Including Different Types Of Peripheral Fets (epo) Patents (Class 257/E21.689)
  • Patent number: 7297598
    Abstract: A method of making embedded non-volatile memory devices includes forming a first mask layer overlying a polycrystalline silicon layer in a cell region and a peripheral region on a semiconductor substrate wherein the first mask layer has a plurality of openings in the cell region. Portions of the polycrystalline silicon layer exposed in the plurality of openings can be oxidized to form a plurality of poly-oxide regions, and the first mask layer can then be removed. The polycrystalline silicon layer not covered by the plurality of poly-oxide regions can be etched to form a plurality of floating gates, wherein etching the polycrystalline silicon layer is accompanied by a sputtering. A dielectric layer can then be formed, as well as a second mask layer in both the cell region and the peripheral region. The second mask layer in the cell region is partially etched back after a photoresist layer is formed over the second mask layer in the peripheral region.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: November 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chang Liu, Chi-Hsin Lo, Shih-Chi Fu, Chia-Ta Hsieh, Wen-Ting Chu, Chia-Shiung Tsai
  • Patent number: 7294883
    Abstract: In a nonvolatile memory cell (110), the select gate transistor is formed as a buried channel transistor to increase the transistor current.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 13, 2007
    Assignee: ProMOS Technologies, Inc.
    Inventor: Yi Ding
  • Patent number: 7230294
    Abstract: A non-volatile memory device includes a substrate having a first region and a second region. A first gate electrode is disposed on the first region. A multi-layered charge storage layer is interposed between the first gate electrode and the substrate, the multi-layered charge storage including a tunnel insulation, a trap insulation, and a blocking insulation layer which are sequentially stacked. A second gate electrode is placed on the substrate of the second region, the second gate electrode including a lower gate and an upper gate connected to a region of an upper surface of the lower gate. A gate insulation layer is interposed between the second gate electrode and the substrate. The first gate electrode and the upper gate of the second gate electrode comprise a same material.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 12, 2007
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Chang-Hyun Lee, Kyu-Charn Park
  • Patent number: 7220642
    Abstract: A method of fabricating an electronic structure by providing a conductive layer, providing a dielectric layer over the conductive layer, providing first and second openings through the dielectric layer, providing first and second conductive bodies in the first and second openings respectively and in contact with the conductive layer, providing a memory structure over the first conductive body, providing a protective element over the memory structure, and undertaking processing on the second conductive body.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Igor Sokolik, Suzette Pangrle, Nicholas H. Tripsas, Jeffrey Shields
  • Patent number: 7193272
    Abstract: An isolation insulating film (5) of partial-trench type is selectively formed in an upper surface of a silicon layer (4). A power supply line (21) is formed above the isolation insulating film (5). Below the power supply line (21), a complete isolation portion (23) reaching an upper surface of an insulating film (3) is formed in the isolation insulating film (5). In other words, a semiconductor device comprises a complete-isolation insulating film which is so formed as to extend from the upper surface of the silicon layer (4) and reach the upper surface of insulating film (3) below the power supply line (21). With this structure, it is possible to obtain the semiconductor device capable of suppressing variation in potential of a body region caused by variation in potential of the power supply line.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: March 20, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Shigeto Maegawa, Toshiaki Iwamatsu, Takuji Matsumoto, Shigenobu Maeda, Yasuo Yamaguchi
  • Patent number: 7148103
    Abstract: Method of manufacturing a semiconductor device, including a first baseline technology electronic circuit (1) and a second option technology electronic circuit (2) as functional parts of a system-on-chip, by: manufacturing the first electronic circuit (1) with a first conductive layer (6; 6) that is patterned by subjecting an exposed layer portion thereof to Reactive Ion Etching (RIE); manufacturing the second electronic circuit (2) with a second conductive layer (6; 8) that is patterned by subjecting an exposed layer portion thereof to RIE; providing a tile structure (25; 26); providing the tile structure (25; 26) with at least one dummy conductive layer (6; 8) produced in the same processing step as the second conductive layer (6; 8); and exposing the dummy conductive layer (6; 8), at least partially, to obtain an exposed dummy layer portion, and RIE-etching of that exposed portion too when the second (6; 8) conductive layer is subjected to RIE.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: December 12, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Antonius Maria Petrus Johannes Hendriks, Guido Jozef Maria Dormans, Robertus Dominicus Joseph Verhaar
  • Patent number: 7132330
    Abstract: In a nonvolatile semiconductor memory device, an interpoly dielectric film composed of a nitrogen-introduced CVD SiO2 film is used as the gate oxide films of MOS transistors in a low voltage region of a peripheral circuit region. Gate oxide films of MOS transistors in a high voltage region of the peripheral circuit region are composed of a laminate of the SiO2 film and a nitrogen-introduced CVD SiO2 film. This arrangement improves transistor characteristics and reliability of gate oxide films of the peripheral circuit MOS transistors. It is also possible to realize miniaturization and low voltage operation. Further, simplification of the production process is made possible.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 7, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Kobayashi
  • Patent number: 7091089
    Abstract: In one embodiment, a method of forming a nanocluster charge storage device is provided. A first region of a semiconductor device is identified for locating one or more non-charge storage devices. A second region of the semiconductor device is identified for locating one or more charge storage devices. A gate oxide to be used as a gate insulator of the one or more non-charge storage devices is formed in the first region of the semiconductor device, and a nanocluster charge storage layer is subsequently formed in the second region of the semiconductor device. This may allow for improved integration of charge storage and non-charge storage devices. For example, since the nanoclusters are formed after formation of the gate oxide for the non-charge storage device, the nanoclusters are not exposed to an oxidizing ambient which could potentially reduce their size and increase the thickness of the underlying tunnel dielectric layer.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: August 15, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Robert F. Steimle
  • Patent number: 6815762
    Abstract: In a process for manufacturing a semiconductor integrated circuit device having a MISFET, in order that a shallow junction between the source/drain of the MISFET and a semiconductor substrate may be realized by reducing the number of heat treatment steps, all conductive films to be deposited on the semiconductor substrate are deposited at a temperature of 500° C. or lower at a step after the MISFET has been formed. Moreover, all insulating films to be deposited over the semiconductor substrate are deposited at a temperature of 500° C. or lower at a step after the MISFET has been formed.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: November 9, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Yoshida, Takahiro Kumauchi, Yoshitaka Tadaki, Kazuhiko Kajigaya, Hideo Aoki, Isamu Asano