Buer
  • Patent number: 8865507
    Abstract: Semiconductor devices having three dimensional (3D) architectures and methods form making such devices are provided. In one aspect, for example, a method for making a semiconductor device can include forming a device layer on a front side of a semiconductor layer that is substantially defect free, bonding a carrier substrate to the device layer, processing the semiconductor layer on a back side opposite the device layer to form a processed surface, and bonding a smart substrate to the processed surface. In some aspects, the method can also include removing the carrier substrate from the semiconductor layer to expose the device layer.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: October 21, 2014
    Assignee: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Leonard Forbes
  • Patent number: 8835218
    Abstract: Layers suitable for stacking in three dimensional, multi-layer modules are formed by interconnecting a ball grid array electronic package to an interposer layer which routes electronic signals to an access plane. The layers are under-filled and may be bonded together to form a stack of layers. The leads on the access plane are interconnected among layers to form a high-density electronic package.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: September 16, 2014
    Assignee: Aprolase Development Co., LLC
    Inventors: Keith Gann, W. Eric Boyd
  • Patent number: 8765529
    Abstract: A semiconductor device includes a semiconductor chip, a connection electrode including a first land electrode electrically coupled with the semiconductor chip, and a through electrode formed on an upper surface of the first land electrode to be electrically coupled with the first land electrode using a stud bump, and a sealing resin, through which the connection electrode passes, for sealing the semiconductor chip.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: July 1, 2014
    Assignee: Spansion LLC
    Inventor: Naomi Masuda
  • Patent number: 8759157
    Abstract: A semiconductor device with efficient heat dissipating structures is disclosed. The semiconductor device includes a first semiconductor chip that is flip-chip mounted on a first substrate, a heat absorption portion that is formed between the first semiconductor chip and the first substrate, an outer connection portion that connects the first semiconductor chip to an external device and a heat conduction portion formed between the heat absorption portion and the outer connection portion to dissipate heat generated by the first semiconductor chip.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: June 24, 2014
    Assignee: Spansion LLC
    Inventor: Masanori Onodera
  • Patent number: 8742568
    Abstract: A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Masayoshi Kondo, Natsuki Makino, Daisuke Fujiwara, Yuka Ito
  • Patent number: 8735219
    Abstract: A method of integrating a first substrate having a first surface with a first insulating material and a first contact structure with a second substrate having a second surface with a second insulating material and a second contact structure. The first insulating material is directly bonded to the second insulating material. A portion of the first substrate is removed to leave a remaining portion. A third substrate having a coefficient of thermal expansion (CTE) substantially the same as a CTE of the first substrate is bonded to the remaining portion. The bonded substrates are heated to facilitate electrical contact between the first and second contact structures. The third substrate is removed after heating to provided a bonded structure with reliable electrical contacts.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Ziptronix, Inc.
    Inventors: Paul M. Enquist, Gaius Gillman Fountain
  • Patent number: 8735224
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a terminal having a top with a depression; applying a dielectric material in the depression, the dielectric material having a gap formed therein and exposing a portion of the top therefrom; forming a trace within the gap and in direct contact with the top, the trace extending laterally over an upper surface of the dielectric material; and connecting an integrated circuit to the terminal through the trace.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 27, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Zigmund Ramirez Camacho
  • Patent number: 8722460
    Abstract: In a method of fabricating an integrated circuit device having a three-dimensional stacked structured, the step of fixing many chip-shaped semiconductor circuits to a support substrate or a circuit layer with a predetermined layout can be performed easily and efficiently with a desired accuracy. Temporary adhesion portions 12b of semiconductor chips 13 are temporarily adhered to corresponding temporary adhesion regions 72a of a carrier substrate 73a by way of sticky material. The carrier substrate 73a is then pressed toward a support substrate or a desired circuit layer, thereby contacting connecting portions 12 of the chips 13 on the carrier substrate 73a with corresponding predetermined positions on the support substrate or a circuit layer. Thereafter, by fixing the connecting portions 12 to the predetermined positions, the chips 13 are attached to the support substrate or the circuit layer with a desired layout.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: May 13, 2014
    Inventor: Mitsumasa Koyanagi
  • Publication number: 20140117503
    Abstract: Compositions suitable for temporarily bonding two surfaces, such as a wafer active side and a substrate, are disclosed. Methods of temporarily bonding two surfaces, such as the active side of a wafer and a substrate using the compositions disclosed herein are also provided.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Mark S. OLIVER, Michael K. GALLAGHER
  • Patent number: 8698291
    Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
  • Patent number: 8692265
    Abstract: A lighting device is provided. The lighting device comprises a first substrate and a plurality of second substrates. The plurality of second substrates are separately and electrically connected to the first substrate and comprise a light emitting device.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: April 8, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jun Seok Park
  • Patent number: 8686545
    Abstract: A semiconductor device according to the present disclosure includes: a plate (13) having a through hole (15); a metal column (16) fixed to the through hole with an insulating member (17) interposed therebetween, and having a projection projecting from the upper surface of the plate; a semiconductor element (12) fixed to the projection; a lead frame (11) electrically connected to the semiconductor element; and a package (14) covering the semiconductor element, and also covering at least part of each of the plate, the metal column, and the lead frame. The lower surface (13b) of the plate is exposed from the package.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: April 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Masanori Minamio, Tatsuo Sasaoka
  • Patent number: 8686550
    Abstract: A pressure sensor package is provided that reduces the occurrence of micro gaps between molding material and metal contacts that can store high-pressure air. The present invention provides this capability by reducing or eliminating interfaces between package molding material and metal contacts. In one embodiment, a control die is electrically coupled to a lead frame and then encapsulated in molding material, using a technique that forms a cavity over a portion of the control die. The cavity exposes contacts on the free surface of the control die that can be electrically coupled to a pressure sensor device using, for example, wire bonding techniques. In another embodiment, a region of a substrate can be encapsulated in molding material, using a technique that forms a cavity over a sub-portion of the substrate that includes contacts. A pressure sensor device can be electrically coupled to the exposed contacts.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, Alexander M. Arayata, Philip H. Bowles, Stephen R. Hooper
  • Patent number: 8642465
    Abstract: Reliable electrical contact is made with electronic components and effective electrical isolation is produced between the top and bottom of the electronic components. An electronic component is arranged inside a window in a first layer on a substrate. Next, a second layer is put on such that contact areas on the component and contact points on the first layer are freely accessible. Electrical contacts and electrical connecting lines are produced by electrodeposition. The second layer is used to produce bridges over an interval range between the electronic component and the first layer. The bridges have connecting lines formed on them. The second layer can be removed again. Radio-frequency modules can be produced in compact fashion and can be combined with audio-frequency components.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gernot Schimetta, Maximilian Tschemitz
  • Publication number: 20140029210
    Abstract: A surface-mount package structure for reducing the ingress of moisture and gases thereto is disclosed. The surface-mount structure includes a sub-module having a dielectric layer, semiconductor devices attached to the dielectric layer, a first level interconnect structure electrically coupled to the semiconductor devices, and a second level I/O connection electrically coupled to the first level interconnect and formed on the dielectric layer, with the second level I/O connection configured to connect the sub-module to an external circuit. The semiconductor devices of the sub-module are attached to a substrate structure, with a dielectric material positioned between the dielectric layer and the substrate structure to fill in gaps in the surface-mount structure.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventors: Arun Virupaksha Gowda, Paul Alan McConnelee, Ri-an Zhao, Shakti Singh Chauhan
  • Patent number: 8637984
    Abstract: A semiconductor device has a substrate having a first plurality of substrate bonding pads disposed on a bonding surface thereof. A plurality of semiconductor dice is disposed on the substrate. Each die of the plurality of dice has a first plurality of die bonding pads arranged along at least one first edge thereof. A plurality of bonding pillars extends substantially vertically from the substrate bonding pads. Each bonding pillar electrically connects one of the first plurality of substrate bonding pads to a corresponding one of the first plurality of die bonding pads. A method of assembling a semiconductor device is also described.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: January 28, 2014
    Assignee: Mosaid Technologies Incorporated
    Inventor: Roland Schuetz
  • Publication number: 20140021264
    Abstract: In various aspects of the disclosure, a chip card module is provided. The chip card module may include a flexible substrate having a metallization on a first and second major surface, or side, thereof. An integrated circuit affixed to the second side is oriented with chip pads facing away from the substrate. Wire bonds may connect the chip pads to the metallizations.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: Infineon Technologies AG
    Inventors: Frank PUESCHNER, Jens POHL, Juergen HOEGERL, Wolfgang SCHINDLER
  • Patent number: 8629537
    Abstract: An integrated circuit package system is provided forming a die support system from a padless lead frame having die supports with each substantially equally spaced from another, and attaching an integrated circuit die having a peripheral area on the die supports.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry D. Bathan, Arnel Trasporto, Jeffrey D. Punzalan
  • Patent number: 8623704
    Abstract: An adhesive/spacer structure (52, 52A, 60) is used to adhere first and second die (14, 18) to one another at a chosen separation in a multiple-die semiconductor chip package (56). The first and second die define a die bonding region (38) therebetween. The adhesive/spacer structure may comprise a plurality of spaced-apart adhesive/spacer islands (52, 52A) securing the first and second die to one another at a chosen separation (53). The adhesive/spacer structure may also secure the first and second die to one another to occupy about 1-50% of the die bonding region.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: January 7, 2014
    Assignee: CHIPPAC, Inc.
    Inventors: Sang Ho Lee, Jong Wook Ju, Hyeog Chan Kwon
  • Publication number: 20140001645
    Abstract: A system and method for stacking semiconductor devices in three dimensions is provided. In an embodiment two or more semiconductor dies are attached to a carrier and encapsulated. Connections of the two or more semiconductor dies are exposed, and the two or more semiconductor dies may be thinned to form connections on an opposite side. Additional semiconductor dies may then be placed in either an offset or overhanging position.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 2, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chen-Hua Yu
  • Publication number: 20140003179
    Abstract: An electronic system, a reduced-noise reference voltage platform for a voltage converter device, and a method of manufacture of a reduced-noise reference voltage platform for a voltage converter device are disclosed. For example, the reduced-noise reference voltage (e.g., ground) platform includes a first conductor unit, a second conductor unit, and an insulator unit interposed between a first surface of the first conductor unit and a first surface of the second conductor unit. The reduced-noise reference voltage platform also includes a phase terminal connected to the first conductor unit, and a reference voltage (e.g., ground) terminal connected to the second conductor unit, wherein a second surface of the second conductor unit forms a platform coupled to the reference voltage (e.g., ground).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: INTERSIL AMERICAS LLC
    Inventor: Dev Alok Girdhar
  • Publication number: 20140001622
    Abstract: A chip package is provided, the chip package including: a chip carrier; a chip disposed over and electrically connected to a chip carrier top side; an electrically insulating material disposed over and at least partially surrounding the chip; one or more electrically conductive contact regions formed over the electrically insulating material and in electrical connection with the chip; a further electrically insulating material disposed over a chip carrier bottom side; wherein an electrically conductive contact region on the chip carrier bottom side is released from the further electrically insulating material.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Michael Bauer, Alfred Haimerl, Angela Kessler, Wolfgang Schober