Consisting Of Layered Constructions Comprising Conductive Layers And Insulating Layers, E.g., Planar Contacts (epo) Patents (Class 257/E23.019)
  • Patent number: 8169084
    Abstract: It is described a bond pad structure and a method for producing the same, the bond pad structure (1), comprising: a substrate (3) having a surface (17) to be electrically contacted; a first isolator layer (5) contacting the surface (17) of the substrate in a first region (a); a first metal layer (9) contacting the surface (17) of the substrate (3) in a second region (b) adjacent the first region (a) and partly overlapping the first isolator layer (5); a second isolator layer (11) at least partly overlapping the first isolator layer (5) and the first metal layer (9); a second metal layer (13) at least partly overlapping the second isolator layer (11) in the second region (b); wherein a maximum thickness (U) of the second metal layer (13) perpendicular to the surface (17) of the substrate (3) is smaller than a maximum thickness (t0) of the first isolator layer (5) perpendicular to the surface (17) of the substrate (3).
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: May 1, 2012
    Assignee: NXP B.V.
    Inventors: Bengt Philippsen, Hans-Joerg Klammer
  • Patent number: 8169070
    Abstract: The semiconductor device comprises a semiconductor chip defining a first face and a second face opposite to the first face, the semiconductor chip comprising at least one contact element on the first face of the semiconductor chip, an encapsulating body encapsulating the semiconductor chip, the encapsulating body having a first face and a second face opposite to the first face, a redistribution layer extending over the semiconductor chip and the first face of the encapsulating body and containing a metallization layer comprising contact areas connected with the contact elements of the semiconductor chip, and an array of external contact elements located on the second phase of the encapsulating body.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 1, 2012
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Josef Poeppel, Irmgard Escher-Poeppel
  • Patent number: 8154124
    Abstract: A semiconductor chip has a main surface, a back surface and a plurality of side surfaces. A plurality of electrodes is provided on the main surface of the semiconductor chip so as to be arranged in a plurality of lines. An insulating film is formed on the main surface of the semiconductor chip so as to expose at least one of the plurality of electrodes. A plurality of leads are formed on the insulating film, each of the plurality of leads having a first end and a second end, and the first end of the lead being connected to the one of the plurality of electrodes. A base resin film is formed on the insulting film and the plurality of leads, the base resin film having a plurality of electrodes holes exposing a part of the second end of each of the leads and a device hole in which the first end of the lead and the one of the plurality of electrodes are located.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 10, 2012
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Yoshikazu Takahashi, Masami Suzuki, Masaru Kimura
  • Patent number: 8125052
    Abstract: An integrated circuit structure includes a semiconductor chip comprising a plurality of dielectric layers, wherein the plurality of dielectric layers includes a top dielectric layer; and a first seal ring adjacent edges of the semiconductor chip. The integrated circuit structure further includes a first passivation layer over a top dielectric layer; and a trench extending from a top surface of the first passivation layer into the first passivation layer, wherein the trench substantially forms a ring. Each side of the ring is adjacent to a respective edge of the semiconductor chip. At least one of the plurality of vias has a width greater than about 70 percent of a width of a respective overlying metal line in the plurality of metal lines.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: February 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shin-Puu Jeng, Shih-Hsun Hsu, Shang-Yun Hou, Hao-Yi Tsai, Chen-Hua Yu
  • Patent number: 8120188
    Abstract: An electronic component mounting structure includes an electronic component provided with a plurality of electrode terminals, and a mounting substrate provided with connector terminals in positions corresponding to the electrode terminals. An electrode terminal is connected to a connector terminal via a protrusion electrode disposed on the electrode terminal or the connector terminal, and the protrusion electrode includes a conductive filler and a photosensitive resin. The photosensitive resin varies in resin component crosslink density in the height direction of the protrusion electrode.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: February 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Daisuke Sakurai, Yoshihiko Yagi
  • Patent number: 8120113
    Abstract: A metal line in a semiconductor device includes an insulation layer having trenches formed therein, a barrier metal layer formed over the insulation layer and the trenches, a metal layer formed over the barrier metal layer, wherein the metal layer fills the trenches, and an anti-galvanic corrosion layer formed on an interface between the metal layer and the barrier metal layer.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 21, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Young-Soo Choi, Gyu-Hyun Kim
  • Publication number: 20120038047
    Abstract: A semiconductor wafer contains a plurality of semiconductor die with bumps formed over contact pads on an active surface of the semiconductor die. A b-stage conductive polymer is deposited over the contact pads on the semiconductor wafer. The semiconductor wafer is singulated to separate the die. An insulating layer is formed over a carrier with openings formed in the insulating layer. The die is mounted to the carrier with the conductive polymer disposed in the openings of the insulating layer. The conductive polymer is heated to a glass transition temperature to liquefy the conductive polymer to an electrically conductive state. An encapsulant is deposited over the die and insulating layer. The carrier is removed to expose the conductive polymer. An interconnect structure is formed over the die, encapsulant, and conductive polymer. The interconnect structure is electrically connected through the conductive polymer to the contact pads on the die.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Byung Tai Do, Reza A. Pagaila
  • Patent number: 8114708
    Abstract: A system and method for forming an embedded chip package is disclosed. The embedded chip package includes a first chip portion having a plurality of pre-patterned re-distribution layers joined together to form a pre-patterned lamination stack, with the pre-patterned lamination stack having a die opening extending therethrough. The embedded chip package also includes a die positioned in the die opening and a second chip portion having at least one uncut re-distribution layer, with the second chip portion affixed to each of the first chip portion and the die and being patterned to be electrically connected to both of the first chip portion and the die.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 14, 2012
    Assignee: General Electric Company
    Inventors: Paul McConnelee, Donald Cunningham, Kevin Durocher
  • Publication number: 20120025378
    Abstract: A semiconductor chip suited for being electrically connected to a circuit element includes a line and a bump. The bump is connected to the line and is adapted to be electrically connected to the line. A plane that is horizontal to an active surface of the semiconductor chip is defined. The area that the connection region of the line and the bump is projected on the plane is larger than 30,000 square microns or has an extension distance larger than 500 microns.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Applicant: MEGICA CORPORATION
    Inventor: Mou-Shiung Lin
  • Patent number: 8106501
    Abstract: A semiconductor die package. The semiconductor die package comprises a semiconductor die and a molded clip structure comprising a clip structure and a first molding material covering at least a portion of the clip structure. The first molding material exposes an outer surface of the clip structure. The clip structure is electrically coupled to the semiconductor die. The semiconductor die package further comprises a leadframe structure comprising a die attach pad and a plurality of leads extending from the die attach pad. The semiconductor die is on the die attach pad of the leadframe structure. A second molding material covers at least a portion of the semiconductor die and the leadframe structure. The semiconductor die package also includes a heat slug and a thermally conductive material coupling the heat slug to the exposed surface of the clip structure.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: January 31, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Maria Clemens Y. Quinones, Maria Cristina B. Estacio
  • Patent number: 8097943
    Abstract: A semiconductor die has active circuits formed on its active surface. Contact pads are formed on the active surface of the semiconductor die and coupled to the active circuits. A die extension region is formed around a periphery of the semiconductor die. Conductive through hole vias (THV) are formed in the die extension region. A wafer level conductive plane or ring is formed on a center area of the active surface. The conductive plane or ring is connected to a first contact pad to provide a first power supply potential to the active circuits, and is electrically connected to a first conductive THV. A conductive ring is formed partially around a perimeter of the conductive plane or ring and connected to a second contact pad for providing a second power supply potential to the active circuits. The conductive ring is electrically connected to a second THV.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 17, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Guruprasad G. Badakere, Zigmund R. Camacho, Lionel Chien Hui Tay
  • Publication number: 20120001331
    Abstract: According to one embodiment, a semiconductor device includes a plurality of first interconnects, a second interconnect, a third interconnect, and a plurality of conductive members. The plurality of first interconnects are arranged periodically to extend in one direction. The second interconnect is disposed outside a group of the plurality of first interconnects to extend in the one direction. The third interconnect is provided between the group and the second interconnect. The plurality of conductive members are disposed on a side opposite to the group as viewed from the second interconnect. A shortest distance between the first interconnect and the third interconnect, a shortest distance between the third interconnect and the second interconnect, and a shortest distance between the first interconnects are equal. A shortest distance between the second interconnect and the conductive member is longer than the shortest distance between the first interconnects.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 5, 2012
    Applicant: Kabushi Kaisha Toshiba
    Inventors: Takayuki Toba, Tohru Ozaki, Toshiki Hisada, Hiromitsu Mashita, Takafumi Taguchi
  • Patent number: 8089156
    Abstract: The bump electrode 100 of the present invention has a structure in which dummy metals 111 are provided in the uppermost layer portion of a silicon 101 between a pad-form wiring metal 102 and a wiring metal 103 such that an edge of each dummy metal and an edge of the barrier metal 107 are not aligned in a line, and a lot of interfaces are formed between the dummy metals 111 and an interlayer film 140, and therefore expansion of a crack generated due to bump stress concentrated on the under-edge portion 109 below the barrier metal 107 between the pad-form wiring metal 102 and the wiring metal 103 is suppressed.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 3, 2012
    Assignee: Panasonic Corporation
    Inventor: Noriyuki Nagai
  • Publication number: 20110316160
    Abstract: A semiconductor arrangement includes a silicon body having a top surface and a bottom surface, and a thick metal layer arranged on the top surface of the silicon body. The thick metal layer has a bonding surface facing away from the top surface of the silicon body. A bonding wire or a ribbon is bonded to the thick metal layer at the bonding surface of the thick metal layer. The thickness of the thick metal layer is at least 10 micrometers (?m), the thick metal layer comprises copper or a copper alloy, and the bonding wire or ribbon comprises copper or a copper-based material.
    Type: Application
    Filed: September 7, 2011
    Publication date: December 29, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Dirk Siepe, Reinhold Bayerer
  • Publication number: 20110316141
    Abstract: A layered chip package includes a main body, and wiring disposed on a side surface of the main body. The main body includes: a main part including a plurality of layer portions stacked; a plurality of first terminals disposed on the top surface of the main part and connected to the wiring; and a plurality of second terminals disposed on the bottom surface of the main part and connected to the wiring. The plurality of layer portions include a first-type layer portion and a second-type layer portion. The first-type layer portion includes a conforming semiconductor chip, and a plurality of first-type electrodes that are connected to the semiconductor chip and the wiring. The second-type layer portion includes a defective semiconductor chip, and a plurality of second-type electrodes that are connected to the wiring and not to the semiconductor chip.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Applicants: SAE MAGNETICS(H.K) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Patent number: 8084302
    Abstract: A semiconductor wafer is made by forming a first conductive layer over a sacrificial substrate, mounting a semiconductor die to the sacrificial substrate, depositing an insulating layer over the semiconductor die and first conductive layer, exposing the first conductive layer and contact pad on the semiconductor die, forming a second conductive layer over the insulating layer between the first conductive layer and contact pad, forming solder bumps on the second conductive layer, depositing an encapsulant over the semiconductor die, first conductive layer, and interconnect structure, and removing the sacrificial substrate after forming the encapsulant to expose the conductive layer and semiconductor die. A portion of the encapsulant is removed to expose a portion of the solder bumps. The solder bumps are sized so that each extends the same outside the encapsulant. The semiconductor die are stacked by electrically connecting the solder bumps.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: December 27, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Publication number: 20110309508
    Abstract: A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Kenneth P. Rodbell, Xiaoyan Shao
  • Patent number: 8076748
    Abstract: A semiconductor device is provided having a high performance resistance element. In an N-type well isolated by an insulating film, two higher concentration N-type regions are formed. An interlayer insulating film is also formed. In a plurality of openings in the interlayer insulating film, one electrode group having a plurality of electrodes is formed on one N-type region, while a second electrode group having a plurality of electrodes is formed on the other N-type region. The relationship between the two N-type regions is between an island region and an annular region surrounding the island. The annular region of the N-type well between the island region and the annular region serves as a resistor R. Thus, discharge channels for charges applied excessively because of ESD or the like evenly exist in the periphery (four regions) of the one N-type region.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 13, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Takayuki Saiki, Kazuhiko Okawa
  • Publication number: 20110291280
    Abstract: A semiconductor device and a manufacturing method thereof are provided for the improvement of the reliability of copper damascene wiring in which a film between wiring layers and a film between via layers are comprised of an SiOC film with low dielectric constant. A film between wiring layers, a film between wiring layers, and a film between via layers are respectively comprised of an SiOC film, and stopper insulating films and a cap insulating film are comprised of a laminated film of an SiCN film A and an SiC film B. By doing so, it becomes possible to reduce the leakage current of the film between wiring layers, the film between wiring layers, and the film between via layers, and also possible to improve the adhesion of the film between wiring layers, the film between wiring layers, and the film between via layers to the stopper insulating films and the cap insulating film.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 1, 2011
    Inventors: Kazutoshi OHMORI, Tsuyoshi TAMARU, Naohumi OHASHI, Kiyohiko SATO, Hiroyuki MARUYAMA
  • Patent number: 8058726
    Abstract: A semiconductor device and method of manufacturing the same are provided. The semiconductor device comprises a semiconductor die including a bond pad, a redistribution layer, and a solder ball. The redistribution layer is formed by sequentially plating copper and nickel, sequentially plating nickel and copper, or sequentially plating copper, nickel, and copper. The redistribution layer includes a nickel layer in order to prevent a crack from occurring in a copper layer. Further, a projection is formed in an area of the redistribution layer or a dielectric layer to which the solder ball is welded and corresponds, so that an area of the redistribution layer to which the solder ball is welded increases, thereby increasing bonding power between the solder ball and the redistribution layer.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: November 15, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Jung Gi Jin, Jong Sik Paek, Sung Su Park, Seok Bong Kim, Tae Kyung Hwang, Se Woong Cha
  • Patent number: 8053885
    Abstract: A wafer level vertical diode package structure includes a first semiconductor layer, a second semiconductor layer, an insulative unit, a first conductive structure, and a second conductive structure. The second semiconductor layer is connected with one surface of the first semiconductor layer. The insulative unit is disposed around a lateral side of the first semiconductor layer and a lateral side of the second semiconductor layer. The first conductive structure is formed on a top surface of the first semiconductor layer and on one lateral side of the insulative layer. The second conductive structure is formed on a top surface of the second semiconductor layer and on another opposite lateral side of the insulative layer.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: November 8, 2011
    Assignee: Harvatek Corporation
    Inventors: Bily Wang, Sung-Yi Hsiao, Jack Chen
  • Publication number: 20110266678
    Abstract: A semiconductor device includes a semiconductor substrate, an insulating film formed above the semiconductor substrate, and a multilayered wiring formed in a prescribed area within the insulating film. The multilayered wiring includes a dual damascene wiring positioned on at least one layer of the multilayered wiring. The dual damascene wiring includes an alloy having copper as a principal component. A concentration of at least one metallic element contained as an added component of the alloy in a via connected to the dual damascene wiring is 10% or more higher in a via connected to a wiring whose width exceeds by five or more times a diameter of the via than that in another via connected to another wiring of a smallest width in a same upper wiring layer of the multilayered wiring.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: NEC CORPORATION
    Inventors: Mari Amano, Munehiro Tada, Naoya Furutake, Yoshihiro Hayashi
  • Patent number: 8049334
    Abstract: A buried local interconnect and method of forming the same counterdopes a region of a doped substrate to form a counterdoped isolation region. A hardmask is formed and patterned on the doped substrate, with a recess being etched through the patterned hardmask into the counterdoped region. Dielectric spacers are formed on the sidewalls of the recess, with a portion of the bottom of the recess being exposed. A metal is then deposited in the recess and reacted to form silicide at the bottom of the recess. The recess is filled with fill material, which is polished. The hardmask is then removed to form a silicide buried local interconnect.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: November 1, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Arvind Halliyal, Zoran Krivokapic, Matthew S. Buynoski, Nicholas H. Tripsas, Minh Van Ngo, Mark T. Ramsbey, Jeffrey A. Shields, Jusuke Ogura
  • Patent number: 8049340
    Abstract: An integrated circuit package substrate includes a first and an additional electrically conductive layer separated from each other by an electrically insulating layer, a contact pad formed in the first electrically conductive layer for making a direct connection between the integrated circuit package substrate and a printed circuit board, and a cutout formed in the additional electrically conductive layer wherein the cutout encloses an area that completely surrounds the contact pad for avoiding parasitic capacitance between the additional electrically conductive layer and the printed circuit board.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: November 1, 2011
    Assignee: LSI Corporation
    Inventors: Jeffrey Hall, Shawn Nikoukary, Amar Amin, Michael Jenkins
  • Publication number: 20110248385
    Abstract: A method for patterning a material during fabrication of a semiconductor device provides for the selective formation of either asymmetrical features or symmetrical features using a symmetrical photomask, depending on which process flow is chosen. The resulting features which are fabricated use spacers formed around a patterned material. If one particular etch is used to remove a base material, symmetrical features result. If two particular etches are used to remove the base material, asymmetrical features remain.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 13, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Jeremy Madsen
  • Patent number: 8035231
    Abstract: The semiconductor device 1 includes interconnect layers 10, 20, an IC chip 30, via plugs 42, 44, a seal resin 50, and solder balls 60. The interconnect layer 10 includes a via plug 42. An end face of the via plug 42 on the side of the interconnect layer 20 is smaller in area than the opposite end face, i.e. the end face on the side of the IC chip 30. An end face of the via plug 44 on the side of the interconnect layer 10 is smaller in area than the opposite end face, i.e. the end face on the side of the solder balls 60. The thermal decomposition temperature of the insulating resin 14 constituting the interconnect layer 10 is higher than that of the insulating resin 24 constituting the interconnect layer 20.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: October 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichiro Kurita, Masaya Kawano, Koji Soejima
  • Publication number: 20110241215
    Abstract: A reconstituted wafer includes a rigid mass with a flat surface and a base surface disposed parallel planar to the flat surface. A plurality of dice are embedded in the rigid mass. The plurality of dice include terminals that are exposed through coplanar with the flat surface. A process of forming the reconstituted wafer includes removing some of the rigid mass to expose the terminals, while retaining the plurality of dice in the rigid mass. A process of forming an apparatus includes separating one apparatus from the reconstituted wafer.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Inventors: Robert L. Sankman, John S. Guzek
  • Publication number: 20110241164
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, an inter-layer insulating film, a wiring, and a via. The inter-layer insulating film is provided on the semiconductor substrate. The wiring is provided in the inter-layer insulating film. The via is provided in the inter-layer insulating film. Inside the inter-layer insulating film in a circumferential region around a device region, a vertical structure body is formed in which the wiring and the via are vertically connected. At least in an upper portion inside the inter-layer insulating film in an edge region located around the circumferential region and constituting an outer edge portion, no vertical structure body is formed in which the wiring and the via are vertically connected.
    Type: Application
    Filed: March 21, 2011
    Publication date: October 6, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Toshimi Nakamura
  • Patent number: 8030767
    Abstract: A bump structure with an annular support suitable for being disposed on a substrate is provided. The substrate has at least one pad and a passivation layer that has at least one opening exposing a portion of the pad. The bump structure with the annular support includes an under ball metal (UBM) layer, a bump, and an annular support. The UBM layer is disposed on the passivation layer and covers the pad exposed by the passivation layer. The bump is disposed on the UBM layer over the pad, and a diameter of a lower surface of the bump is less than the diameter of an upper surface thereof. The annular support surrounds and contacts the bump, and a material of the annular support is photoresist. An under cut effect is not apt to happen on the bump structure.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 4, 2011
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventor: Jing-Hong Yang
  • Publication number: 20110227214
    Abstract: A wiring board has a structure where multiple wiring layers are stacked one on top of another with insulating layers interposed therebetween. A sheet-shaped member is buried in an outermost insulating layer located on a side of the structure opposite to a side on which a semiconductor element is to be mounted. The sheet-shaped member has a modulus of elasticity and a coefficient of thermal expansion which are similar to a modulus of elasticity and a coefficient of thermal expansion of the semiconductor element. The sheet-shaped member is made of a material having a modulus of elasticity and a coefficient of thermal expansion which are enough to bring respective distributions thereof into a substantially symmetric form in a direction orthogonal to a surface of the wiring board in the case where the semiconductor element is mounted.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 22, 2011
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Akihiko Tateiwa, Masahiro Kyozuka, Fumimasa Katagiri
  • Patent number: 8021929
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 20, 2011
    Assignee: Infineon Technologies AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 8022524
    Abstract: A semiconductor device includes a wiring board having: plural stacked insulating layers; test pads and external connection pads which are disposed on a face of the plural stacked insulating layers located on the side opposite to that where another wiring board is connected; first wiring patterns which electrically connect internal connection pads with the test pads; and second wiring patterns which electrically connect semiconductor element mounting pads with the external connection pads. The external connection pads are placed on the inner side of the test pads.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 20, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Hitoshi Sato
  • Patent number: 8022497
    Abstract: A semiconductor device capable of preventing an interlayer dielectric film from deterioration resulting from a liquid such as a chemical solution penetrating into the interlayer dielectric film and recovering the interlayer dielectric film from deterioration with a prescribed gas is obtained. This semiconductor device comprises a first insulating film formed on a substrate and a first gas-liquid separation film, formed on at least a part of the surface of the first insulating film, composed of a material hardly permeable by a liquid and easily permeable by a gas.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 20, 2011
    Assignees: Sanyo Electric Co., Ltd., NEC Corporation, Rohm Co., Ltd.
    Inventors: Yoshinori Shishida, Shinichi Chikaki, Ryotaro Yagi
  • Patent number: 8018045
    Abstract: The present invention has for its object to provide a multilayer printed circuit board which is very satisfactory in facture toughness, dielectric constant, adhesion and processability, among other characteristics. The present invention is directed to a multilayer printed circuit board comprising a substrate board, a resin insulating layer formed on said board and a conductor circuit constructed on said resin insulating layer, wherein said resin insulating layer comprises a polyolefin resin.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: September 13, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Honchin En, Masayuki Hayashi, Dongdong Wang, Kenichi Shimada, Motoo Asai, Koji Sekine, Tohru Nakai, Shinichiro Ichikawa, Yukihiko Toyoda
  • Patent number: 8018047
    Abstract: A semiconductor module includes a multilayer substrate. The multilayer substrate includes a first metal layer and a first ceramic layer over the first metal layer. An edge of the first ceramic layer extends beyond an edge of the first metal layer. The multilayer substrate includes a second metal layer over the first ceramic layer and a second ceramic layer over the second metal layer. An edge of the second ceramic layer extends beyond an edge of the second metal layer. The multilayer substrate includes a third metal layer over the second ceramic layer.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: September 13, 2011
    Assignee: Infineon Technologies AG
    Inventors: Reinhold Bayerer, Thomas Hunger
  • Patent number: 8012783
    Abstract: The object of the present invention is to provide a semiconductor element containing an n-type gallium nitride based compound semiconductor and a novel electrode that makes an ohmic contact with the semiconductor. The semiconductor element of the present invention has an n-type Gallium nitride based compound semiconductor and an electrode that forms an ohmic contact with the semiconductor, wherein the electrode has a TiW alloy layer to be in contact with the semiconductor. According to a preferable embodiment, the above-mentioned electrode can also serve as a contact electrode. According to a preferable embodiment, the above-mentioned electrode is superior in the heat resistance. Moreover, a production method of the semiconductor element is also provided.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: September 6, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tsuyoshi Takano, Takahide Joichi, Hiroaki Okagawa
  • Patent number: 8013385
    Abstract: A semiconductor device of the present invention has a first contact and a second contact which are located over a device isolation film so as to be opposed with each other, and have a length in the horizontal direction larger than the height; a first electro-conductive pattern located on the first contact and is formed in at least a single interconnect layer; a second electro-conductive pattern located on the second contact so as to be opposed with the first electro-conductive pattern; and an interconnect formed in an upper interconnect layer which is located above the first electro-conductive pattern and the second electro-conductive pattern, so as to be located in a region above the first electro-conductive pattern and the second electro-conductive pattern.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Masayuki Furumiya, Yasutaka Nakashiba
  • Publication number: 20110210451
    Abstract: A method of forming a metal pattern on a dielectric material that comprises forming at least one trench in a photosensitive, insulative material is disclosed. The at least one trench may be positioned over at least one bond pad. A metal is formed over the photosensitive, insulative material and into the at least one trench and a photoresist material is formed over the metal. A portion of the photoresist material may be removed to expose elevated areas of the metal such that a remaining portion of the photoresist material does not extend beyond sidewalls of the at least one trench and onto the elevated areas of the metal. The metal may be exposed laterally beyond the remaining portion of the photoresist material.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Christopher J. Gambee, G. Alan Vonkrosigk
  • Publication number: 20110210445
    Abstract: A first insulating film is provided between a lower interconnect and an upper interconnect. The lower interconnect and the upper interconnect are connected to each other by way of a via formed in the first insulating film. A dummy via or an insulating slit is formed on/in the upper interconnect near the via.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Takeshi HARADA
  • Publication number: 20110198748
    Abstract: A method of fabricating a semiconductor device includes: forming a semiconductor chip portion having an electrode on a main surface of a wafer; forming a first resist pattern having a first opening on the electrode; filling the first opening with a first electrically conductive material, thereby forming an electrically conductive post; removing the first resist pattern after said forming of the electrically conductive post; forming an interlayer dielectric film having a second opening positioned on the electrically conductive post; and forming an electrically conductive redistribution layer extending from an upper surface of the electrically conductive post over an upper surface of the interlayer dielectric film.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Osamu Koike
  • Patent number: 7999383
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: August 16, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Ernest E Hollis
  • Patent number: 7977763
    Abstract: A thin film semiconductor die circuit package is provided utilizing low dielectric constant (k) polymer material for the insulating layers of the metal interconnect structure. Five embodiments include utilizing glass, glass-metal composite, and glass/glass sandwiched substrates. The substrates form the base for mounting semiconductor dies and fabricating the thin film interconnect structure.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: July 12, 2011
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Ching-Cheng Huang
  • Patent number: 7973398
    Abstract: An embedded chip package structure is proposed. The embedded chip package structure includes a supporting board with a protruding section, a semiconductor chip formed on the protruding section of the supporting board, a dielectric layer formed on the supporting board and the semiconductor chip, and a circuit layer formed on the dielectric layer. The circuit layer is electrically connected to electrode pads of the semiconductor chip via a plurality of conducting structures formed inside the dielectric layer such that the semiconductor chip can be electrically connected to an external element through the circuit layer. By varying the thicknesses of the protruding section, the dielectric layer and the supporting board, warpage of the package structure resulted from temperature change during the fabrication process can be prevented.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: July 5, 2011
    Assignee: Unimicron Technology Corp.
    Inventor: Shih-Ping Hsu
  • Patent number: 7969007
    Abstract: A semiconductor device with improved moisture resistance and its manufacturing method as well as a manufacturing method of a semiconductor device which simplifies a manufacturing process and improves productivity are offered. This invention offers a CSP type semiconductor device and its manufacturing method that can prevent moisture and the like from infiltrating into it to attain high reliability by covering a side surface of a semiconductor chip with a thick protection layer. This invention also offers a highly productive manufacturing method of semiconductor devices by which a supporter bonded to semiconductor dice is etched from a back surface-side of the supporter so that the semiconductor devices can be separated without dicing.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 28, 2011
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Takashi Noma, Hiroyuki Shinogi, Noboru Okubo
  • Patent number: 7969003
    Abstract: A manufacturing method of a bump structure having a reinforcement member is disclosed. First, a substrate including pads and a passivation layer is provided. The passivation layer has first openings, and each first opening exposes a portion of the corresponding pad respectively. Next, an under ball metal (UBM) material layer is formed on the substrate to cover the passivation layer and the pads exposed by the passivation layer. Bumps are formed on the UBM material layer and the lower surface of each bump is smaller than that of the opening. Each reinforcement member formed on the UBM material layer around each bump contacts with each bump, and the material of the reinforcement member is a polymer. The UBM material layer is patterned to form UBM layers and the lower surface of each UBM layer is larger than that of each corresponding opening. Hence, the bump has a planar upper surface.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 28, 2011
    Assignee: ChipMOS Technologies Inc.
    Inventor: Cheng-Tang Huang
  • Publication number: 20110140248
    Abstract: A semiconductor device and manufacturing method thereof are disclosed. The device comprises a semiconductor die, a passivation layer, a wiring redistribution layer (RDL), an Ni/Au layer, and a solder mask. The semiconductor die comprises a top metal exposed in an active surface thereof. The passivation layer overlies the active surface of the semiconductor die, and comprises a through passivation opening overlying the top metal. The wiring RDL, comprising an Al layer, overlies the passivation layer, and electrically connects to the top metal via the passivation opening. The solder mask overlies the passivation layer and the wiring RDL, exposing a terminal of the wiring RDL.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 16, 2011
    Inventors: Chia-Lun TSAI, Ching-Yu Ni, Jack Chen, Wen-Cheng Chien
  • Publication number: 20110133325
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a first substrate; mounting a component over the first substrate; mounting a stack substrate over the component, the stack substrate having an inner pad and an outer pad connected to the first substrate; mounting a first exposed interconnect on the outer pad; forming a first encapsulation over the stack substrate, the first exposed interconnect partially exposed and the inner pad partially exposed in a recess of the first encapsulation; and mounting a second exposed interconnect on the inner pad.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: DongSoo Moon, Taewoo Lee, Soo-San Park, SooMoon Park, Sang-Ho Lee
  • Patent number: 7952200
    Abstract: A semiconductor device including a chip including an integrated circuit, a conductive layer, a copolymer layer and metal elements. The conductive layer is disposed over the chip and electrically coupled to the integrated circuit. The copolymer is disposed on the conductive layer. The metal elements are electrically coupled to the conductive layer via through-connects in the copolymer layer.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 31, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Recai Sezi
  • Patent number: 7952196
    Abstract: An interconnect assembly for use in high frequency applications includes an interconnect structure, a plurality of electronic die disposed on the interconnect structure, and an encapsulant at least partially surrounding the plurality of electronic die. The interconnect structure includes a plurality of layers. The interconnect assembly further includes a thermal management layer disposed within a portion of the encapsulant and proximate to the plurality of electronic die and a controlled impedance interconnect connected to the interconnect structure and extending to a peripheral surface of the interconnect assembly.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: May 31, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Joseph Alfred Iannotti, Kevin Matthew Durocher, Christopher James Kapusta
  • Patent number: 7952120
    Abstract: Provided are embodiments of a semiconductor device having bit lines and bit bar lines. The bit lines and the bit bar lines are arranged in alternate succession across a substrate. At least two of proximate bit lines, bit line bars, power lines, and ground lines of the semiconductor device are formed on different layers, in order to reduce defects due to particles between lines, and increase yield.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: May 31, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jin Ho Park