Consisting Of Layered Constructions Comprising Conductive Layers And Insulating Layers, E.g., Planar Contacts (epo) Patents (Class 257/E23.019)
  • Patent number: 8446003
    Abstract: A semiconductor device includes a multilayer wiring substrate and a double-sided multi-electrode chip. The double-sided multi-electrode chip includes a semiconductor chip and has multiple electrodes on both sides of the semiconductor chip. The double-sided multi-electrode chip is embedded in the multilayer wiring substrate in such a manner that the double-sided multi-electrode chip is not exposed outside the multilayer wiring substrate. The electrodes of the double-sided multi-electrode chip are connected to wiring layers of the multilayer wiring substrate.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: DENSO CORPORATION
    Inventors: Atsushi Komura, Yasuhiro Kitamura, Nozomu Akagi, Yasutomi Asai
  • Publication number: 20130105979
    Abstract: Package on package (PoP) devices and methods of packaging semiconductor dies are disclosed. A PoP device includes a first packaged die and a second packaged die coupled to the first packaged die. Metal stud bumps are disposed between the first packaged die and the second packaged die. The metal stud bumps include a bump region and a tail region coupled to the bump region. The metal stud bumps are embedded in solder joints.
    Type: Application
    Filed: May 30, 2012
    Publication date: May 2, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Chien-Hsun Lee, Chen Yung Ching
  • Publication number: 20130105982
    Abstract: A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicants: STMICROELECTRONICS GRENOBLE2 SAS, STMICROELECTRONICS PTE LTD.
    Inventors: Yonggang Jin, Romain Coffy, Jerome Teysseyre
  • Patent number: 8426244
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 23, 2013
    Assignee: Sagacious Investment Group L.L.C.
    Inventor: Ernest E. Hollis
  • Patent number: 8426968
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 23, 2013
    Assignee: Sagacious Investment Group L.L.C.
    Inventor: Ernest E. Hollis
  • Patent number: 8421240
    Abstract: A sensor device includes a substrate which includes an element forming region, a plurality of sensor elements formed in the element forming region, a plurality of connection pads formed on a region of the substrate other than the element forming region, a plurality of first wiring formed on the substrate and electrically connected with the plurality of sensor elements, a plurality of second wiring formed on the substrate and electrically connected with the plurality of connection pads, a plurality of third wiring formed on a different layer to the plurality of first wiring and the plurality of second wiring and formed to intersect with the plurality of first wiring and the plurality of second wiring, and an insulation layer formed between the plurality of first wiring, the plurality of second wiring and the plurality of third wiring.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 16, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Kazuhiko Aida, Katsumi Hashimoto
  • Patent number: 8415780
    Abstract: A manufacturing method of a package carrier is provided. A substrate having an upper and lower surface is provided. A first opening communicating the upper and lower surface of the substrate is formed. A heat conducting element is disposed inside the first opening, wherein the heat conducting element is fixed in the first opening via an insulating material. At least a through hole passing through the substrate is formed. A metal layer is formed on the upper and lower surface of the substrate and inside the through hole. The metal layer covers the upper and lower surface of the substrate, the heat conducting element and the insulating material. A portion of the metal layer is removed. A solder mask is formed on the metal layer. A surface passivation layer is formed and covers the metal layer exposed by the solder mask and the metal layer located inside the through hole.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 9, 2013
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Shih-Hao Sun
  • Publication number: 20130075913
    Abstract: A semiconductor device and a method of fabricating the same, includes vertically stacked layers on an insulator. Each of the layers includes a first dielectric insulator portion, a first metal conductor embedded within the first dielectric insulator portion, a first nitride cap covering the first metal conductor, a second dielectric insulator portion, a second metal conductor embedded within the second dielectric insulator portion, and a second nitride cap covering the second metal conductor. The first and second metal conductors form first vertically stacked conductor layers and second vertically stacked conductor layers. The first vertically stacked conductor layers are proximate the second vertically stacked conductor layers, and at least one air gap is positioned between the first vertically stacked conductor layers and the second vertically stacked conductor layers.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Jeffrey P. Gambino, Zhong-Xiang He, Xiao Hu Liu, Thomas L. McDevitt, Gary L. Milo, William J. Murphy
  • Publication number: 20130069132
    Abstract: Probability of malfunction of a semiconductor storage device is reduced. A shielding layer is provided between a memory cell array (e.g., a memory cell array including a transistor formed using an oxide semiconductor material) and a peripheral circuit (e.g., a peripheral circuit including a transistor formed using a semiconductor substrate), which are stacked. With this structure, the memory cell array and the peripheral circuit can be shielded from radiation noise generated between the memory cell array and the peripheral circuit. Thus, probability of malfunction of the semiconductor storage device can be reduced.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 21, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tomoaki Atsumi, Takashi Okuda
  • Patent number: 8394673
    Abstract: A method of manufacturing a semiconductor device is disclosed. One embodiment includes placing multiple semiconductor chips onto a carrier, each of the semiconductor chips having a first face and a second face opposite to the first face. An encapsulation material is applied over the multiple semiconductor chips and the carrier to form an encapsulating body having a first face facing the carrier and a second face opposite to the first face. A redistribution layer is applied over the multiple semiconductor chips and the first face of the encapsulating body. An array of external contact elements are applied to the second face of the encapsulating body.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: March 12, 2013
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Josef Poeppel, Irmgard Escher-Poeppel
  • Publication number: 20130049207
    Abstract: A method of annealing a semiconductor and a semiconductor. The method of annealing including heating the semiconductor to a first temperature for a first period of time sufficient to remove physically-adsorbed water from the semiconductor and heating the semiconductor to a second temperature, the second temperature being greater than the first temperature, for a period of time sufficient to remove chemically-adsorbed water from the semiconductor. A semiconductor device including a plurality of metal conductors, and a dielectric including regions separating the plurality of metal conductors, the regions including an upper interface and a lower bulk region, the upper interface having a density greater than a density of the lower bulk region.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Eric G. Liniger, Griselda Bonilla, Pak Leung, Stephan A. Cohen, Stephen M. Gates, Thomas M. Shaw
  • Publication number: 20130042912
    Abstract: The solder bonded body according to the present invention contains: an oxide body to be bonded having an oxide layer on the surface thereof; and a solder layer bonded to the oxide layer, which the solder layer is formed by an alloy containing at least two metals selected from the group consisting of tin, copper, silver, bismuth, lead, aluminum, titanium and silicon and having a melting point of lower than 450° C. and has a zinc content of 1% by mass or less.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 21, 2013
    Inventors: Yoshiaki KURIHARA, Masato Yoshida, Takeshi Nojiri, Shuichiro Adachi, Takashiko Kato, Yasushi Kurata
  • Publication number: 20130037965
    Abstract: One aspect of the present invention is a three-dimensional integrated circuit 1 including a first semiconductor chip and a second semiconductor chip that are layered on each other, wherein each of (i) a wiring layer closest to an interface between the first and second semiconductor chips among wiring layers of the first semiconductor chip and (ii) a wiring layer closest to the interface among wiring layers of the second semiconductor chip includes a power conductor area and a ground conductor area, a layout of the power conductor area and the ground conductor area in the first semiconductor chip is the same as a layout of the power conductor area and the ground conductor area in the second semiconductor chip, and the power conductor area in the first semiconductor chip at least partially faces the ground conductor area in the second semiconductor chip with an insulation layer therebetween.
    Type: Application
    Filed: April 2, 2012
    Publication date: February 14, 2013
    Inventors: Takashi Morimoto, Takeshi Nakayama, Takashi Hashimoto
  • Patent number: 8368226
    Abstract: A die including a first set of power tiles arranged in a first array and having a first voltage; a second set of power tiles arranged in a second array offset from the first array and having a second voltage; a set of power mesh segments enclosed by the second set of power tiles and having the first voltage; a first power rail passing underneath the set of power mesh segments and the first set of power tiles; and a set of vias operatively connecting the power rail with the set of power mesh segments and the first plurality of power tiles.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 5, 2013
    Assignee: Oracle International Corporation
    Inventors: Aparna Ramachandran, Gary John Formica
  • Patent number: 8361898
    Abstract: A bonding pad structure for an optoelectronic device. The bonding pad structure includes a carrier substrate having a bonding pad region and an optoelectronic device region. An insulating layer is disposed on the carrier substrate, having an opening corresponding to the bonding pad region. A bonding pad is embedded in the insulating layer under the opening to expose the top surface thereof. A device substrate is disposed on the insulating layer corresponding to the optoelectronic device region. A cap layer covers the device substrate and the insulating layer excluding the opening. A conductive buffer layer is disposed in the opening to directly contact the bonding pad. The invention also discloses a method for fabricating the same.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 29, 2013
    Assignee: VisEra Technologies Company Limited
    Inventors: Kai-Chih Wang, Fang-Chang Liu
  • Publication number: 20130020468
    Abstract: A solid-state imaging device has a sensor substrate having a pixel region on which photoelectric converters are arrayed; a driving circuit provided on a front face side that is opposite from a light receiving face as to the photoelectric converters on the sensor substrate; an insulation layer, provided on the light receiving face, and having a stepped construction wherein the film thickness of the pixel region is thinner than the film thickness in a periphery region provided on the outside of the pixel region; a wiring provided to the periphery region on the light receiving face side; and on-chip lenses provided to positions corresponding to the photoelectric converters on the insulation layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventors: Ikue Mitsuhashi, Kentaro Akiyama, Koji Kikuchi
  • Publication number: 20130009150
    Abstract: When a semiconductor element is formed over a wiring substrate, the number of manufacturing steps of the wiring substrate is reduced. A first wiring 232 is disposed over one surface of a core layer 200. A semiconductor layer 236 is formed over the first wiring 232 and over one surface of the core layer 200 located around the first wiring 232. The first wiring 232 and the semiconductor layer 236 form a semiconductor element. In the present embodiment, the semiconductor element is a transistor 230, in which the first wiring 232 is the gate electrode, and has a gate insulating film 234 between the semiconductor layer 236 and the first wiring 232.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 10, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Naoya INOUE, Kishou KANEKO, Yoshihiro HAYASHI
  • Publication number: 20130009312
    Abstract: An interconnect structure within a microelectronic structure and a method for fabricating the interconnect structure within the microelectronic structure use a developable bottom anti-reflective coating layer and at least one imageable inter-level dielectric layer located thereupon over a substrate that includes a base dielectric layer and a first conductor layer located and formed embedded within the base dielectric layer. Incident to use of the developable bottom anti-reflective coating layer and the at least one imageable inter-level dielectric layer, an aperture, such as but not limited to a dual damascene aperture, may be formed through the at least one imageable inter-level dielectric layer and the developable anti-reflective coating layer to expose a capping layer located and formed upon the first conductor layer, absent use of a dry plasma etch method when forming the interconnect structure within the microelectronic structure.
    Type: Application
    Filed: September 4, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Maxime Darnon, Jeffrey P. Gambino, Elbert E. Huang, Qinghuang Lin
  • Publication number: 20130001783
    Abstract: A system and method for forming through substrate vias is provided. An embodiment comprises forming an opening in a substrate and lining the opening with a first barrier layer. The opening is filled with a conductive material and a second barrier layer is formed in contact with the conductive material. The first barrier layer is formed with different materials and different methods of formation than the second barrier layer so that the materials and methods may be tuned to maximize their effectiveness within the device.
    Type: Application
    Filed: August 31, 2011
    Publication date: January 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Tsang-Jiuh Wu
  • Publication number: 20130001782
    Abstract: The laminated high melting point soldering layer includes: a laminated structure which laminated a plurality of three-layered structures, the respective three-layered structures including a low melting point metal thin film layer and a high melting point metal thin film layers disposed on a surface and a back side surface of the low melting point metal thin film layer; a first high melting point metal layer disposed on the surface of the laminated structure; and a second high melting point metal layer disposed on the back side surface of the laminated structure. The low melting point metal thin film layer and the high melting point metal thin film layer are mutually alloyed by TLP, and the laminated structure, and the first high melting point metal layer and the second high melting point metal layer are mutually alloyed by the TLP bonding.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: ROHM CO., LTD.
    Inventors: Takukazu Otsuka, Keiji Okumura
  • Patent number: 8344477
    Abstract: One exemplary embodiment includes a semiconductor chip that has a rectangle principal surface including a first and a second side that oppose each other. A first and a second semiconductor element, and a first and a second wire are formed on the principal surface. The first wire is formed from the first side to reach the second side, and coupled to the first semiconductor element. The second wire is formed to contact at least the first wire, and coupled to the second semiconductor element. Further, an edge part of the first wire on the second side and an edge part of the second wire on the first side are placed to substantially position on a common straight line which is vertical to the first and the second sides.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Masafumi Yamaji
  • Publication number: 20120326297
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the semiconductor die. A first insulating layer is formed over the semiconductor die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is formed over the first and second conductive layers within openings of a second insulating layer. The second insulating layer is removed. The interconnect structure can be a conductive pillar or conductive pad. A bump material can be formed over the conductive pillar. A protective coating is formed over the conductive pillar or pad to a thickness less than one micrometer to reduce oxidation. The protective coating is formed by immersing the conductive pillar or pad into the bath containing tin or indium.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Publication number: 20120306090
    Abstract: Conductive structures include a plurality of conductive steps and a contact extending at least partially therethrough in communication with at least one of the plurality of conductive steps and insulated from at least another one of the conductive steps. Devices may include such conductive structures. Systems may include a semiconductor device and a stair step conductive structure having a plurality of contacts extending through a step of the stair step conductive structure. Methods of forming conductive structures include forming contacts in contact holes formed through at least one conductive step of a conductive structure. Methods of forming electrical connections in stair step conductive structures include forming contacts in contact holes formed through each step of the stair step conductive structure.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Michael A. Smith, Eric H. Freeman
  • Publication number: 20120306086
    Abstract: A semiconductor device according to an embodiment includes an insulating substrate, a wiring layer formed on a first main surface of the insulating substrate, and a semiconductor element mounted on the wiring layer. In this semiconductor device, the wiring layer includes a first copper-containing material containing copper and a metal having the thermal expansion coefficient smaller than that of copper and the thermal expansion coefficient of the first copper-containing material is smaller than that of copper.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takahiro Sugimura, Takashi Tsuno
  • Publication number: 20120299188
    Abstract: Disclosed is a wiring structure and method of forming the structure with a conductive diffusion barrier layer having a thick upper portion and thin lower portion. The thicker upper portion is located at the junction between the wiring structure and the adjacent dielectric materials. The thicker upper portion: (1) minimizes metal ion diffusion and, thereby TDDB; (2) allows a wire width to dielectric space width ratio that is optimal for low TDDB to be achieved at the top of the wiring structure; and (3) provides a greater surface area for via landing. The thinner lower portion: (1) allows a different wire width to dielectric space width ratio to be maintained in the rest of the wiring structure in order to balance other competing factors; (2) allows a larger cross-section of wire to reduce current density and, thereby reduce EM; and (3) avoids an increase in wiring structure resistivity.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Fen Chen, Jeffrey P. Gambino, Anthony K. Stamper, Timothy D. Sullivan
  • Publication number: 20120292765
    Abstract: Provided is a semiconductor device having a wiring layer formed of damascene wiring. The semiconductor device includes: a first wiring having a width equal to or larger than 0.5 ?m; a second wiring adjacent to the first wiring and arranged with a space less than 0.5 ?m from the first wiring; and a third wiring adjacent to the second wiring and arranged with a space equal to or smaller than 0.5 ?m from the first wiring. In the semiconductor device, the second wiring and the third wiring are structured to have the same electric potential.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Daisuke OSHIDA
  • Patent number: 8309453
    Abstract: A method of fabricating multilevel interconnects includes providing a substrate having a pixel array area and a logical circuit area, forming a first dielectric layer on the substrate, performing a first metallizing process on the first dielectric layer to form a first patterned metal layer and a second patterned metal layer above the pixel array area and the logical circuit area respectively, forming a second dielectric layer on the first patterned metal layer, the second patterned metal layer, and the first dielectric layer, performing a second metallizing process on the second dielectric layer to form a third patterned metal layer and a fourth patterned metal layer above the pixel array area and the logical circuit area respectively, wherein patterns of the fourth and the second patterned metal layer interlace to completely cover the logical circuit area, and depositing a dielectric layer on the third and the fourth patterned metal layer.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: November 13, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Yan-Hsiu Liu
  • Patent number: 8309402
    Abstract: A manufacturing method of a semiconductor structure includes providing a substrate having an upper surface and a bottom surface. First openings are formed in the substrate. An oxidization process is performed to oxidize the substrate having the first openings therein to form an oxide-containing material layer, and the oxide-containing material layer has second openings therein. A conductive material is filled into the second openings to form conductive plugs. A first device layer is formed a first surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs. A second device layer is formed on a second surface of the oxide-containing material layer, and is partially or fully electrically connected to the conductive plugs.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: November 13, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Cha-Hsin Lin, Tzu-Kun Ku
  • Publication number: 20120273950
    Abstract: An integrated circuit structure including a copper-aluminum interconnect with a CuSiN layer and a method for fabricating the same are provided. The method for fabricating an integrated circuit structure including a copper-aluminum interconnect according to the present invention comprises the steps of providing a copper (Cu) layer; forming a barrier layer including a CuSiN layer on the copper layer; forming a wetting layer on the barrier layer; and forming an aluminum (Al) layer on the wetting layer.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Kuo Hui Su, Yi Nan Chen, Hsien Wen Liu
  • Patent number: 8294276
    Abstract: A semiconductor device and a fabricating method thereof are provided. In one exemplary embodiment, a plurality of semiconductor dies are mounted on a laminating member, for example, a copper clad lamination, having previously formed conductive patterns, followed by performing operations of encapsulating, forming conductive vias, forming a solder resist and sawing, thereby fabricating a chip size package in a simplified manner. Fiducial patterns are further formed on the laminating member, thereby accurately positioning the semiconductor dies at preset positions of the laminating member.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 23, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Sang Won Kim, Boo Yang Jung, Sung Kyu Kim, Min Yoo, Seung Jae Lee
  • Publication number: 20120256324
    Abstract: A method of forming an interconnect structure includes providing a dielectric layer; forming a metal line in the dielectric layer; and forming a composite etch stop layer (ESL), which includes forming a lower ESL over the metal line and the dielectric layer; and forming an upper ESL over the lower ESL. The upper ESL and the lower ESL have different compositions. The step of forming the lower ESL and the step of forming the upper ESL are in-situ performed.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 11, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Miao-Cheng Liao, Huai-Tei Yang, Chung-Ren Sun, Jinn-Kwei Liang, Ting-Xiao Liao
  • Publication number: 20120248608
    Abstract: Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventors: Hui Jae Yoo, Jeffery D. Bielefeld, Sean W. King, Sridhar Balakrishnan
  • Patent number: 8278733
    Abstract: An integrated circuit chip includes a substrate; a topmost metal layer over the substrate; a lower metal layer on or over the substrate and lower than the topmost metal layer; and at least one bonding pad in the lower metal layer.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 2, 2012
    Assignee: Mediatek Inc.
    Inventors: Ming-Tzong Yang, Yu-Hua Huang
  • Publication number: 20120241967
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a package carrier; mounting an integrated circuit device to the package carrier; mounting an embeddable conductive structure, having a non-horizontal portion between a lower portion and an elevated portion and a hole, to the integrated circuit device with the lower portion over the integrated circuit device; mounting an interposer to the lower portion and below the elevated portion; and forming an encapsulation having a recess exposing the interposer and the elevated portion.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: JinGwan Kim, KyuWon Lee, JiHoon Oh, JongVin Park
  • Patent number: 8274160
    Abstract: A method of forming a semiconductor structure is provided. One method comprises forming a device region between a substrate and a bond pad. Patterning a conductor between the bond pad and the device region with gaps. Filling the gaps with insulation material that is harder than the conductor to form pillars of relatively hard material that extend through the conductor and forming an insulation layer of the insulation material between the conductor and the bond pad.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 25, 2012
    Assignee: Intersil Americas Inc.
    Inventors: John T. Gasner, Michael D. Church, Sameer D. Parab, Paul E. Bakeman, Jr., David A. Decrosta, Robert Lomenick, Chris A. McCarty
  • Patent number: 8258056
    Abstract: A method of lithography patterning includes forming a first material layer on a substrate; forming a first patterned resist layer including at least one opening therein on the first material layer; forming a second material layer on the first patterned resist layer and the first material layer; forming a second patterned resist layer including at least one opening therein on the second material layer; and etching the first and second material layers uncovered by the first and second patterned resist layers.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Yu Chang
  • Publication number: 20120217645
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias and conductive layer formed over the substrate. A semiconductor die is mounted over a carrier. The substrate is mounted to the semiconductor die opposite the carrier. An encapsulant is deposited between the substrate and carrier around the semiconductor die. A plurality of conductive TMVs is formed through the substrate and encapsulant. The conductive TMVs protrude from the encapsulant to aid with alignment of the interconnect structure. The conductive TMVs are electrically connected to the conductive layer and conductive vias. The carrier is removed and an interconnect structure is formed over a surface of the encapsulant and semiconductor die opposite the substrate. The interconnect structure is electrically connected to the conductive TMVs. A plurality of semiconductor devices can be stacked and electrically connected through the substrate, conductive TMVs, and interconnect structure.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Reza A. Pagaila
  • Publication number: 20120211892
    Abstract: A semiconductor device can include a carrier substrate, and a first semiconductor die disposed on a surface of the carrier substrate. An encapsulant can be disposed over the first semiconductor die and the carrier substrate. The semiconductor device can include first vias disposed through the encapsulant as well as second vias disposed through the encapsulant to expose first contact pads. The first contact pads are on upper surfaces of the first semiconductor die. The semiconductor device can include conductive pillars that fill the first vias, and first conductive metal vias (CMVs) that fill the second vias. The conductive pillar can include a first conductive material, and the first CMVs can be in contact with the first contact pads. The semiconductor device can include a conductive layer disposed over the encapsulant. The conductive layer can electrically connect one of the first CMVs with one of the conductive pillars.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: OhHan Kim, SungWon Cho, DaeSik Choi, KyuWon Lee, DongSoo Moo
  • Patent number: 8237255
    Abstract: A Printed Circuit Board (PCB) is provided in which at least one built-in Integrated Circuit (IC) package has a plurality of conductive bumps on an IC. The plurality of conductive bumps are for external electrical connection. The IC package is accommodated within a core layer of a multi-layer PCB by a connection member on the IC. The connection member is formed between the conductive bumps and the core layer with contact holes in contact with the conductive bumps. The conductive bumps are electrically connected through conductor layers formed in the contact holes.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: August 7, 2012
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Sang-Hyun Kim, Shi-Yun Cho, Young-Min Lee, Kyu-Sub Kwak, Youn-Ho Choi
  • Patent number: 8237281
    Abstract: A semiconductor device includes at least three or more wiring layers stacked in an interlayer insulating film on a semiconductor substrate, a seal ring provided at the outer periphery of a chip region of the semiconductor substrate and a chip strength reinforcement provided in part of the chip region near the seal ring. The chip strength reinforcement is made of a plurality of dummy wiring structures and each of the plurality of dummy wiring structures is formed to extend across and within two or more of the wiring layers including one or none of the bottommost wiring layer and the topmost wiring layer using a via portion.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: August 7, 2012
    Assignee: Panasonic Corporation
    Inventors: Koji Takemura, Hiroshige Hirano, Yutaka Itoh, Hikari Sano, Masao Takahashi, Koji Koike
  • Publication number: 20120181692
    Abstract: In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 19, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Ralf Richter, Torsten Huisinga, Kai Frohberg
  • Publication number: 20120181696
    Abstract: A manufacturing method of a package carrier is provided. A substrate having an upper and lower surface is provided. A first opening communicating the upper and lower surface of the substrate is formed. A heat conducting element is disposed inside the first opening, wherein the heat conducting element is fixed in the first opening via an insulating material. At least a through hole passing through the substrate is formed. A metal layer is formed on the upper and lower surface of the substrate and inside the through hole. The metal layer covers the upper and lower surface of the substrate, the heat conducting element and the insulating material. A portion of the metal layer is removed. A solder mask is formed on the metal layer. A surface passivation layer is formed and covers the metal layer exposed by the solder mask and the metal layer located inside the through hole.
    Type: Application
    Filed: April 20, 2011
    Publication date: July 19, 2012
    Applicant: SUBTRON TECHNOLOGY CO. LTD.
    Inventor: Shih-Hao Sun
  • Publication number: 20120181636
    Abstract: Methods of forming contacts (and optionally, local interconnects) using an ink comprising a silicide-forming metal, electrical devices such as diodes and/or transistors including such contacts and (optional) local interconnects, and methods for forming such devices are disclosed. Electrical devices, such as diodes and transistors may be made using such printed contact and/or local interconnects. A metal ink may be printed for contacts as well as for local interconnects at the same time, or in the alternative, the printed metal can act as a seed for electroless deposition of other metals if different metals are desired for the contact and the interconnect lines. This approach advantageously reduces the number of processing steps and does not necessarily require any etching.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 19, 2012
    Inventors: Aditi Chandra, Arvind Kamath, James Montague Cleeves, Joerg Rockenberger, Mao Takashima, Erik Scher
  • Publication number: 20120161321
    Abstract: Techniques are disclosed for forming contacts in silicon semiconductor devices. In some embodiments, a transition layer forms a non-reactive interface with the silicon semiconductor contact surface. In some such cases, a conductive material provides the contacts and the material forming a non-reactive interface with the silicon surface. In other cases, a thin semiconducting or insulting layer provides the non-reactive interface with the silicon surface and is coupled to conductive material of the contacts. The techniques can be embodied, for instance, in planar or non-planar (e.g., double-gate and tri-gate FinFETs) transistor devices.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Michael G. Haverty, Sadasivan Shankar, Tahir Ghani, Seongjun Park
  • Publication number: 20120161856
    Abstract: A die including a first set of power tiles arranged in a first array and having a first voltage; a second set of power tiles arranged in a second array offset from the first array and having a second voltage; a set of power mesh segments enclosed by the second set of power tiles and having the first voltage; a first power rail passing underneath the set of power mesh segments and the first set of power tiles; and a set of vias operatively connecting the power rail with the set of power mesh segments and the first plurality of power tiles.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Aparna Ramachandran, Gary John Formica
  • Publication number: 20120153489
    Abstract: A semiconductor package includes a semiconductor structure. The semiconductor structure includes a plurality of dielectric layers and a plurality of conductive interconnects embedded in the semiconductor structure. The semiconductor structure also includes a plurality of proximity communication signal input terminals. At least one of the plurality of proximity communication signal input terminals includes a first electrode and a second electrode. The first electrode and the second electrode are spaced apart so as to be configured to provide proximity communication through capacitive coupling. The first electrode is exposed proximate to a surface of the semiconductor structure.
    Type: Application
    Filed: October 4, 2011
    Publication date: June 21, 2012
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: YI-SHAO LAI, TSUNG-YUEH TSAI, MING-KUN CHEN, TAI-PING WANG, MING-HSIANG CHENG
  • Patent number: 8203210
    Abstract: The reliability of a semiconductor device having an embedded wire in the lowest layer wire is improved. In a main surface of a semiconductor substrate, MISFETs are formed and over the main surface, insulating films 10, 11 are formed. In the insulating films 10, 11 a contact hole is formed and a plug is embedded therein. Over the insulating film 11 in which the plug is embedded, insulating films 14, 15, 16 are formed and an opening is formed in the insulating films 14, 15, 16 and a wire is embedded therein. The insulating film 15 is an etching stopper film when etching the insulating film 16 in order to form the opening, containing silicon and carbon. The insulating film 11 has a high hygroscopicity and the insulating film 15 has a low moisture resistance, however, by interposing the insulating film 14 therebetween and making the insulating film 14 have a higher density of the number of Si (silicon) atoms than that of the insulating film 11, an electrically weak interface is prevented from being formed.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: June 19, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Takeshi Furusawa, Takao Kamoshima, Masatsugu Amishiro, Naohito Suzumura, Shoichi Fukui, Masakazu Okada
  • Publication number: 20120139112
    Abstract: Conventional metallization processes fail at high density or small feature size patterns. For example, during patterning dry films may collapse or lift-off resulting in short circuits or open circuits in the metallization pattern. An exemplary method for metallization of integrated circuits includes forming features such as trenches, pads, and planes in a dielectric layer and depositing and selectively treating a seed layer in desired features of the dielectric layer. The treated regions of the seed layer may be used as a seed for electroless deposition of conductive material, such as copper, into the features. When the seed layer is a catalytic ink, the seed layer may be treated by curing the catalytic ink with a laser.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Omar J. Bchir, Milind P. Shah, Sashidhar Movva
  • Patent number: 8188592
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a heat sink plate and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the heat sink plate. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 29, 2012
    Assignee: Infineon Technologies AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 8183698
    Abstract: According to certain embodiments, integrated circuits are fabricated using brittle low-k dielectric material to reduce undesired capacitances between conductive structures. To avoid permanent damage to such dielectric material, bond pads are fabricated with support structures that shield the dielectric material from destructive forces during wire bonding. In one implementation, the support structure includes a passivation structure between the bond pad and the topmost metallization layer. In another implementation, the support structure includes metal features between the topmost metallization layer and the next-topmost metallization layer. In both cases, the region of the next-topmost metallization layer under the bond pad can have multiple metal lines corresponding to different signal routing paths.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Agere Systems Inc.
    Inventors: Joze E. Antol, John W. Osenbach, Kurt G. Steiner