Air Gaps (epo) Patents (Class 257/E21.573)
  • Patent number: 8101448
    Abstract: A method manufactures a gas sensor integrated on a semiconductor substrate. The method includes: realizing a first plurality of openings in the semiconductor substrate; realizing a crystalline silicon membrane suspended on the semiconductor substrate, forming an insulating cavity buried in the substrate; realizing a second plurality of openings in the semiconductor substrate, so as to totally suspend on the semiconductor substrate the crystalline silicon membrane; realizing, through a thermal oxidation process of the totally suspended crystalline silicon membrane, a suspended dielectric membrane; realizing, through selective photolithography, a heating element; realizing, through selective photolithography, electrodes and a pair of electric contacts; and selectively realizing, above the electrodes, a sensitive element by compacting layers of metallic oxide through a sintering process generated in the gas sensor by connecting the electrodes to a voltage generator.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 24, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Crocifisso Marco Antonio Renna, Alessandro Auditore, Alessio Romano, Sebastiano Ravesi
  • Patent number: 8097949
    Abstract: The present invention relates to a method for fabricating an interconnect stack of an integrated-circuit device. Air gaps are fabricated in the interconnect stack on one or more interconnect levels. The method comprises forming local etch vias (216, 218) between a lower etch-barrier layer (236) and an upper etch-barrier layer (211) on top of an upper-intermediate interconnect level (224). Lateral inhomogeneities of the dielectric constant on the upper-intermediate interconnect level are removed in comparison with prior-art devices. For in the finished interconnect stack local variations in the dielectric permittivity can only occur at the (former) etch vias, which are either visible by the presence of air cavities or hardly visible due to a later filling with the dielectric material of the next interlevel dielectric layer.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 17, 2012
    Assignees: NXP B.V., Commissariat a l'Energie Atomique
    Inventors: Laurent Gosset, Jean Raymond Jacques Marie Pontcharra, Frederic Gaillard
  • Publication number: 20120003809
    Abstract: The present invention discloses an isolation process in a semiconductor device. In the present invention, when a SPT process is used for isolation, ISO cut patterns for cutting spacers for SPT in the unit of a specific length are first formed, and ISO partition patterns defining partition regions for forming the spacers are then formed over the ISO cut patterns. Accordingly, there are advantages in that the SPT process can be simplified and costs can be reduced according to the simplified process because the isolation process is simplified.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 5, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Young Deuk KIM
  • Publication number: 20110309426
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K. Kai, Takashi W. Orimoto, George Matamis, Henry Chien
  • Publication number: 20110309430
    Abstract: High-density semiconductor memory is provided with enhancements to gate-coupling and electrical isolation between discrete devices in non-volatile memory. The intermediate dielectric between control gates and charge storage regions is varied in the row direction, with different dielectric constants for the varied materials to provide adequate inter-gate coupling while protecting from fringing fields and parasitic capacitances. Electrical isolation is further provided, at least in part, by air gaps that are formed in the column (bit line) direction and/or air gaps that are formed in the row (word line) direction.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 22, 2011
    Inventors: Vinod Robert Purayath, George Matamis, Henry Chien, James Kai, Yuan Zhang
  • Publication number: 20110309425
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Electrical isolation between adjacent active areas of a substrate can be provided, at least in part, by bit line air gaps that are elongated in a column direction between the active areas. At least one cap is formed over each isolation region, at least partially overlying air to provide an upper endpoint for the corresponding air gap. The caps may be formed at least partially along the sidewalls of adjacent charge storage regions. In various embodiments, selective growth processes are used to form capping strips over the isolation regions to define the air gaps. Word line air gaps that are elongated in a row direction between adjacent rows of storage elements are also provided.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 22, 2011
    Inventors: Vinod Robert Purayath, George Matamis, Eli Harari, Hiroyuki Kinoshita, Tuan Pham
  • Publication number: 20110303967
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Electrical isolation can be provided, at least in part, by bit line air gaps that are elongated in a column direction and/or word line air gaps that are elongated in a row direction. The bit line air gaps may be formed in the substrate, extending between adjacent active areas of the substrate, as well as above the substrate surface, extending between adjacent columns of non-volatile storage elements. The word line air gaps may be formed above the substrate surface, extending between adjacent rows of non-volatile storage elements.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Inventors: Eli Harari, Tuan Pham, Yupin Fong, Vinod Robert Purayath
  • Patent number: 8048760
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a structure includes a dielectric material and a void below a surface of a substrate. The structure further includes a doped dielectric material over the dielectric material, over the first void, wherein at least a portion of the dielectric material is between at least a portion of the substrate and at least a portion of the doped dielectric material. Other embodiments are described and claimed.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 1, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventors: Bishnu Prasanna Gogoi, Michael Albert Tischler
  • Patent number: 8026150
    Abstract: A method of manufacturing a semiconductor device, including an interlayer insulating layer having a dielectric constant of about 1, includes at least one of hydrophobically modifying an interlayer insulating film for insulating lines from each other, before forming air gaps in the interlayer insulating film, and hydrophobically modifying the lines, after forming the air gaps in the interlayer insulating film.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 27, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Reiko Sasahara, Jun Tamura, Shigeru Tahara
  • Patent number: 8022501
    Abstract: The present invention relates to a semiconductor device and a method for isolating the same. The semiconductor device includes: a silicon substrate provided with a trench including at least one silicon pillar at a bottom portion of the trench, wherein the silicon pillar become sidewalls of micro trenches; and a device isolation layer selectively and partially filled into the plurality of micro trenches.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: September 20, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung-Ho Pyi
  • Publication number: 20110223739
    Abstract: A substrate having buried address lines and a first dielectric layer is provided. A conductive electrode is formed in the first conductive layer. A top portion of the conductive electrode is exposed. A second dielectric layer is deposited on surface of the exposed top portion. The second dielectric layer defines a recess around the top portion. A third dielectric layer is deposited over the second dielectric layer. A portion of the third dielectric layer and a portion of the second dielectric layer are removed, thereby exposing a top surface of the top portion of the conductive electrode. The top portion of the conductive electrode is salicidized to form a heating stem. The remaining third dielectric layer is selectively removed from the recess. A phase-change material layer covers the heating stem and the second dielectric layer. The phase-change material layer is etched, thereby forming a phase-change storage cap.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Inventor: Li-Shu Tu
  • Patent number: 8013364
    Abstract: A structure having air gaps between interconnects is disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Publication number: 20110189833
    Abstract: Provided is a silica-based film forming material for formation of air gaps, the material being capable of forming air gaps without employing a CVD method. A silica-based film forming material for formation of air gaps including (a) a certain siloxane polymer, (b) an alkanolamine, and (c) an organic solvent is used when a silica-based film is formed with a spin coating method. According to this silica-based film forming material for formation of air gaps, air gaps with a great degree of opening can be formed even when coated with a spin coating method, without filling the recessed parts.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: TOKYO OHKA KOGYO CO., LTD.
    Inventor: Yoshihiro SAWADA
  • Patent number: 7985654
    Abstract: A key hole structure and method for forming a key hole structure to form a pore in a memory cell. The method includes forming a first dielectric layer on a semiconductor substrate having an electrode formed therein, forming an isolation layer on the first dielectric layer, forming a second dielectric layer on the isolation layer, and forming a planarization stop layer on the second dielectric layer. The method further includes forming a via to extend to the first dielectric layer and recessing the isolation layer and the stop layer with respect to the second dielectric layer, depositing a conformal film within via and over the stop layer, forming a key hole within the conformal film at a center region of the via such that a tip of the key hole is disposed at an upper surface of the second dielectric layer, and planarizing the conformal film to the stop layer.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Yu Zhu
  • Patent number: 7977239
    Abstract: A semiconductor device includes: a first insulation film formed over a semiconductor substrate; and a plurality of first interconnects selectively formed in the first insulation film. A plurality of gaps are formed in part of the first insulation film located between adjacent ones of the first interconnects so that each of the gaps has a cylindrical shape extending vertically to a principal surface of the semiconductor substrate. A cap film is formed of metal or a material containing metal in upper part of each of the first interconnects.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 12, 2011
    Assignee: Panasonic Corporation
    Inventor: Akihisa Iwasaki
  • Patent number: 7972886
    Abstract: Provided is a MEMS device which is robust to the misalignment and does not require the double-side wafer processing in the manufacture of a MEMS device such as an angular velocity sensor, an acceleration sensor, a combined sensor or a micromirror. After preparing a substrate having a space therein, holes are formed in a device layer at positions where fixed components such as a fixing portion, a terminal portion and a base that are fixed to a supporting substrate are to be formed, and the holes are filled with a fixing material so that the fixing material reaches the supporting substrate, thereby fixing the device layer around the holes to the supporting substrate.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: July 5, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Heewon Jeong, Yasushi Goto, Yuko Hanaoka, Tsukasa Fujimori
  • Publication number: 20110159649
    Abstract: Shallow trench isolation regions are positioned between NAND strings (or other types of non-volatile storage). These isolation regions include sections that form concave cut-out shapes in the substrate for the NAND string (or other types of non-volatile storage). The floating gates (or other charge storage devices) of the NAND strings hang over the sections of the isolation region that form the concave cut-out shape in the substrate. To manufacture such a structure, a two step etching process is used to form the isolation regions. In the first step, isotropic etching is used to remove substrate material in multiple directions, including removing substrate material underneath the floating gates. In the second step, anisotropic etching is used to create the lower part of the isolation region.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventor: Masaaki Higashitani
  • Publication number: 20110156201
    Abstract: An air gap fabricating method is provided. A patterned sacrificial layer is formed over a substrate, and the material of the patterned sacrificial layer includes a germanium-antimony-tellurium alloy. A dielectric layer is formed on the patterned sacrificial layer. A reactant is provided to react with the patterned sacrificial layer and the patterned sacrificial layer is removed to form a structure with an air gap disposed at the original position of the patterned sacrificial layer.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Wei-Su Chen
  • Publication number: 20110159663
    Abstract: A method for fabricating a semiconductor device using optical proximity correction to form high integrated cell patterns that are less prone to bridge defects. The method includes: obtaining a target layout of cell patterns, which form rows in a cell region, and peripheral patterns of a peripheral region; forming oblique patterns, which are alternately overlapped in the rows of the cell patterns, and a reverse pattern of the peripheral patterns; attaching spacers to sidewalls of the oblique patterns and the reverse pattern; forming first burying patterns between the oblique patterns and a second burying pattern around the reverse pattern by filling gaps between the spacers; and forming the cell patterns by cutting and dividing the middle portions of the oblique patterns and the first burying patterns, and setting the peripheral pattern with the second burying pattern by removing the reverse pattern.
    Type: Application
    Filed: June 23, 2010
    Publication date: June 30, 2011
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Chun Soo KANG
  • Publication number: 20110140216
    Abstract: The present disclosure relates to a method of fabricating a micromachined CMOS-MEMS integrated device as well as the devices/apparatus resulting from the method. In the disclosed method, the anisotropic etching (e.g., DRIE) for isolation trench formation on a MEMS element is performed on the back side of a silicon wafer, thereby avoiding the trench sidewall contamination and the screen effect of the isolation beams in a plasma etching process. In an embodiment, a layered wafer including a substrate and a composite thin film thereon is subjected to at least one (optionally at least two) back side anisotropic etching step to form an isolation trench (and optionally a substrate membrane). The method overcomes drawbacks of other microfabrication processes, including isolation trench sidewall contamination.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 16, 2011
    Applicant: Oakland University
    Inventor: Hongwei Qu
  • Patent number: 7947566
    Abstract: A semiconductor processing method includes providing a substrate, forming a plurality of semiconductor layers in the substrate, each of the semiconductor layers being distinct and selected from different groups of semiconductor element types. The semiconductor layers include a first, second, and third semiconductor layers. The method further includes forming a plurality of lateral void gap isolation regions for isolating portions of each of the semiconductor layers from portions of the other semiconductor layers.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Howard Hao Chen, Louis Lu-Chen Hsu, Jack Allan Mandelman
  • Publication number: 20110104866
    Abstract: Amorphous carbon material may be deposited with superior adhesion on dielectric materials, such as TEOS based silicon oxide materials, in complex semiconductor devices by applying a plasma treatment, such as an argon treatment and/or forming a thin adhesion layer based on silicon dioxide, carbon-doped silicon dioxide, prior to depositing the carbon material. Consequently, the hard mask concept based on amorphous carbon may be applied with an increased degree of flexibility, since a superior adhesion may allow a higher degree of flexibility in selecting appropriate deposition parameters for the carbon material.
    Type: Application
    Filed: October 6, 2010
    Publication date: May 5, 2011
    Inventors: Hartmut Ruelke, Volker Jaschke
  • Publication number: 20110076831
    Abstract: An integrated circuit structure is provided. The integrated circuit structure includes a semiconductor substrate; and a metallization layer over the semiconductor substrate. The metallization layer includes a conductive line; a low-k dielectric region adjacent and horizontally spaced apart from the conductive line by a space; and a filler dielectric material filling at least a portion of the space, wherein the filler dielectric material and the low-k dielectric region are formed of different materials. The integrated circuit structure further includes a capping layer over and adjoining the filler dielectric material and the low-k dielectric region. The filler dielectric material has a dielectric constant (k value) less than a k value of the capping layer.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 7910473
    Abstract: A semiconductor substrate having a through-silicon via with an air gap interposed between the through-silicon via and the semiconductor substrate is provided. An opening is formed partially through the semiconductor substrate. The opening is first lined with a liner and then the opening is filled with a conductive material. A backside of the semiconductor substrate is thinned to expose the liner, which is subsequently removed to form an air gap around the conductive material of the through-silicon via. A dielectric layer is formed of the backside of the semiconductor substrate to seal the air gap.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ming-Fa Chen
  • Patent number: 7879683
    Abstract: A method and apparatus for generating air gaps in a dielectric material of an interconnect structure. One embodiment provides a method for forming a semiconductor structure comprising depositing a first dielectric layer on a substrate, forming trenches in the first dielectric layer, filling the trenches with a conductive material, planarizing the conductive material to expose the first dielectric layer, depositing a dielectric barrier film on the conductive material and exposed first dielectric layer, depositing a hard mask layer over the dielectric barrier film, forming a pattern in the dielectric barrier film and the hard mask layer to expose selected regions of the substrate, oxidizing at least a portion of the first dielectric layer in the selected region of the substrate, removing oxidized portion of the first dielectric layer to form reversed trenches around the conductive material, and forming air gaps in the reversed trenches while depositing a second dielectric material in the reversed trenches.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: February 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Amir Al-Bayati, Alexandros T. Demos, Kang Sub Yim, Mehul Naik, Zhenjiang “David” Cui, Mihaela Balseanu, Meiyee (Maggie Le) Shek, Li-Qun Xia
  • Patent number: 7871894
    Abstract: A process for manufacturing a suspended structure of semiconductor material envisages the steps of: providing a monolithic body of semiconductor material having a front face; forming a buried cavity within the monolithic body, extending at a distance from the front face and delimiting, with the front face, a surface region of the monolithic body, said surface region having a first thickness; carrying out a thickening thermal treatment such as to cause a migration of semiconductor material of the monolithic body towards the surface region and thus form a suspended structure above the buried cavity, the suspended structure having a second thickness greater than the first thickness. The thickening thermal treatment is an annealing treatment.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Pietro Corona, Flavio Francesco Villa, Gabriele Barlocchi
  • Patent number: 7867870
    Abstract: A device isolation film in a semiconductor device and a method for forming the same are provided. The method includes etching a middle portion of a device isolation film having a deposition structure including a Spin-On-Dielectric (SOD) oxide film and a High Density Plasma (HDP) oxide film to form a hole and filling an upper portion of the hole with an oxide film having poor step coverage characteristics to form a second hole extending along the middle portion of the device isolation film. The second hole serves as a buffer for stress generated at the interface between an oxide film, which can be a device isolation film, and a silicon layer, which can be a semiconductor substrate, thereby increasing the operating current of a transistor and improving the electrical characteristics of the resulting device.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Bong Jang
  • Patent number: 7867890
    Abstract: The present invention provides a method of manufacturing a semiconductor device, which comprises steps of forming a plurality of wirings on a first insulating film formed on a semiconductor substrate so as to adjoin one another, forming a second insulating film on the first insulating film by a plasma CVD method and covering the wirings with the second insulating film in such a manner that air gaps are formed between the respective adjacent wirings, forming a third insulating film on the second insulating film by a high density plasma CVD method, and forming a fourth insulating film high in moisture resistance on the third insulating film.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: January 11, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Masaru Seto
  • Patent number: 7863072
    Abstract: A method for producing a micromechanical diaphragm sensor, and a micromechanical diaphragm sensor produced with the method. The micromechanical diaphragm sensor has at least one first diaphragm as well as a second diaphragm, which is disposed essentially on top of the first diaphragm. Furthermore, the micromechanical diaphragm sensor has a first cavity and a second cavity, which is essentially disposed above the first cavity.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: January 4, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Illing, Heribert Weber, Christoph Schelling, Heiko Stahl, Stefan Weiss
  • Patent number: 7863150
    Abstract: A structure and method to produce an airgap on a substrate having a dielectric layer with a pattern transferred onto the dielectric layer and a self aligned block out mask transferred on the dielectric layer around the pattern.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew Earl Colburn, Daniel C. Edelstein, Satya Venkata Nitta, Sampath Purushothaman, Shom Ponth
  • Publication number: 20100320436
    Abstract: Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jun Liu
  • Patent number: 7855123
    Abstract: A method for forming an air gap structure on a substrate is described. The method comprises depositing a sacrificial layer on a substrate, forming an adhesion-promoting layer between the sacrificial layer and the substrate, and depositing a capping layer over the sacrificial layer. The sacrificial layer and the capping layer are patterned and metalized. Thereafter, the sacrificial layer is decomposed and removed through the capping layer.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 21, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Eric M. Lee, Junjun Liu, Dorel I. Toma
  • Publication number: 20100308444
    Abstract: In order to protect IMD layers, particularly low-k dielectrics, a protection film is formed on the sidewall of an opening in the IMD layers prior to etching a trench in the underlying silicon substrate. After etching the trench, such as through a TMAH wet etch, at least part of the protection film can be removed. The protection film can be removed in an anisotropic etch process such that a portion of the protection film remains as a sidewall spacer on the sidewall of the opening within the IMD layers.
    Type: Application
    Filed: March 19, 2010
    Publication date: December 9, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bin-Yuan Hung, Sung-Hui Huang, Wen Ting Tsai, Dian-Hau Chen, Ching Wei Hsieh
  • Patent number: 7843073
    Abstract: A semiconductor device includes: a first insulation film formed over a semiconductor substrate; and a plurality of first interconnects selectively formed in the first insulation film. A plurality of gaps are formed in part of the first insulation film located between adjacent ones of the first interconnects so that each of the gaps has a cylindrical shape extending vertically to a principal surface of the semiconductor substrate. A cap film is formed of metal or a material containing metal in upper part of each of the first interconnects.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: November 30, 2010
    Assignee: Panasonic Corporation
    Inventor: Akihisa Iwasaki
  • Patent number: 7833890
    Abstract: Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, June-mo Koo, Seung-hwan Song, Suk-pil Kim, Yoon-dong Park, Jong-jin Lee
  • Patent number: 7825019
    Abstract: A semiconductor structure and a method for forming the same. The structure includes (a) a substrate which includes semiconductor devices and (b) a first ILD (inter-level dielectric) layer on top of the substrate. The structure further includes N first actual metal lines in the first ILD layer, N being a positive integer. The N first actual metal lines are electrically connected to the semiconductor devices. The structure further includes first trenches in the first ILD layer. The first trenches are not completely filled with solid materials. If the first trenches are completely filled with first dummy metal lines, then (i) the first dummy metal lines are not electrically connected to any semiconductor device and (ii) the N first actual metal lines and the first dummy metal lines provide an essentially uniform pattern density of metal lines across the first ILD layer.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Stephan Grunow, Kaushik A. Kumar, Kevin Shawn Petrarca, Vidhya Ramachandran
  • Publication number: 20100273308
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a structure includes a dielectric material and a void below a surface of a substrate. The structure further includes a doped dielectric material over the dielectric material, over the first void, wherein at least a portion of the dielectric material is between at least a portion of the substrate and at least a portion of the doped dielectric material. Other embodiments are described and claimed.
    Type: Application
    Filed: July 9, 2010
    Publication date: October 28, 2010
    Inventors: Bishnu Prasanna Gogoi, Michael Albert Tischler
  • Patent number: 7811848
    Abstract: A method for the formation of buried cavities within a semiconductor body envisages the steps of: providing a wafer having a bulk region made of semiconductor material; digging, in the bulk region, trenches delimiting between them walls of semiconductor material; forming a closing layer for closing the trenches in the presence of a deoxidizing atmosphere so as to englobe the deoxidizing atmosphere within the trenches; and carrying out a thermal treatment such as to cause migration of the semiconductor material of the walls and to form a buried cavity. Furthermore, before the thermal treatment is carried out, a barrier layer that is substantially impermeable to hydrogen is formed on the closing layer on top of the trenches.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: October 12, 2010
    Assignee: STMicroelectronics S.R.L.
    Inventors: Gabriele Barlocchi, Pietro Corona, Dino Faralli, Flavio Francesco Villa
  • Publication number: 20100248443
    Abstract: A method for forming an air gap structure on a substrate is described. The method comprises depositing a sacrificial layer on a substrate, forming an adhesion-promoting layer between the sacrificial layer and the substrate, and depositing a capping layer over the sacrificial layer. The sacrificial layer and the capping layer are patterned and metalized. Thereafter, the sacrificial layer is decomposed and removed through the capping layer.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Eric M. LEE, Junjun LIU, Dorel I. TOMA
  • Publication number: 20100237459
    Abstract: A process for manufacturing an SOI wafer, including the steps of: forming, in a wafer of semiconductor material, cavities delimiting structures of semiconductor material; thinning out the structures through a thermal process; and completely oxidizing the structures.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Flavio VILLA, Gabriele Barlocchi, Pietro Corona
  • Patent number: 7777295
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a structure includes a dielectric material and a void below a surface of a substrate. The structure further includes a doped dielectric material over the dielectric material, over the first void, wherein at least a portion of the dielectric material is between at least a portion of the substrate and at least a portion of the doped dielectric material. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: August 17, 2010
    Assignee: HVVI Semiconductors, Inc.
    Inventors: Bishnu Prasanna Gogoi, Michael Albert Tischler
  • Patent number: 7772706
    Abstract: A spacer is adjacent to a conductive line. Vias that do not completely land on the conductive line land on the spacer and do not punch through into a volume below the spacer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: August 10, 2010
    Assignee: Intel Corporation
    Inventors: Sridhar Balakrishnan, Boyan Boyanov
  • Patent number: 7754578
    Abstract: A process for manufacturing an SOI wafer, including the steps of: forming, in a wafer of semiconductor material, cavities delimiting structures of semiconductor material; thinning out the structures through a thermal process; and completely oxidizing the structures.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 13, 2010
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Flavio Villa, Gabriele Barlocchi, Pietro Corona
  • Publication number: 20100163974
    Abstract: A method for fabricating a semiconductor device including a vertical channel transistor includes providing a substrate including a semiconductor pillar, forming a gate electrode surrounding the semiconductor pillar, forming an impurity region for a bit line by doping impurities into the substrate and forming a device isolation trench by etching a portion of the substrate including the impurity region to a certain depth, thereby defining the bit line, wherein the impurity doping is performed with given concentration so as to form the impurity region under the semiconductor pillar.
    Type: Application
    Filed: June 26, 2009
    Publication date: July 1, 2010
    Inventor: Seung-Chul Oh
  • Patent number: 7741211
    Abstract: A semiconductor device can include a first interlayer dielectric layer disposed on a substrate, and an air gap defined in a portion of the first interlayer dielectric layer. The air gap can be formed within trenches etched into the first interlayer dielectric layer. An etch stop layer is disposed on the first interlayer dielectric layer and the air gap, and includes a hole communicating with the air gap.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 22, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jeong Yel Jang
  • Patent number: 7741228
    Abstract: After a first insulating film is formed on a substrate, a wiring groove is formed in the first insulating film, and then a wire is formed inside the wiring groove. Subsequently, a protection film is formed on the first insulating film and on the wire, and then a hard mask film is formed on the protection film. After that, the hard mask film is patterned. Subsequently, the protection film and the first insulating film are partially removed using the patterned hard mask film to form an air gap groove, and then a second insulating film is formed to close an upper portion of the air gap groove for forming an air gap.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 22, 2010
    Assignee: Panasonic Corporation
    Inventors: Akira Ueki, Takeshi Harada, Atsushi Ishii
  • Patent number: 7736948
    Abstract: Individual devices (100) are locally attached to a carrier substrate (10), so that they can be removed therefrom individually. This is achieved through the use of a patterned release layer, particularly a layer that is removable through decomposition into gaseous or vaporized decomposition products. The mechanical connection between the carrier substrate (10) and the individual devices (100) is provided by a bridging portion (43) of an adhesion layer (40).
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: June 15, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Greja Johanna Adriana Maria Verheijden, Theodorus Martinus Michielsen, Carel Van Der Poel, Cornelis Adrianus Henricus Antonius Mutsaers
  • Patent number: 7737020
    Abstract: Fluid-based dielectric material is used to backfill multiple patterned metal layers of an IC on a wafer. The patterned metal layers are fabricated using conventional CMOS techniques, and are IMD layers in particular embodiments. The dielectric material(s) are etched out of the IC to form a metal network, and fluid dielectric material precursor, such as a polyarylene ether-based resin, is applied to the wafer to backfill the metal network with low-k fluid-based dielectric material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: June 15, 2010
    Assignee: XILINX, Inc.
    Inventors: Jonathan Jung-Ching Ho, Hong-Tsz Pan
  • Publication number: 20100144112
    Abstract: Methods of forming air gaps between interconnects of integrated circuits and structures thereof are disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Application
    Filed: November 13, 2009
    Publication date: June 10, 2010
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Patent number: 7732322
    Abstract: In a first aspect, a first method of manufacturing a dielectric material with a reduced dielectric constant is provided. The first method includes the steps of (1) forming a dielectric material layer including a trench on a substrate; and (2) forming a cladding region in the dielectric material layer by forming a plurality of air gaps in the dielectric material layer along at least one of a sidewall and a bottom of the trench so as to reduce an effective dielectric constant of the dielectric material. Numerous other aspects are provided.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, Chih-Chao Yang