Ferroelectric Non-volatile Memory Structure (epo) Patents (Class 257/E27.104)
  • Patent number: 7808024
    Abstract: A ferroelectric polymer memory module includes a first set of layers including: a first ILD layer defining trenches therein; a first electrode layer disposed in the trenches of the first ILD layer; a first conductive polymer layer disposed on the first electrode layer and in the trenches of the first ILD layer; and a ferroelectric polymer layer disposed on the first conductive polymer layer and in the trenches of the first ILD layer; and a second set of layers disposed on the first set of layers to define memory cells therewith, the second set of layers including: a second ILD layer defining trenches therein; a second conductive polymer layer disposed in the trenches of the second ILD layer; and a second electrode layer disposed on the second conductive polymer layer.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 5, 2010
    Assignee: Intel Corporation
    Inventors: Lee D. Rockford, Ebrahim Andideh
  • Patent number: 7807995
    Abstract: A nonvolatile semiconductor memory apparatus 25 comprises a semiconductor substrate 11, a lower-layer wire 12 formed on the semiconductor substrate 11, an upper-layer wire 20 formed above the lower-layer wire 12 to cross the lower-layer wire 12, an interlayer insulating film 13 provided between the lower-layer wire 12 and the upper-layer wire 20, and a resistance variable layer 15 which is embedded in a contact hole 14 formed in the interlayer insulating film 13 and is electrically connected to the lower-layer wire 12 and the upper-layer wire 20. The upper-layer wire 20 includes at least two layers which are a lowermost layer 21 made of an electrically-conductive material having a hydrogen barrier property and an electric conductor layer 22 having a specific resistance which is lower than a specific resistance of the lowermost layer 21.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: October 5, 2010
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Takesi Takagi
  • Publication number: 20100244163
    Abstract: A magnetoresistive element includes a stabilization layer, a nonmagnetic layer, a spin-polarization layer provided between the stabilization layer and the nonmagnetic layer, the spin-polarization layer having magnetic anisotropy in a perpendicular direction, and a magnetic layer provided on a side of the nonmagnetic layer opposite to a side on which the spin-polarization layer is provided. The stabilization layer has a lattice constant smaller than that of the spin-polarization layer in an in-plane direction. The spin-polarization layer contains at least one element selected from a group consisting of cobalt (Co) and iron (Fe), has a body-centered tetragonal (BCT) structure, and has a lattice constant ratio c/a of 1.10 (inclusive) to 1.35 (inclusive) when a perpendicular direction is a c-axis and an in-plane direction is an a-axis.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 30, 2010
    Inventors: Tadaomi Daibou, Toshihiko Nagase, Eiji Kitagawa, Masatoshi Yoshikawa, Katsuya Nishiyama, Makoto Nagamine, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100243994
    Abstract: Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 30, 2010
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sung Min Yoon, Shin Hyuk Yang, Soon Woon Jung, Seung Youl Kang, Doo Hee Cho, Chun Won Byun, Chi Sun Hwang, Byoung Gon Yu, Kyoung Ik Cho
  • Patent number: 7790476
    Abstract: A method for fabricating a ferroelectric memory device, including terminating a surface of the interlayer insulation film and a surface of the contact plug with an OH group; forming a layer containing Si, oxygen and a CH group on the surface of the interlayer insulation film and the contact hole terminated with the OH group by coating a Si compound containing a Si atom and a CH group in a molecule thereof; converting the layer containing Si, oxygen and the CH group to a layer containing nitrogen at a surface thereof, by substituting the CH group in the layer containing Si, oxygen and the CH group at least at a surface part thereof with nitrogen atoms; and forming a layer showing self-orientation on the surface containing nitrogen.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 7, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 7781230
    Abstract: An electro-resistance element that has a different configuration from conventional elements and is excellent in both affinity with semiconductor manufacturing processes and resistance change characteristics is provided. An electro-resistance element has two or more states in which electric resistance values between a pair of electrodes and is switchable from one of the two or more states into another by applying a predetermined voltage or current between the electrodes.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Panasonic Corporation
    Inventors: Akihiro Odagawa, Yoshihisa Nagano
  • Patent number: 7781816
    Abstract: A nonvolatile magnetic memory device including a magnetoresistance device having a recording layer formed of a ferromagnetic material for storing information by use of variation in resistance depending on the magnetization inversion state. The plan-view shape of the recording layer includes a pseudo-rhombic shape having four sides, at least two of the four sides each include a smooth curve having a central portion curved toward the center of the pseudo-rhombic shape. The easy axis of magnetization of the recording layer is substantially parallel to the longer axis of the pseudo-rhombic shape. The hard axis of magnetization of the recording layer is substantially parallel to the shorter axis of the pseudo-rhombic shape. The sides constituting the plan-view shape of the recording layer are smoothly connected to each other.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: August 24, 2010
    Assignee: Sony Corporation
    Inventor: Hajime Yamagishi
  • Patent number: 7781812
    Abstract: After forming an interlayer insulating film (14) covering a ferroelectric capacitor, a hydrogen diffusion preventing film (18), an etching stopper (19) and an interlayer insulating film (20) are formed. Then, a wiring having a tantalum nitride (TaN) film (21) (barrier metal film) and a copper (Cu) film (22) is formed in the interlayer insulating film (20) by a single damascene method. Thereafter, a wiring having a copper film (29) and a wiring having a copper film (36) and the like are formed by a dual damascene method.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 24, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazutoshi Izumi
  • Patent number: 7781284
    Abstract: There is provided a semiconductor device which comprises a first interlayer insulating film (first insulating film) formed over a silicon (semiconductor) substrate, a capacitor formed on the first interlayer insulating film and having a lower electrode, a dielectric film, and an upper electrode, a fourth interlayer insulating film (second insulating film) formed over the capacitor and the first interlayer insulating film, and a metal pattern formed on the fourth interlayer insulating film over the capacitor and its periphery to have a stress in an opposite direction to the fourth interlayer insulating film. As a result, characteristics of the capacitor covered with the interlayer insulating film can be improved.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: August 24, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 7776621
    Abstract: An IrOx film of a thickness of 50 nm is formed on a PZT film by a sputtering method. The value of x is less than 2. Namely, an unsaturated iridium oxide film is formed. By performing RTA, the PZT film is completely crystallized. Thereafter, an IrOY film of a thickness of 50 nm to 100 nm is formed on the IrOX film by a sputtering method. The composition of IrOY is made a composition closer to the stoichiometric composition of IrO2 than the composition of IrOX (X<Y?2). This is because by adopting such a composition, the catalytic action to hydrogen is suppressed, the problem of the PZT film being reduced by hydrogen radicals is suppressed and hydrogen endurance of the ferroelectric capacitor is enhanced. An SrXRuYO3 film in an amorphous state with a thickness of about 20 nm is formed on IrOY film by a sputtering method.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: August 17, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7776622
    Abstract: A semiconductor device fabrication method that improves the efficiency of semiconductor device production. A plurality of wafer substrates are set and a process for fabricating semiconductor devices each having a ferroelectric capacitor is begun. After ferroelectric layers are formed over the plurality of wafer substrates, the ferroelectric layers formed are damaged. The plurality of wafer substrates are then rearranged and treatment is performed. In each step in which the ferroelectric layers formed may be damaged, the plurality of wafer substrates are rearranged and treatment is performed. As a result, retention characteristic variations among wafer substrates in the same lot are reduced and the productivity of semiconductor devices is improved.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 17, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7777215
    Abstract: A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 ?, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 17, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Wei-Chih Chien, Kuo-Pin Chang, Erh-Kun Lai, Kuang Yeu Hsieh
  • Patent number: 7777262
    Abstract: An interlayer insulating film made of insulating material is formed on a semiconductor substrate. A hydrogen diffusion barrier film is formed on the interlayer insulating film, the hydrogen diffusion barrier film being made of material having a higher hydrogen diffusion barrier function than a hydrogen diffusion barrier function of material of the interlayer insulating film. The semiconductor substrate formed with the interlayer insulating film and hydrogen diffusion barrier film is thermally treated. In the process of forming the interlayer insulating film, the interlayer insulating film is formed under the condition that a moisture content becomes 5×10?3 g/cm3 or lower. Even if annealing is performed after the hydrogen diffusion barrier film is formed, a crack is hard to be formed in the underlying interlayer insulating film.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: August 17, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazutoshi Izumi
  • Publication number: 20100200900
    Abstract: A magnetoresistive element of an aspect of the present invention including a lower electrode provided on an insulating layer on a semiconductor substrate, a first ferromagnetic layer provided on the lower electrode, a first tunnel barrier layer provided on the first ferromagnetic layer, a second ferromagnetic layer provided on the first tunnel barrier layer, and an upper electrode provided on the second ferromagnetic layer, wherein the upper electrode has a hexagonal cross-sectional shape, and a maximum size of the upper electrode in a first direction is larger than a size of the first tunnel barrier layer in the first direction, the first direction being horizontal relative to a surface of the semiconductor substrate.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 12, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masayoshi Iwayama
  • Patent number: 7768050
    Abstract: Ferroelectric structures and methods of making the structures are presented. The ferroelectric structures can include an electrode in contact with a ferroelectric thin film. The contact can be arranged so that a portion of the atoms of the ferroelectric thin film are in contact with at least a portion of the atoms of the electrode. The electrode can be made of metal, a metal alloy, or a semiconducting material. A second electrode can be used and placed in contact with the ferroelectric thin film. Methods of making and using the ferroelectric structures are also presented.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 3, 2010
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Andrew Marshall Rappe, Na Sai, Alexie Michelle Kolpak
  • Patent number: 7763921
    Abstract: The present invention provides a semiconductor device which is characterized as follows. The semiconductor device includes: an interlayer insulating film formed above a semiconductor substrate and provided with a hole above an impurity diffusion region; a conductive plug formed in the hole and electrically connected to the impurity diffusion region; a conductive oxygen barrier film formed on the conductive plug and the interlayer insulating film around the conductive plug; a conductive anti-diffusion film formed on the conductive oxygen barrier film; and a capacitor that has a lower electrode which is formed on the conductive anti-diffusion film and which exposes platinum or palladium on the upper surface, a capacitor dielectric film made of a ferroelectric material, and an upper electrode. The conductive anti-diffusion film is made of a non-oxide conductive material for preventing the diffusion of the constituent element of the capacitor dielectric film.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: July 27, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 7763545
    Abstract: In a semiconductor device manufacturing method having the etching step of an electrode material film constituting a capacitor using ferroelectric substance or high- dielectric substance, etching of a conductive film that acts as an electrode of the capacitor formed over a semiconductor substrate is carried out in an atmosphere containing bromine, and a heating temperature of the semiconductor substrate is set in a range of 300° C. to 600° C., otherwise etching of at least the conductive film is carried out in an atmosphere to which only hydrogen bromide and oxygen are supplied from an outside.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: July 27, 2010
    Assignees: Fujitsu Semiconductor Limited, ULVAC, Inc.
    Inventors: Hideaki Kikuchi, Genichi Komuro, Mitsuhiro Endo, Naoki Hirai
  • Publication number: 20100176429
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 15, 2010
    Inventors: Po-Kang Wang, Yimin Guo, Cheng T. Horng, Tai Min, Ru-Ying Tong
  • Patent number: 7755077
    Abstract: A semiconductor memory device includes the first transistor having first and second source/drain diffusion regions positioned below a second bit line to sandwich the first word line therebetween, and the second source/drain diffusion region positioned between the first and second word lines and connected to a first bit line, a second transistor having second and third source/drain diffusion regions positioned below the second bit line to sandwich the second word line therebetween, a first resistive memory element formed below the second bit line above the first source/drain diffusion region, and having terminals connected to the second bit line and the first source/drain diffusion region, and a second resistive memory element formed below the second bit line above the third source/drain diffusion region, and having terminals connected to the second bit line and the third source/drain diffusion region.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tsuneo Inaba
  • Patent number: 7755125
    Abstract: A semiconductor device includes a ferroelectric capacitor formed above the lower interlevel insulating film covering a MOS transistor formed on a semiconductor substrate, including lamination of a lower electrode, an oxide ferroelectric film, a first upper electrode made of conductive oxide having a stoichiometric composition AOx1 and an actual composition AOx2, a second upper electrode made of conductive oxide having a stoichiometric composition BOy1 and an actual composition BOy2, where y2/y1>x2/x1, and a third upper electrode having a composition containing metal of the platinum group; and a multilayer wiring structure formed above the lower ferroelectric capacitor, and including interlevel insulating films and wirings. Abnormal growth and oxygen vacancies can be prevented which may occur when the upper electrode of the ferroelectric capacitor is made of a conductive oxide film having a low oxidation degree and a conductive oxide film having a high oxidation degree.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 13, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Wensheng Wang
  • Patent number: 7750383
    Abstract: According to an aspect of the present invention, there is provided a semiconductor apparatus including a semiconductor substrate, a transistor formed on the semiconductor substrate, an insulating film disposed on the semiconductor substrate, a ferroelectric capacitor and an upper mask. The ferroelectric capacitor includes a lower electrode disposed on the insulating film, a ferroelectric film disposed on the lower electrode and an upper electrode disposed on the ferroelectric film. The upper mask includes a hard mask disposed on the upper electrode and a sidewall mask disposed on at least part of a sidewall of the hard mask.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Kanaya
  • Patent number: 7750335
    Abstract: A structure including a phase change material and a related method are disclosed. The structure may include a first electrode; a second electrode; a third electrode; a phase change material electrically connecting the first, second and third electrodes for passing a first current through two of the first, second and third electrodes; and a refractory metal barrier heater layer about the phase change material for converting the phase change material between an amorphous, insulative state and a crystalline, conductive state by application of a second current to the phase change material. The structure may be used as a fuse or a phase change material random access memory (PRAM).
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Bruce G. Elmegreen, Deok-Kee Kim, Chandrasekharan Kothandaraman, Lia Krusin-Elbaum, Chung H. Lam, Dennis M. Newns
  • Publication number: 20100163943
    Abstract: A memory includes a first interlayer on transistors; a first and second plugs connected to the transistor; ferroelectric capacitors; a second interlayer covering a side surface of the capacitor; a local interconnection connecting the second plug to the upper electrode, wherein two upper electrodes adjacent to each other on the second plug are connected to the second plug, the lower electrodes adjacent to each other on the first plug are connected to the first plug, cell blocks comprising the connected capacitors are arranged, cell blocks adjacent to each other are arranged to be shifted by a half pitch of the local interconnection, a first gap between two capacitors adjacent to each other on the second plug is larger than twice a thickness of the second interlayer, and a second gap between the cell blocks adjacent to each other is smaller than twice the thickness of the second interlayer.
    Type: Application
    Filed: September 14, 2009
    Publication date: July 1, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tohru Ozaki
  • Patent number: 7745868
    Abstract: A semiconductor device may include a MOS transistor having source and drain regions in a semiconductor substrate, a first inter-layer insulator having first contact holes that reach the source and drain regions over the MOS transistor. Cell contact plugs in the first contact holes contact with the source and drain regions. A second inter-layer insulator over the first inter-layer insulator and the cell contact plugs has second contact holes that reach the cell contact plugs. Contact plugs each have first and second portions. The first portion is in the second contact hole. The second portion extends over the first second inter-layer insulator. Metal barrier layers cover the upper surfaces of the second portions of the contact plugs. Capacitors each have a bottom electrode layer, a capacitive insulating layer and a top electrode layer. The bottom electrode layers each have a contact portion that contacts with the metal barrier layer.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: June 29, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Masahiko Ohuchi
  • Patent number: 7745827
    Abstract: Conventionally, the layer of the insulator between a cathode and an anode is formed by a droplet discharge method, vapor deposition, or the like separately from an interlayer insulating film formed over a thin film transistor, which creates problems of increase in cost and the number of manufacturing steps. A memory device of the present invention includes a first conductive film; an insulating film formed over the first conductive film; and a second conductive film formed over the insulating film, and an opening and a contact hole which are formed in the insulating film. Further, the insulating film exists between the first conductive film and the second conductive film formed in the opening, and the first conductive film and the second conductive film are electrically connected in the contact hole.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: June 29, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 7745863
    Abstract: A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: June 29, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Charles Thomas Black, Alfred Grill, Randy William Mann, Deborah Ann Neumayer, Wilbur David Pricer, Katherine Lynn Saenger, Thomas McCarroll Shaw
  • Patent number: 7741668
    Abstract: A nonvolatile ferroelectric memory device is provided so as to control read/write operations of a nonvolatile memory cell using a channel resistance of the memory cell which is differentiated by polarity states of a ferroelectric material. In the memory device, an insulating layer is formed on a bottom word line, and a floating channel layer comprising a N-type drain region, a P-type channel region and a N-type source region is formed on the insulating layer. Then, a ferroelectric layer is formed on the floating channel layer, and a word line is formed on the ferroelectric layer. As a result, the resistance state induced to the channel region is controlled depending on the polarity of the ferroelectric layer, thereby regulating the read/write operations of the memory cell array.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hee Bok Kang, Jin Hong Ahn, Jae Jin Lee
  • Patent number: 7727777
    Abstract: In accordance with some embodiments, a ferroelectric polymer memory may be formed of a plurality of stacked layers. Each layer may be separated from the ensuing layer by a polyimide layer. The polyimide layer may provide reduced layer-to-layer coupling, and may improve planarization after the lower layer fabrication.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 1, 2010
    Inventors: Ebrahim Andideh, Mark Isenberger, Michael Leeson, Mani Rahnama
  • Patent number: 7728369
    Abstract: A nonvolatile ferroelectric memory device is provided so as to control read/write operations of a nonvolatile memory cell using a channel resistance of the memory cell which is differentiated by polarity states of a ferroelectric material. In the memory device, an insulating layer is formed on a bottom word line, and a floating channel layer comprising a N-type drain region, a P-type channel region and a N-type source region is formed on the insulating layer. Then, a ferroelectric layer is formed on the floating channel layer, and a word line is formed on the ferroelectric layer. As a result, the resistance state induced to the channel region is controlled depending on the polarity of the ferroelectric layer, thereby regulating the read/write operations of the memory cell array.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: June 1, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hee Bok Kang, Jin Hong Ahn, Jae Jin Lee
  • Publication number: 20100123176
    Abstract: A semiconductor memory device has a plurality of first cell selection MOS transistors of a first conductivity type formed on a first element region and connected in series between a bit line and a plate line; a plurality of first ferroelectric capacitors connected to the first cell selection MOS transistors in parallel in one-to-one correspondence; a plurality of second cell selection MOS transistors of the first conductivity type formed on a second element region and connected in series between a bit line and a plate line; and a plurality of second ferroelectric capacitors connected to the second cell selection MOS transistors in parallel in one-to-one correspondence, wherein the first ferroelectric capacitors and the second ferroelectric capacitors are disposed alternately on the first element region and the second element region in the first direction.
    Type: Application
    Filed: September 21, 2009
    Publication date: May 20, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Jun Nishimura
  • Patent number: 7713754
    Abstract: This disclosure relates to amorphous ferroelectric memory devices and methods for forming them.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: May 11, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert Bicknell, Timothy Mellander
  • Publication number: 20100110754
    Abstract: A data storage device comprising a ferroelectric layer, a perovskite structure, and at least one sensor, where the perovskite structure has a polarity discontinuity configured to generate capacitance voltages in the perovskite structure based on polarization charges of the ferroelectric material, and where the at least one sensor is configured to read the capacitance voltages from the perovskite structure.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 6, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Shan Hu, Tong Zhao, Florin Zavaliche, Joachim Ahner, Stephen John Wrazien, Martin Gerard Forrester
  • Publication number: 20100102370
    Abstract: A non-volatile memory device including a ferroelectric capacitor is disclosed. A method of manufacturing a non-volatile memory device including a ferroelectric capacitor is also disclosed. A first electrode is formed on an insulating film provided on a semiconductor substrate. A first ferroelectric film is formed on the first electrode. The first ferroelectric film has a convexo-concave surface portion. A second ferroelectric film is formed on the first ferroelectric film so as to bury the convexo-concave surface portion. The second ferroelectric film has a surface flatter than that of the first ferroelectric film. A second electrode is formed on the second ferroelectric film. A protective film is formed at least on a portion of an upper surface of the second electrode. The protective film serves as a barrier against hydrogen.
    Type: Application
    Filed: December 31, 2009
    Publication date: April 29, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroyuki KANAYA
  • Publication number: 20100078693
    Abstract: The semiconductor device according to the present invention includes a ferroelectric film and an electrode stacked on the ferroelectric film. The electrode has a multilayer structure of an electrode lower layer in contact with the ferroelectric film and an electrode upper layer stacked on the electrode lower layer. The electrode upper layer is made of a conductive material having an etching selection ratio with respect to the materials for the ferroelectric film and the electrode lower layer. The upper surface of the electrode upper layer is planarized.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 1, 2010
    Applicant: ROHM CO., LTD.
    Inventor: Yuichi Nakao
  • Publication number: 20100072527
    Abstract: A semiconductor memory device includes: a transistor on a semiconductor substrate; an interlayer dielectric film covering the transistor; a ferroelectric capacitor comprising a first upper electrode, a ferroelectric film, and a lower electrode on the interlayer dielectric film; a contact plug which is in the interlayer dielectric film and electrically connects the lower electrode to the transistor; a second upper electrode on the first upper electrode, a side surface of the second upper electrode being formed in a forward tapered shape; and an interconnection electrically connected via the second upper electrode to the first upper electrode.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 25, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tohru OZAKI
  • Publication number: 20100052022
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile memory including: a cell transistor including: a gate electrode and first and second diffusion layers; a second insulating film covering the cell transistor; first and second plugs penetrating the second insulating film to reach the first and second diffusion layers, respectively; a ferroelectric capacitor having a ferroelectric film and first and second electrodes, the first electrode contacting with the first plug; a first conductive spacer contacting with the second plug and including the same material as the first electrode; a third insulating film covering side faces of the first electrode, the ferroelectric film and the first conductive spacer; and a first wiring that is continuously formed with the second electrode and connected to the first conductive spacer and that includes the same material as the second electrode.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yoshinori Kumura
  • Patent number: 7667252
    Abstract: To provide a semiconductor nonvolatile storage device capable of applying distributed voltage efficiently to a ferroelectric capacitor in a semiconductor nonvolatile storage device having an MFMIS structure without enlarging a memory cell area and a method of fabricating the same, a ferroelectric nonvolatile storage element is constructed by a structure successively laminated with a first insulator layer (3), a first conductor layer (4), a ferroelectric layer (5) and a second conductor layer (6) on a channel region and is constructed by a structure having a third conductor (9) and a fourth conductor (10) respectively laminated on a source region and a drain region, in which the third conductor (9) and the fourth conductor (10) are opposed to each other via the first conductor layer (4) and a second insulator thin film (11).
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 23, 2010
    Assignees: National Institute of Advanced Industrial Science and Technology, SEIKO NPC Corporation
    Inventors: Shigeki Sakai, Kazuo Sakamaki
  • Patent number: 7663171
    Abstract: It is possible to reduce a current required for spin injection writing. A magneto-resistance effect element includes: a first magnetization pinned layer; a magnetization free layer; a tunnel barrier layer; a second magnetization pinned layer whose direction of magnetization is pinned to be substantially anti-parallel to the direction of magnetization of the first magnetization pinned layer, and; a non-magnetic layer.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoaki Inokuchi, Yoshiaki Saito, Hideyuki Sugiyama
  • Publication number: 20100012994
    Abstract: A semiconductor storage device has the ferroelectric capacitor has: a capacitor film formed above the MOS transistor with an interlayer insulating film interposed therebetween; a first capacitor electrode electrically connected to a source region of the MOS transistor and formed in contact with one side wall of the capacitor film; and a second capacitor electrode electrically connected to a drain region of the MOS transistor and formed in contact with the other side wall of the capacitor film, and the capacitor film is composed of a film stack including a plurality of films including a first insulating film intended to orient a film formed on an upper surface thereof in a predetermined direction and a ferroelectric film formed on the first insulating film to be oriented in a direction perpendicular to the semiconductor substrate.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 21, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tohru OZAKI, Iwao KUNISHIMA, Yoshinori KUMURA
  • Patent number: 7646050
    Abstract: A semiconductor device includes a semiconductor substrate, a first electrode that is formed over said semiconductor substrate, a capacitive insulating film that is formed on the first electrode and is made of a metal oxide ferroelectric, a second electrode that is formed on the capacitive insulating film, an insulating film that has a first opening exposing a portion of an upper side of the second electrode and is formed so that it covers the first electrode, the capacitive insulating film, and the second electrode, a first barrier film having an amorphous structure which is formed inside the first opening and on the insulating film, and a wiring film that is formed over the first barrier film.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 12, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Kazuhide Abe
  • Patent number: 7635885
    Abstract: An interlayer insulating film (14) covering a ferroelectric capacitor is formed and a contact hole (19) reaching a top electrode (11a) is formed in the interlayer insulating film (14). An Al wiring (17) connected to the top electrode (11a) via the contact hole (19) is formed on the interlayer insulating film (14). A planar shape of the contact hole (19) is an ellipse.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 22, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Kouichi Nagai
  • Publication number: 20090302363
    Abstract: Provided is a semiconductor device that includes: a base insulating film 25 formed above a silicon substrate 10; a ferroelectric capacitor Q formed on the base insulating film 25; multiple interlayer insulating films 35, 48, and 62, and metal interconnections 45, 58, and 72 which are alternately formed on and above the capacitor Q; and conductive plugs 57 which are respectively formed inside holes 54a provided in the interlayer insulating films 48 and are electrically connected to the metal interconnections 45. In the semiconductor device, a first capacitor protection insulating film 50 is formed on an upper surface of the interlayer insulating film 48 by sequentially stacking a first insulating metal oxide film 50a, an intermediate insulating film 50b having a relative dielectric constant lower than that of the interlayer insulating film 48, and a second insulating metal oxide film 50c; and the holes 54a are also formed in the first capacitor protection insulating film 50.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Kouichi Nagai
  • Publication number: 20090302362
    Abstract: A lower electrode film, a ferroelectric film, and an upper electrode film are formed on an insulation film covering a transistor formed on a semiconductor substrate. Furthermore, a Pt film is formed as a cap layer on the upper electrode film. Then, a hard mask (a TiN film and an SiO2 film) of a predetermined pattern is formed on the Pt film, and the Pt film and the upper electrode film are etched. Then, an insulating protective film is formed on an entire surface, and a side surface of the upper electrode film is covered with the insulating protective film. Next, the ferroelectric film and the lower electrode film are etched, thus forming a ferroelectric capacitor.
    Type: Application
    Filed: August 14, 2009
    Publication date: December 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Hideaki Kikuchi, Kouichi Nagai
  • Patent number: 7629635
    Abstract: A semiconductor memory includes a conducting film formed on a substrate; a ferroelectric film formed above or below the conducting film; a source electrode and a drain electrode disposed in positions opposing the conducting film with the ferroelectric film sandwiched therebetween and spaced from each other; and an insulating film formed between the source electrode and the drain electrode.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Kazuhiro Kaibara, Shinzo Koyama, Yoshihisa Kato
  • Publication number: 20090290404
    Abstract: A memory cell includes a memory element including a MFSFET having a gate insulating film made of a ferroelectric film, and a selection switching element including a MISFET having a gate insulating film made of a paraelectric film. A load element for a read operation is connected in series to the memory cell. The ferroelectric film and the paraelectric film are stacked with a semiconductor film being interposed therebetween. The semiconductor film forms a common channel shared by the MFSFET and the MISFET. The load element includes a MISFET having a channel made of the semiconductor film or a resistance element having a resistor made of the semiconductor film.
    Type: Application
    Filed: March 17, 2009
    Publication date: November 26, 2009
    Inventors: Yukihiro KANEKO, Yoshihisa Kato
  • Patent number: 7619268
    Abstract: Memory element consisting of an electrode (2), a ferroelectric layer (3) adjoining the latter, a layer (4) made from non-ferroelectric material adjoining the ferroelectric layer (3) and an electrode (5) adjoining the layer (4) made from non-ferroelectric material, wherein the ferroelectric layer is at least 10 nanometers thick, the electrical resistance, which is formed by the non-ferroelectric layer and the ferroelectric layer, depends upon the direction of polarization in the ferroelectric layer, and wherein the memory element comprises means for measuring the electrical resistance of the non-ferroelectric layer and the ferroelectric layer.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: November 17, 2009
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Herman Kohlstedt, Rene Meyer
  • Publication number: 20090280578
    Abstract: A ferroelectric memory device includes a field effect transistor formed on a semiconductor substrate, an interlayer insulation film formed on the semiconductor substrate so as to cover the field effect transistor, a conductive plug formed in the interlayer insulation film in contact with the first diffusion region, and a ferroelectric capacitor formed over the interlayer insulation in contact with the conductive plug, wherein the ferroelectric capacitor includes a ferroelectric film and upper and lower electrodes sandwiching the ferroelectric film respectively from above and below, the lower electrode being connected electrically to the conductive plug, a layer containing oxygen being interposed between the conductive plug and the lower electrode, a layer containing nitrogen being interposed between the layer containing oxygen and the lower electrode, a self-aligned layer being interposed between the layer containing nitrogen and the lower electrode.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 12, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Naoya SASHIDA
  • Patent number: 7615771
    Abstract: Solid-state memories are disclosed that are comprised of cross-point memory arrays. The cross-point memory arrays include a first plurality of electrically conductive lines and a second plurality of electrically conductive lines that cross over the first plurality of electrically conductive lines. The memory arrays also include a plurality of memory cells located between the first and second conductive lines. The memory cells are formed from a metallic material, such as FeRh, having the characteristic of a first order phase transition due to a change in temperature. The first order phase transition causes a corresponding change in resistivity of the metallic material.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: November 10, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Robert E. Fontana, Jr., Eric E. Fullerton, Stefan Maat, Jan-Ulrich Thiele
  • Patent number: 7615814
    Abstract: A semiconductor memory device includes: a first conductive layer; a second conductive layer; a first insulating film; a first plug; a second plug; a second insulating film having a first opening and a second opening; a first metal film; a second metal film; a first capacitor insulating film formed on the first metal film; a second capacitor insulating film formed on the second metal film; and a third metal film. The second metal film is formed so that an end thereof located away from the first opening extends onto the top surface of the second insulating film. The second metal film is connected at its extending portion to the third metal film.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: November 10, 2009
    Assignee: Panasonic Corporation
    Inventors: Atsushi Noma, Toyoji Ito
  • Patent number: 7612398
    Abstract: A semiconductor storage device wherein a plurality of ferroelectric capacitors are sufficiently covered with a hydrogen barrier film formed thereon comprises a field effect transistor formed on one surface side of a semiconductor substrate, a plurality of ferroelectric capacitors formed close to each other above the field effect transistor, an insulting film configured to cover the plurality of ferroelectric capacitors and planarised a space between adjacent ferroelectric capacitors in a self-aligned manner during formation thereof, and a hydrogen barrier film formed on the insulating film.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: November 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Kumura, Yoshiro Shimojo, Iwao Kunishima, Tohru Ozaki