Oxides Or Nitrides Or Carbides, E.g., Ceramics, Glass (epo) Patents (Class 257/E23.118)
  • Patent number: 11735372
    Abstract: A ceramic electronic device includes: a multilayer chip in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, a main component of the dielectric layers being ceramic, the plurality of internal electrode layers being alternately exposed to a first end face and a second end face of the multilayer chip, the first end face facing with the second end face; a first external electrode provided on the first end face; and a second external electrode provided on the second end face, wherein a silane film is provided on a surface of the ceramic electronic device, and wherein an organic compound is provided on the silane film, and has a siloxane bonding.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: August 22, 2023
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Kiyoshiro Yatagawa, Satoshi Kobayashi, Takahisa Fukuda
  • Patent number: 11538634
    Abstract: A multilayer ceramic electronic component includes a multilayer body including layered ceramic layers and having a rectangular parallelepiped shape, and first and second outer electrodes covering both end surfaces of the multilayer body and extending from both the end surfaces so as to cover at least portions of a first main surface, a second main surface, a first side surface, and a second side surface of the multilayer body. An insulating layer is provided on a surface of the first main surface of the multilayer body. The first outer electrode and the second outer electrode disposed on the first main surface side are disposed on the insulating layer.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 27, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Shinobu Chikuma
  • Patent number: 10910288
    Abstract: An integrated circuit package structure and a package method. The integrated circuit package structure includes: a semiconductor chip, an encapsulation layer covering the semiconductor chip, the encapsulation layer including a first encapsulation layer and a second encapsulation layer alternately stacked, a sum of a number of the first encapsulation layer and a number of the second encapsulation layer being at least 3; wherein a thermal expansion coefficient of one of the first encapsulation layer and the second encapsulation layer is positive, and a thermal expansion coefficient of the other of the first encapsulation layer and the second encapsulation layer is negative.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: February 2, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zhidong Wang, Ronghua Lan
  • Patent number: 10059031
    Abstract: A pre-ceramic support structure for additive manufacturing, that upon thermal processing, is soluble in various solvents.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 28, 2018
    Assignee: Stratasys, Inc.
    Inventors: Benjamin A. Demuth, Adam R. Pawloski
  • Patent number: 8896135
    Abstract: Disclosed is an encapsulation film. An inorganic oxide film is formed on an organic sealing layer by an atomic layer deposition (ALD) to form the encapsulation film, wherein the organic sealing layer is a polymer containing hydrophilic groups. The organic sealing layer and the inorganic oxide layer have covalent bondings therebetween. The encapsulation film can solve the moisture absorption problem of conventional organic sealing layers, thereby being suitable for use as a package of optoelectronic devices.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: November 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Chiun Wang, Kang-Feng Lee, Feng-Yu Tsai, Ming Horn Zheng, Chih-Yung Huang, Shih-Chin Lin, Jen-Rong Huang
  • Patent number: 8829532
    Abstract: Semiconductor layer structure and a method for producing a structure are provided, including a substrate made of semiconductor material, on which a layer made of a second semiconductor material is situated, furthermore a region (3) enriched with impurity atoms, which region is situated either in layer (2) or at a specific depth below the interface between layer (2) and substrate (1), additionally a layer (4) within the region (3) enriched with impurity atoms, which layer comprises cavities produced by ion implantation, furthermore at least one epitaxial layer (6) applied to layer (2) and also a defect region (5) comprising dislocations and stacking faults within the layer (4) comprising cavities, the at least one epitaxial layer (6) being largely crack-free, and a residual strain of the at least one epitaxial layer (6) being less than or equal to 1 GPa.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: September 9, 2014
    Assignee: Siltronic AG
    Inventors: Brian Murphy, Maik Häberlen, Jörg Lindner, Bernd Stritzker
  • Publication number: 20140117530
    Abstract: A device includes a semiconductor material having a first main surface, an opposite surface opposite to the first main surface and a side surface extending from the first main surface to the opposite surface. The device further includes a first electrical contact element arranged on the first main surface of the semiconductor material and a glass material. The glass material includes a second main surface wherein the glass material contacts the side surface of the semiconductor material and wherein the first main surface of the semiconductor material and the second main surface of the glass material are arranged in a common plane.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Alexander Breymesser, Andre Brockmeier, Franz Dielacher, Francisco Javier Santos Rodriguez
  • Publication number: 20140035935
    Abstract: This disclosure provides systems, methods and apparatus for glass via bars that can be used in compact three-dimensional packages, including embedded wafer level packages. The glass via bars can provide high density electrical interconnections in a package. In some implementations, the glass via bars can include integrated passive components. Methods of fabricating glass via bars are provided. In some implementations, the methods can include patterning and etching photo-patternable glass substrates. Packaging methods employing glass via bars are also provided.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ravindra V. Shenoy, Kwan-Yu Lai, Jon Bradley Lasiter, Jonghae Kim, Mario Francisco Velez, Chi Shun Lo, Donald William Kidwell, Philip Jason Stephanou, Justin Phelps Black, Evgeni Petrovich Gousev
  • Patent number: 8581354
    Abstract: An object of the present invention is to enhance the reliability of an MEMS sensor formed on a semiconductor integrated circuit device. To achieve this object, a semiconductor device of the present invention comprises: a semiconductor integrated circuit device; a lower passivation film of silicon nitride, etc. . . . formed on the semiconductor integrated circuit device and having high moisture resistance and high chemical resistance; a MEMS portion formed on the lower passivation film and including a cavity 12; and an upper passivation film 11 formed on the top surface of the MEMS portion such that the MEMS portion is hermetically sealed by the upper and lower passivation films.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: November 12, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Tsukasa Fujimori, Yuko Hanaoka, Hiroshi Fukuda
  • Patent number: 8546815
    Abstract: Disclosed are an SiC semiconductor element and manufacturing method for an SiC semiconductor element in which the interface state density of the interface of the insulating film and the SiC is reduced, and channel mobility is improved. Phosphorus (30) is added to an insulating film (20) formed on an SiC semiconductor (10) substrate in a semiconductor element. The addition of phosphorous to the insulating film makes it possible to significantly reduce the defects (interface state density) in the interface (21) of the insulating film and the SiC, and to dramatically improve the channel mobility when compared with conventional SiC semiconductor elements. The addition of phosphorus to the insulating film is carried out by heat treatment. The use of heat treatment to add phosphorous to the insulating film makes it possible to maintain the reliability of the insulating film, and to avoid variation in channel mobility and threshold voltage.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 1, 2013
    Assignee: National University Corporation Nara Institute of Science and Technology
    Inventors: Hiroshi Yano, Dai Okamoto
  • Patent number: 8492908
    Abstract: Power amplifiers and methods of coating a protective film of alumina (Al2O3) on the power amplifiers are disclosed herein. The protective film is applied through an atomic layer deposition (ALD) process. The ALD process can deposit very thin layers of alumina on the surface of the power amplifier in a precisely controlled manner. Thus, the ALD process can form a uniform film that is substantially free of free of pin-holes and voids.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: July 23, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: John R. Siomkos, Merrill Albert Hatcher, Jr., Jayanti Jaganatha Rao
  • Publication number: 20130119565
    Abstract: A system for and a method of curing a material is provided. A material, such as an underfill material, is rotated during a curing process. The curing system may include a chamber, a holder to support one or more workpieces, and a rotating mechanism. The rotating mechanism rotates the workpieces during the curing process. The chamber may include one or more heat sources and fans, and may further include a controller. The curing process may include varying the rotation speed, continuously rotating, periodically rotating, or the like.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing Ruei Lu, Yu-Chih Liu, Ming-Chung Sung, Wei-Ting Lin, Chien-Kuo Chang
  • Publication number: 20130105999
    Abstract: A semiconductor die is attached to a substrate by a glass frit layer. Gas that might be trapped between the die and the glass frit layer during firing of the glass frit can escape through passages that are formed against the bottom surface of the die by topographies that extend away from and which are substantially orthogonal to the bottom of the die.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
    Inventors: Xiaoyi Ding, Jeffrey James Frye
  • Publication number: 20120292783
    Abstract: This description relates to a semiconductor device including a wafer having a first surface and a second surface opposite to the first surface and a carrier attached to the first surface of the wafer by an adhesive layer, a portion of the adhesive layer adjacent to an edge of the wafer is exposed. The semiconductor device further includes a protection layer to cover the exposed portion of the adhesive layer. The semiconductor device further includes a plurality of dies attached to the second surface and a molding compound encapsulating the plurality of dies.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Chih CHIOU, Weng-Jin WU, Shau-Lin SHUE
  • Patent number: 8313985
    Abstract: Power amplifiers and methods of coating a protective film of alumina (Al2O3) on the power amplifiers are disclosed herein. The protective film is applied through an atomic layer deposition (ALD) process. The ALD process can deposit very thin layers of alumina on the surface of the power amplifier in a precisely controlled manner. Thus, the ALD process can form a uniform film that is substantially free of free of pin-holes and voids.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 20, 2012
    Assignee: RF Micro Devices, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jayanti Jaganatha Rao, John Robert Siomkos
  • Publication number: 20120193768
    Abstract: The present invention provides a multiple layer that comprises two or more first inorganic material layers; and one or more second inorganic material layers that are positioned between the two first inorganic material layers and have the thickness of less than 5 nm, in which the first inorganic material layer is formed of one or more materials that are selected from silicon oxides, silicon carbide, silicon nitride, aluminum nitride and ITO, and the second inorganic material layer is formed of one or more materials that are selected from magnesium, calcium, aluminum, gallium, indium, zinc, tin, barium, and oxides and fluorides thereof, a multiple film that comprises the multiple layer, and an electronic device that comprises the multiple film.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 2, 2012
    Inventors: Jang-Yeon Hwang, Dong-Ryul Kim, Gi-Cheul Kim, Sang-Uk Ryu, Ho-Jun Lee, Seung-Lac Ma, Myeong-Geun Ko, Eun-Sil Lee
  • Publication number: 20120187585
    Abstract: A manufacturing method of a semiconductor device includes: sealing a semiconductor chip with a sealing resin containing a filler; exposing a part of the filler; etching at least a part of the exposed filler; and forming a metal film at least at a part of a surface of the sealing resin including inner surfaces of holes formed at the surface of the sealing resin by the etching.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 26, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Takashi YAMAZAKI
  • Patent number: 8179225
    Abstract: A ceramic electronic component has a chip element body having a conductor arranged inside, external electrodes, and a discrimination layer. The chip element body has first and second end faces facing each other, first and second side faces being perpendicular to the first and second end faces and facing each other, and third and fourth side faces being perpendicular to the first and second end faces and to the first and second side faces and facing each other. The external electrodes are formed on the first and second end faces, respectively, of the chip element body. The discrimination layer is provided on at least one side face out of the first side face and the second side face in the chip element body. The chip element body is comprised of a first ceramic. The discrimination layer is comprised of a second ceramic different from the first ceramic and has a color different from that of the third and fourth side faces.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: May 15, 2012
    Assignee: TDK Corporation
    Inventors: Toshihiro Iguchi, Akitoshi Yoshii, Akira Goshima, Kazuyuki Hasebe
  • Patent number: 8154047
    Abstract: A solid element device includes a solid element, an electric power receiving and supplying part for receiving electric power from and supplying the electric power to the solid element, and an inorganic sealing material for sealing the solid element. The inorganic sealing material includes a low melting glass selected from SiO2—Nb2O5-based, B2O3—F-based, P2O5—F-based, P2O5—ZnO-based, SiO2—B2O3—La2O3-based, and SiO2—B2O3-based low melting glasses.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: April 10, 2012
    Assignees: Toyoda Gosei Co., Ltd., Sumita Optical Glass Inc.
    Inventors: Yoshinobu Suehiro, Mitsuhiro Inoue, Hideaki Kato, Kunihiro Hadame, Ryoichi Tohmon, Satoshi Wada, Koichi Ota, Kazuya Aida, Hiroki Watanabe, Yoshinori Yamamoto, Masaaki Ohtsuka, Naruhito Sawanobori
  • Patent number: 8120124
    Abstract: A method for forming silicon nitride films on semiconductor devices is provided. In one embodiment of the method, a silicon-comprising substrate is first exposed to a mixture of dichlorosilane (DCS) and a nitrogen-comprising gas to deposit a thin silicon nitride seeding layer on the surface, and then exposed to a mixture of silicon tetrachloride (TCS) and a nitrogen comprising gas to deposit a TCS silicon nitride layer on the DCS seeding layer. In another embodiment, the method involves first nitridizing the surface of the silicon-comprising substrate prior to forming the DCS nitride seeding layer and the TCS nitride layer. The method achieves a TCS nitride layer having a sufficient thickness to eliminate bubbling and punch-through problems and provide high electrical performance regardless of the substrate type. Also provided are methods of forming a capacitor, and the resulting capacitor structures.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Patent number: 8058185
    Abstract: Provided are a semiconductor integrated device and a method for fabricating the same. The semiconductor integrated circuit includes a semiconductor substrate including a first dopant, a first conductive layer pattern formed on the semiconductor substrate, an interlayer dielectric layer formed on the first conductive layer pattern, a second conductive layer pattern formed on the interlayer dielectric layer, and a first vacuum ultraviolet (VUV) blocking layer which blocks a VUV ray radiated to the semiconductor substrate.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-ryul Chang, Tae-jung Lee, Sung-hoan Kim, Soo-cheol Lee
  • Patent number: 7999398
    Abstract: A solid state device has a solid state component, a power receiving/supplying portion that mounts the solid state component thereon for receiving/supplying electrical power from/to the solid state component, and a glass sealing portion that seals the solid state component. The glass sealing portion is formed of a B2O3—SiO2—Li2O—Na2O—ZnO—Nb2O5 based glass, which is composed of 21 wt % to 23 wt % of B2O3, 11 wt % to 13 wt % of SiO2, 1 wt % to 1.5 wt % of Li2O, and 2 wt % to 2.5 wt % of Na2O.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 16, 2011
    Assignees: Toyoda Gosei Co., Ltd., Sumita Optical Glass, Inc.
    Inventors: Masaaki Ohtsuka, Naruhito Sawanobori, Kazuya Aida, Hiroki Watanabe, Yoshinobu Suehiro, Seiji Yamaguchi, Koji Tasumi
  • Patent number: 7994646
    Abstract: A semiconductor device is disclosed. One aspect provides a semiconductor device that includes a semiconductor chip including a first face and a second face opposite the first face, an encapsulant including inorganic particles encapsulating the semiconductor chip, a first metal layer attached to the first face of the semiconductor chip, a second metal layer attached the second face of the semiconductor chip, and electrically conducting material configured to connect the first metal layer with the second metal layer.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: August 9, 2011
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Manfred Mengel, Ivan Nikitin
  • Patent number: 7884030
    Abstract: During semiconductor fabrication homogeneous gap-filling is achieved by depositing a thin dielectric layer into the gap, post deposition curing, and then repeating deposition and post deposition curing until gap-filling is completed. Embodiments include depositing a layer of low deposition temperature gap-fill dielectric into a high aspect ratio opening, such as a shallow trench or a gap between closely spaced apart gate electrode structures, as at a thickness of about 10 ? to about 500 ?, curing after deposition, as by UV radiation or by heating at a temperature of about 400° C. to about 1000° C., depositing another layer of low deposition temperature gap-filled dielectric, and curing after deposition. Embodiments include separately depositing and separately curing multiple layers.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 8, 2011
    Assignee: Advanced Micro Devices, Inc. and Spansion LLC
    Inventors: Alexander Nickel, Lu You, Hirokazu Tokuno, Minh Tran, Minh Van Ngo, Hieu Pham, Erik Wilson, Robert Huertas
  • Publication number: 20100148381
    Abstract: A semiconductor device is disclosed. One aspect provides a semiconductor device that includes a semiconductor chip including a first face and a second face opposite the first face, an encapsulant including inorganic particles encapsulating the semiconductor chip, a first metal layer attached to the first face of the semiconductor chip, a second metal layer attached the second face of the semiconductor chip, and electrically conducting material configured to connect the first metal layer with the second metal layer.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Applicant: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Manfred Mengel, Ivan Nikitin
  • Publication number: 20100044889
    Abstract: At least one film composite is laminated on a surface of at least one electrical component. The film composite includes at least one electrically-conducting plastic film with at least one electrically conducting conductor. The electrically-conducting plastic film has a high-ohmic resistance. This method may be used in planar large-surface electrical contacting technology for the production of modules with power semiconductors, where an electrical contacting of the components is achieved by the plastic films. A low lateral electrical conductivity is achieved, such that an electrical charging of the plastic films required for the contacting technology is prevented on operation of the component or the module.
    Type: Application
    Filed: July 10, 2006
    Publication date: February 25, 2010
    Inventors: Laurence Amigues, Michael Kaspar, Herbert Schwarzbauer
  • Publication number: 20100032813
    Abstract: A semiconductor device, such as an integrated circuit, has an oxide chemically grown on a silicon surface, and densified by annealing at, e.g., 950° C. for 4 to 5 seconds in an N2 ambient, or at an equivalent thermal profile in a similarly non-oxidizing ambient. The densified chemical oxide has an etch rate the same as that of thermally grown silicon dioxide in common etchants used in IC fabrication.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Deborah J. Riley, Haowen Bu, Brian Edward Hornung
  • Patent number: 7633158
    Abstract: An electronic component comprising at least two connection elements (2,7,8), each provided with at least one contact surface (13.1, 13.2, 13.3, 9, 10) which is used to fix the electronic component (1) to a surface of a printed circuit board. An at least partially plane cooling surface is formed on the first connection element (2), for placing on a cooling body that is oriented in the direction of the side of the electronic component (1) opposing the printed circuit board. The first connection element (2) has at least one raised area (3.1, 3.2, 3.3) on the side thereof facing the printed circuit board, on which the contact surface (13.1, 13.2, 13.1) of the first connection element (2) is formed. Said first connection element (2) also has at least one recessed area (4, 4?) in which the at least one other connection element (7, 7?; 8, 8?) is arranged.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: December 15, 2009
    Assignee: Rohde & Schwarz GmbH & Co., KG
    Inventors: Christoph Fluhrer, Herbert Schnieder
  • Patent number: 7615506
    Abstract: Tungsten-doped tin-fluorophosphate glasses are described herein which exhibit excellent humidity resistance, thermal resistance, and have a low glass transition temperature which makes them suitable for low temperature sealing applications, such as for encapsulating electronic components. In one embodiment, these glasses comprise 55-75% Sn, 4-14% P, 6-24% O, 4-22% F, and 0.15-15% W on a weight percent elemental basis.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: November 10, 2009
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Shari Elizabeth Koval, Mark Alejandro Quesada
  • Patent number: 7601986
    Abstract: Epitaxial silicon carbide layers are fabricated by forming features in a surface of a silicon carbide substrate having an off-axis orientation toward a crystallographic direction. The features include at least one sidewall that is orientated nonparallel (i.e., oblique or perpendicular) to the crystallographic direction. The epitaxial silicon carbide layer is then grown on the surface of the silicon carbide substrate that includes features therein.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 13, 2009
    Assignee: Cree, Inc.
    Inventors: Christer Hallin, Heinz Lendenmann
  • Patent number: 7550851
    Abstract: A process is described that forms a low resistivity connection between a tungsten layer and a silicon surface with high adherence of the tungsten to the silicon. The silicon surface is plasma-cleaned to remove native oxide. A very thin layer (one or more monolayers) of Si-NH2 is formed on the silicon surface, serving as an adhesion layer. A WNx layer is formed over the Si-NH2 layer, using an atomic layer deposition (ALD) process, to serve as a barrier layer. A thick tungsten layer is formed over the WNx layer by CVD. An additional metal layer (e.g., aluminum) may be formed over the tungsten layer.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 23, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Huong T. Nguyen, Dennis Hausmann
  • Patent number: 7492019
    Abstract: This invention comprises a process for fabricating a micro mechanical structure in a sealed cavity having a multi-layer high stiffness cap. The high stiffness material used for the cap protects the underlying microstructure from destructive environmental forces inherent in the packaging process and from environmental damage.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 17, 2009
    Assignee: IC Mechanics, Inc.
    Inventor: L. Richard Carley
  • Patent number: 7470999
    Abstract: An object of the invention is to provide glass for semiconductor encapsulation and an outer tube for semiconductor encapsulation which are friendly to environment and allow semiconductor electronic parts to have a heat resistance of 700° C. or higher as normal maximum temperature, and semiconductor electronic parts. The glass for semiconductor encapsulation according to the invention contains essentially no lead and the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher. According to such a constitution, since the glass contains essentially no lead, no harmful ingredients are discharged in the production of the outer tube for semiconductor encapsulation and in the production of the semiconductor electronic parts and thus the glass is friendly to environment. Moreover, since the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher, semiconductor electronic parts such as a bead thermistor using the same has a heat resistance of 700° C.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 30, 2008
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Kazuya Saito, Hajime Hikata
  • Publication number: 20080191339
    Abstract: The invention concerns a module comprising a carrier element, a semiconductor device mounted on said carrier element and a silicon-based insulating layer. The silicon-based insulating layer is arranged on the side of the carrier element opposite to the semiconductor device. The invention further concerns a module comprising a semiconductor device, a mold compound at least partly covering the semiconductor device and a silicon-based passivation layer. The silicon-based passivation layer covers at least partly the periphery of the mold compound.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Applicant: Infineon Technologies AG
    Inventors: Raif Otremba, Xaver Schloegel
  • Patent number: 7408227
    Abstract: An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: August 5, 2008
    Assignee: LSI Corporation
    Inventors: Mohammad R. Mirabedini, Valeriy Sukharev
  • Publication number: 20080179751
    Abstract: A manufacturing method for semiconductor devices includes a process of forming a conductive layer 4 on the other principle surface of a semiconductor wafer 10 having circuit elements 2 formed in one principle surface of the semiconductor wafer, a process of forming a protecting layer 5 on at least a part of the conductive layer, the protecting layer 5 being made from material having hard-to-shave characteristics in comparison with the conductive layer and a process of cutting the semiconductor wafer 10 into pieces with respect to each of the semiconductor devices 1. By the manufacturing method, each semiconductor device 1 is provided with a semiconductor substrate 3 having the circuit elements 2 formed in one principle surface of the semiconductor substrate 3, the conductive layer 4 formed on the other principle surface of the semiconductor substrate 3 and the protecting layer 5 formed on the conductive layer 4 in lamination to have hard-to-shave characteristics in comparison with the conductive layer 4.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 31, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki Kitani, Tomohiro Iguchi, Masako Hirahara, Hideo Nishiuchi, Akira Tojo, Taizo Tomioka
  • Patent number: 7402458
    Abstract: An improved window frame and window piece for a micromirror assembly is disclosed herein. The window frame includes a stress-relieving contour positioned in the middle of the frame that can absorb the mechanical stresses applied to the window frame from the ceramic base and from the window piece. The window frame may be comprised of a single piece of sheet metal that has been stamped to include a stress-relieving contour. The stress-relieving contour may be comprised of a variety of shapes, including a “U” shape, an inverted “U” shape, a curved step shape, or other combinations thereof.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Bradley Morgan Haskett, John Patrick O'Connor, Steven E. Smith, Mark Myron Miller, Ivan Kmecko, Jwei Wien Liu, Edward Carl Fisher, Frank O. Armstrong, Daniel C. Estabrook, Jeffrey E. Faris
  • Publication number: 20080164623
    Abstract: In order to fabricate a semiconductor device that can perform at its full capacity, in which (i) a single-crystal silicon integrated circuit is formed on an insulating substrate without an adhesive agent, and (ii) an active region of the single-crystal integrated circuit is not damaged by implantation of hydrogen ions, (a) the single-crystal silicon integrated circuit is formed on the insulating substrate, and (b) the single-crystal silicon integrated circuit is surrounded by an oxide (buried oxide layer made of silicon dioxide).
    Type: Application
    Filed: March 6, 2008
    Publication date: July 10, 2008
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Arinobu Kanegae
  • Publication number: 20080128923
    Abstract: An object of the invention is to provide glass for semiconductor encapsulation and an outer tube for semiconductor encapsulation which are friendly to environment and allow semiconductor electronic parts to have a heat resistance of 700° C. or higher as normal maximum temperature, and semiconductor electronic parts. The glass for semiconductor encapsulation according to the invention contains essentially no lead and the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher. According to such a constitution, since the glass contains essentially no lead, no harmful ingredients are discharged in the production of the outer tube for semiconductor encapsulation and in the production of the semiconductor electronic parts and thus the glass is friendly to environment. Moreover, since the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher, semiconductor electronic parts such as a bead thermistor using the same has a heat resistance of 700° C.
    Type: Application
    Filed: September 29, 2005
    Publication date: June 5, 2008
    Inventors: Kazuya Saito, Hajime Hikata
  • Publication number: 20080061447
    Abstract: The specification discloses an apparatus comprising a die mounted on a substrate, the die being connected to the substrate by a plurality of wires, and a mold cap encapsulating the die and the plurality of wires, the mold cap comprising an electrically insulating portion encapsulating the wires and at least a portion of the die and a thermally conductive portion overmolded on the die and the electrically insulating portion. Also disclosed is a process comprising providing a die connected to a substrate by a plurality of wires, encapsulating the wires and at least a portion of the die in an electrically insulating material, and encapsulating the die, the wires and the electrically insulating material in a thermally conductive material. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: November 14, 2007
    Publication date: March 13, 2008
    Inventors: J. Matayabas, Constance Gettinger
  • Publication number: 20070284699
    Abstract: Microfabricated devices for operation in a fluid that include a substrate that has a first and second surface and a first electrode material layer located over the first surface of the substrate. The devices have a piezoelectric material layer located over the first electrode material layer and a second electrode material layer located over the piezoelectric material layer. The devices also include a layer of isolation material located over the second electrode material layer that at least one of chemically or electrically isolates a portion of the second electrode material layer from a fluid. Some devices include a layer of conductive material located over the layer of isolation material.
    Type: Application
    Filed: April 17, 2007
    Publication date: December 13, 2007
    Applicant: BioScale, Inc.
    Inventors: Michael Miller, Shivalik Bakshi
  • Patent number: 7294909
    Abstract: A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, James G. Balz, Michael Berger, Jerome Cohen, Charles Hendricks, Richard Indyk, Mark LaPlante, David C. Long, Lori A. Maiorino, Arthur G. Merryman, Glenn A. Pomerantz, Robert A. Rita, Krystyna W. Semkow, Patrick E. Spencer, Brian R. Sundlof, Richard P. Surprenant, Donald R. Wall, Thomas A. Wassick, Kathleen M. Wiley
  • Patent number: 7220686
    Abstract: A method is provided for contact opening definition for active element electrical connections. According to the method, a layer of BPSG is formed on a surface of an integrated circuit, and a transparent layer of nitride UV is formed above the layer of BPSG. Preferably, the transparent layer of nitride UV is formed by deposition using an HDP process and has a thickness of less than about 500 ?. In one embodiment, after forming a transparent layer of nitride UV, two overlapped layers of BARC and resist are formed on the surface of the integrated circuit. Also provided is a machine-readable medium encoded with a program for contact opening definition for active element electrical connections.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: May 22, 2007
    Assignee: STMicroelectronics S.r.l.
    Inventor: Luca Pividori
  • Patent number: 7208351
    Abstract: An electronic device, in which a flat plate semiconductor and dumets connected to surface electrodes on the front and back surfaces of the semiconductor and to lead wires are encapsulated in a glass tube.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 24, 2007
    Assignee: Hitachi, Ltd.
    Inventor: Mitsuo Usami
  • Publication number: 20070059870
    Abstract: A method for forming a carbon-containing silicon nitride layer with superior uniformity by low pressure chemical vapor deposition (LPCVD) using disilane, ammonia and at least one carbon-source precursor as reactant gases is provided.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 15, 2007
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Lun Cheng
  • Patent number: 7163838
    Abstract: An improved method for fabricating a window frame/window piece assembly is disclosed in this application. A window frame having an opening in its inner portion is provided. According to one aspect, the window frame can be formed from a unitary piece of sheet metal. A transparent piece is attached to the inner portion of the window frame through a molding process. According to one embodiment, the window frame is placed within a mold such that the inner portion of the window frame projects into an inner cavity inside the mold. After the mold has been closed, a transparent material is injected into the inner cavity so that it bonds with the inner portion of the window frame. After the bond of between the transparent material and the window frame is set, the window frame/window piece assembly is removed from the mold. According to another embodiment, a plurality of window frames may be loaded into a single mold so that a plurality of window frame/window piece assemblies can be fabricated in a single batch.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: January 16, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Bradley M. Haskett, John Patrick O'Connor, Jwei Wien Liu
  • Patent number: 7160802
    Abstract: A process is described that forms a low resistivity connection between a tungsten layer and a silicon surface with high adherence of the tungsten to the silicon. The silicon surface is plasma-cleaned to remove native oxide. A very thin layer (one or more monolayers) of Si—NH2 is formed on the silicon surface, serving as an adhesion layer. A WNx layer is formed over the Si—NH2 layer, using an atomic layer deposition (ALD) process, to serve as a barrier layer. A thick tungsten layer is formed over the WNx layer by CVD. An additional metal layer (e.g., aluminum) may be formed over the tungsten layer.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: January 9, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Huong T. Nguyen, Dennis Hausmann
  • Publication number: 20060226524
    Abstract: In one embodiment, a package for a micro-device includes a substrate, a transparent material covering the substrate, and a bond ring bonding the transparent material to the substrate. The bond ring comprises a silicon oxide layer on one of the substrate or the transparent material bonded to a silicon layer on the other of the substrate or the transparent material.
    Type: Application
    Filed: April 12, 2005
    Publication date: October 12, 2006
    Inventors: Chien-Hua Chen, Henry Kang, Bradley John