Charge Coupled Imager (epo) Patents (Class 257/E27.15)
  • Publication number: 20120154650
    Abstract: A solid-state image sensor includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type that is arranged to contact a lower face of the first semiconductor region and functions as a charge accumulation region, a third semiconductor region including side faces surrounded by the second semiconductor region, a fourth semiconductor region of the second conductivity type that is arranged apart from the second semiconductor region, and a transfer gate that forms a channel to transfer charges accumulated in the second semiconductor region to the fourth semiconductor region. The third semiconductor region is one of a semiconductor region of the first conductivity type and a semiconductor region of the second conductivity type whose impurity concentration is lower than that in the second semiconductor region.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 21, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Mahito Shinohara
  • Publication number: 20120147241
    Abstract: A solid-state imaging device includes a substrate with oppositely facing first surface and second surfaces, light being received through the second surface; a wiring layer on the first surface; a photodetector in the substrate; a charge accummulation region between the second surface and the photodetector; and an insulating layer over the second surface, the insulating layer have a region that is at least partially crystallized.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: SONY CORPORATION
    Inventors: Tetsuji Yamaguchi, Yasushi Maruyama, Takashi Ando, Susumu Hiyama, Yuko Ohgishi
  • Publication number: 20120132965
    Abstract: A plurality of transistors in which ratios of a channel length L to a channel width W, ?=W/L, are different from each other is provided in parallel as output side transistors 105a to 105c in a current mirror circuit 101 which amplifies a photocurrent of a photoelectric conversion device and an internal resistor is connected to each of the output side transistors 105a to 105c in series. The sum of currents which flow through the plurality of transistors and the internal resistor is output, whereby a transistor with large amount of ? can be driven in a linear range with low illuminance, and a transistor with small amount of ? can be driven in a linear range with high illuminance, so that applicable illuminance range of the photoelectric conversion device can be widened.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 31, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideaki Shishido, Atsushi Hirose
  • Patent number: 8173476
    Abstract: There is provided an image pickup device, including a photoelectric conversion element converting light into charges, a transfer gate for transferring the converted charges to a floating node, a source follower transistor for outputting a signal based on a voltage of the floating node to a signal line, and a clip circuit clipping the signal line at a first voltage and a second voltage.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 8, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Watanabe, Tetsuya Itano, Mahito Shinohara
  • Publication number: 20120104465
    Abstract: An image sensor including: a substrate that includes a first surface onto which light is irradiated, a second surface opposite to the first surface, and a light receiving device disposed adjacent to the second surface; a transistor that includes a source region, a drain region, and a gate electrode disposed between the source region and the drain region, wherein the transistor is disposed on the second surface of the substrate; a wiring line that is disposed on the second surface of the substrate; and a plurality of contact plugs that are disposed on the source region, the drain region, or the gate electrode, wherein at least one of the plurality of contact plugs is connected to the wiring line.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 3, 2012
    Inventors: Jin-ho Kim, Chang-rok Moon
  • Publication number: 20120081683
    Abstract: A detector including a layer of scintillation material, a layer of spacer material on the scintillation material, and a spectral purity filter layer on the spacer material.
    Type: Application
    Filed: March 23, 2010
    Publication date: April 5, 2012
    Applicant: ASML Netherlands B.V.
    Inventors: Ivan Sergejevitsj Nikolaev, Martijn Wehrens
  • Publication number: 20120068230
    Abstract: An image sensor capable of overcoming a decrease in photo sensitivity resulted from using a single crystal silicon substrate, and a method for fabricating the same are provided. An image sensor includes a single crystal silicon substrate, an amorphous silicon layer formed inside the substrate, a photodiode formed in the amorphous silicon layer, and a transfer gate formed over the substrate adjacent to the photodiode and transferring photoelectrons received from the photodiode.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 22, 2012
    Applicant: CROSSTEK CAPITAL, LLC
    Inventors: Myoung-Shik Kim, Hyung-Jun Kim
  • Patent number: 8134690
    Abstract: A light detecting device includes a well region, a first holding region disposed in a surface portion of the well region, a second holding region and a third holding region disposed in a surface portion of the first holding region, an insulating layer disposed on the second holding region and the third holding region, a first electrode disposed on the second holding region through the insulating layer, and the second electrode disposed on the third holding region through the insulating layer. The first holding region is configured to hold a first carrier generated in the well region. Each of the second holding region and the third holding region is configured to hold a second carrier generated in the well region. The first carrier is one of an electron and a hole, and the second carrier is the other one of the electron and the hole.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 13, 2012
    Assignee: DENSO CORPORATION
    Inventors: Yoshihide Tachino, Ryoichi Sugawara
  • Patent number: 8115237
    Abstract: A solid-state image pickup element comprises a first-conductive type planar semiconductor layer formed on a second-conductive type planar semiconductor layer, a hole portion formed in the first-conductive type planar semiconductor layer to define a hole therein, and a first-conductive type high-concentration impurity region formed in a bottom wall of the hole portion. The solid-state image pickup element also includes a first-conductive type high-concentration impurity-doped element isolation region, a second-conductive type photoelectric conversion region, a transfer electrode formed on the sidewall of the hole portion through a gate dielectric film, a second-conductive type CCD channel region, and a read channel formed in a region of the first-conductive type planar semiconductor layer sandwiched between the second-conductive type photoelectric conversion region and the second-conductive type CCD channel region.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: February 14, 2012
    Assignee: Unisantis Electronics Singapore PTE Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Publication number: 20120018618
    Abstract: Imaging device comprising at least one photosite comprising a charge storage semiconductor zone, a charge collection semiconductor zone and transfer means designed to permit charge transfer between the charge storage zone and the charge collection zone, characterized in that the charge storage semiconductor zone comprises a lower semiconductor zone and a conduction channel buried beneath the upper surface of the photosite and connecting said lower semiconductor zone to the charge collection zone.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 26, 2012
    Applicant: STMicroelectronics (Crolles2) SAS
    Inventor: François Roy
  • Publication number: 20120012898
    Abstract: A solid state imaging device includes: a semiconductor substrate having photoelectric conversion regions arranged in matrix, charge transfer regions, and element-separating regions; an insulating film on the semiconductor substrate; transfer electrodes provided in one-to-one with the photoelectric conversion regions and disposed on the insulating film at locations corresponding to the charge transfer regions; and wiring portions each connecting transfer electrodes adjacent in a row direction. The charge transfer regions are doped with impurities so that, in any charge transfer region, a potential of each portion corresponding to an upstream edge of a transfer electrode in the charge transfer direction is lower than the potential of the remaining portions. Each wiring portion connects into a respective transfer electrode at a location offset downstream from the upstream edge of the transfer electrode in the charge transfer direction.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Inventor: Masatoshi IWAMOTO
  • Publication number: 20120007148
    Abstract: A solid-state image pickup device includes: a light-transmitting substrate including a terminal electrode for external connection, an inside electrode for bonding a solid-state image pickup element, and a trace that connects the terminal electrode to the corresponding inside electrode; and the solid-state image pickup element which is placed such that a light receiving area opposes the light-transmitting substrate and which is connected to the inside electrode. The trace is made of a light-transmitting conductive film at least in a region opposing the light receiving area of the solid-state image pickup element.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Applicant: Panasonic Corporation
    Inventors: Kiyohiko YAMADA, Yasushi Nakagiri
  • Publication number: 20110291161
    Abstract: A physical quality detecting device including: a detecting unit that detects a physical quantity supplied from the outside with photo-converting pixels which are two-dimensionally arranged, each of which has a selecting transistor for outputting a signal from the detecting unit to a signal line. In the physical quality detecting device, the selecting transistor is a depletion-type transistor. The signal line is selectively coupled to a reference voltage.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 1, 2011
    Applicant: SONY CORPORATION
    Inventor: Keiji Mabuchi
  • Publication number: 20110291162
    Abstract: Each of pixels 10 arranged in an array pattern includes a photoelectric conversion element 11, a transfer transistor 13 for transferring charges to a floating diffusion layer 12, and an amplifier transistor 14 for outputting the transferred charges to an output line. An insulating isolation part 22 isolates the adjacent photoelectric conversion elements 11, and isolates the photoelectric conversion element 11 and the amplifier transistor 14. The insulating isolation part 22 constitutes a first region A between the photoelectric conversion elements 11 where the amplifier transistor 14 is not arranged, and a second region B between the photoelectric conversion elements 11 where the amplifier transistor 14 is arranged. First and second isolation diffusion layers 23 and 24 are formed below the insulating isolation part 22, and the second isolation diffusion layer 24 is wider than the first isolation diffusion layer 23 in the first region A.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 1, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Mitsuyoshi MORI, Toru Okino, Yusuke Otake, Kazuo Fujiwara, Hitomi Fujiwara
  • Publication number: 20110284929
    Abstract: In each of pixels 10 arranged in an array pattern, an insulating isolation part 22 electrically isolates adjacent photoelectric conversion elements 11, and the photoelectric conversion element 11 and an amplifier transistor 14. The insulating isolation part 22 constitutes a first region A between the photoelectric conversion elements 11 where the amplifier transistor 14 is not arranged, and a second region B between the photoelectric conversion elements 11 where the amplifier transistor 14 is arranged. A low concentration first isolation diffusion layer 23 is formed below the insulating isolation part 22 constituting the first region A, and a high concentration second isolation diffusion layer 24 and a low concentration first isolation diffusion layer 23 are formed below the insulating isolation part 22 constituting the second region B. A source/drain region of the amplifier transistor 14 in the second region B is formed in a well region 25 formed simultaneously with the second isolation diffusion layer 24.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Mitsuyoshi MORI, Kazuo Fujiwara, Toru Okino, Yusuke Otake, Hitomi Fujiwara
  • Publication number: 20110273597
    Abstract: Provided is a solid-state imaging device including an imaging area where a plurality of unit pixels are disposed to capture a color image, wherein each of the unit pixels includes: a plurality of photoelectric conversion portions; a plurality of transfer gates, each of which is disposed in each of the photoelectric conversion portions to transfer signal charges from the photoelectric conversion portion; and a floating diffusion to which the signal charges are transferred from the plurality of the photoelectric conversion portions by the plurality of the transfer gates, wherein the plurality of the photoelectric conversion portions receive light of the same color to generate the signal charges, and wherein the signal charges transferred from the plurality of the photoelectric conversion portions to the floating diffusion are added to be output as an electrical signal.
    Type: Application
    Filed: April 13, 2011
    Publication date: November 10, 2011
    Applicant: SONY CORPORATION
    Inventor: Hiroaki Ishiwata
  • Publication number: 20110272746
    Abstract: The present invention provides a solid state imaging device and a manufacturing method thereof that lowers contact resistance and suppresses dark current, even when wirings and contact plugs are reduced in size. A solid state imaging device 1 includes wirings 24 and a transfer electrode film 102 that are connected to each other by lower contact plugs A in one layer and upper contact plugs B in another layer. A titanium silicide film 105 is formed at a bottom of each lower contact plug A. The upper contact plugs B do not include any titanium silicide, and are connected to the lower contact plugs A via a tungsten film 107 that is an intermediate wiring layer. Neither of the upper and lower contact plugs A and B includes pure titanium. Intralayer lens films 127 above photodiodes 121 in an imaging pixel region are formed after the lower contact plugs A are formed.
    Type: Application
    Filed: January 19, 2011
    Publication date: November 10, 2011
    Inventor: Noriaki SUZUKI
  • Publication number: 20110260059
    Abstract: A monolithic sensor for detecting infrared and visible light according to an example includes a semiconductor substrate and a semiconductor layer coupled to the semiconductor substrate. The semiconductor layer includes a device surface opposite the semiconductor substrate. A visible light photodiode is formed at the device surface. An infrared photodiode is also formed at the device surface and in proximity to the visible light photodiode. A textured region is coupled to the infrared photodiode and positioned to interact with electromagnetic radiation.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Inventors: Jutao Jiang, Jeffrey McKee, Martin U. Pralle
  • Patent number: 8044478
    Abstract: Provided is an image sensor. The image sensor can include a readout circuitry on a first substrate. An interlayer dielectric is formed on the first substrate, and comprises a lower line therein. A crystalline semiconductor layer is bonded to the interlayer dielectric. A photodiode can be formed in the crystalline semiconductor layer, and comprises a first impurity region and a second impurity region. A via hole can be formed passing through the crystalline semiconductor layer and the interlayer dielectric to expose the lower line. A plug is formed inside the first via hole to connect with only the lower line and the first impurity region. A device isolation region can be formed in the crystalline semiconductor layer to separate the photodiode according to unit pixel.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 25, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Joon Hwang
  • Publication number: 20110255071
    Abstract: The photonic mixer comprises a couple of an injecting contact region (3,4) for injecting the majority carrier current into the semiconductor substrate (1) and a detector region (7,8) for collecting the photocurrent. The injecting contact region (3,4) is doped with a dopant of the first conductivity type (p+) at a higher dopant concentration than the semiconductor substrate (1). The detector region (7,8) is doped with a dopant of a second conductivity type (n+) opposite the first conductivity type and has a junction (11,12) with the semiconductor substrate (1), a zone of the semiconductor substrate (1) around said junction (11,12) being a depleted substrate zone (101, 102).
    Type: Application
    Filed: October 14, 2010
    Publication date: October 20, 2011
    Inventors: Ward VAN DER TEMPEL, Daniel VAN NIEUWENHOVE, Maarten KUIJK
  • Publication number: 20110249163
    Abstract: A photoelectric conversion device comprises a p-type region, an n-type buried layer formed under the p-type region, an element isolation region, and a channel stop region which covers at least a lower portion of the element isolation region, wherein the p-type region and the buried layer form a photodiode, and a diffusion coefficient of a dominant impurity of the channel stop region is smaller than a diffusion coefficient of a dominant impurity of the buried layer.
    Type: Application
    Filed: January 20, 2010
    Publication date: October 13, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hajime Ikeda, Yoshihisa Kabaya, Takanori Watanabe, Takeshi Ichikawa, Mineo Shimotsusa
  • Publication number: 20110241079
    Abstract: Disclosed herein is a solid-state imaging device including a photoelectric conversion element operable to generate electric charge according to the amount of incident light and to accumulate the electric charge in the inside thereof, an electric-charge holding region in which the electric charge generated through photoelectric conversion by the photoelectric conversion element is held until read out, and a transfer gate having a complete transfer path through which the electric charge accumulated in the photoelectric conversion element is completely transferred into the electric-charge holding region, and an intermediate transfer path through which the electric charge generated by the photoelectric conversion element during an exposure period and being in excess of a predetermined charge amount is transferred into the electric-charge holding region. The complete transfer path and the intermediate transfer path are formed in different regions.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Applicant: SONY CORPORATION
    Inventors: Yusuke Oike, Takahiro Kawamura, Shinya Yamakawa, Ikuhiro Yamamura, Takashi Machida, Yasunori Sogoh, Naoki Saka
  • Publication number: 20110242390
    Abstract: Disclosed herein is a solid-state imaging device including, a first semiconductor region of the first conduction type, a photoelectric conversion part having a second semiconductor region of the second conduction type formed in the region separated by the isolation dielectric region of the first semiconductor region, pixel transistors formed in the first semiconductor region, a floating diffusion region of the second conduction type which is formed in the region separated by the isolation dielectric region of the first semiconductor region, and an electrode formed on the first semiconductor region existing between the floating diffusion region and the isolation dielectric region and is given a prescribed bias voltage.
    Type: Application
    Filed: March 24, 2011
    Publication date: October 6, 2011
    Applicant: SONY CORPORATION
    Inventors: Yasunori Sogoh, Hiroyuki Ohri
  • Publication number: 20110233619
    Abstract: An exposure mask according to an embodiment of the invention includes a first transmission region where a plurality of dots through which light is shielded or transmitted are arrayed into a matrix form having rows and columns and a second transmission region where a plurality of dots through which the light is shielded or transmitted are arrayed into a matrix form having rows and columns and is disposed adjacent to the first transmission region. The dots arrayed in a row or a column of the first transmission region, which is adjacent to the second transmission region, have an area intermediate between areas of dots arrayed on both sides of the row or the column.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 29, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Ken TOMITA
  • Publication number: 20110233620
    Abstract: A photoelectric conversion apparatus includes a semiconductor substrate on which a photoelectric conversion element and a transistor are arranged and a plurality of wiring layers including a first wiring layer and a second wiring layer above the first wiring layer, in which a connection between the semiconductor substrate and any of the plurality of wiring layers, between a gate electrode of the transistor and any of the plurality of wiring layers, or between the first wiring layer and the second wiring layer, has a stacked contact structure.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroaki Naruse, Kenji Togo, Masatsugu Itahashi
  • Publication number: 20110226936
    Abstract: Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 22, 2011
    Inventors: Bedabrata PAIN, Thomas J. Cunningham
  • Publication number: 20110220972
    Abstract: It is intended to provide a solid-state image pickup element capable of reducing an area of a read channel to increase a ratio of a surface area of a light-receiving section to the overall surface area of one pixel.
    Type: Application
    Filed: May 25, 2011
    Publication date: September 15, 2011
    Applicant: Unisantis Electronics (Japan) Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Publication number: 20110220969
    Abstract: Each pixel of a solid state imaging device comprises: a first semiconductor layer; a second semiconductor layer; a third semiconductor layer and fourth semiconductor layer formed on the lateral side of the upper region of the second layer not to be in contact with the top surface of the second semiconductor layer; a gate conductor layer formed on the lower side of the second semiconductor layer; a conductor electrode formed on the side of the fourth semiconductor layer via an insulating film; and a fifth semiconductor layer formed on the top surface of the second semiconductor layer, wherein at least the third semiconductor layer, upper region of the second semiconductor layer, fourth semiconductor layer, and fifth semiconductor layer are formed in the shape of an island. A specific voltage is applied to the conductor electrode to accumulate holes in the surface region of the fourth semiconductor layer.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20110215381
    Abstract: Each pixel of a solid state imaging device comprises a first semiconductor layer formed on a substrate, having a first-conductive type; a second semiconductor layer formed thereon, having a second-conductivity type; a third semiconductor layer formed in the upper side of the second semiconductor layer, having the first-conductivity type; a fourth semiconductor layer formed in the outer side of the third semiconductor layer, having the second-conductivity type; a gate conductor layer formed on the lower side of the second semiconductor layer via an insulating film; and a fifth semiconductor layer formed on the top surfaces of the second semiconductor layer and third semiconductor layer, having the second-conductivity type, wherein the fifth semiconductor layer and fourth semiconductor layer are connected to each other, and at least the third semiconductor layer, upper region of the second semiconductor layer, fourth semiconductor layer, and fifth semiconductor layer are formed in an island.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 8, 2011
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20110193137
    Abstract: A solid-state imaging device includes: a photoelectric converting section comprising a photo-diode; a charge storage section; a charge transfer section; a first control gate section provided between the photoelectric converting section and the charge storage section to control transfer of a signal charge from the photoelectric converting section to the charge storage section; and a second control gate section provided between the charge storage section and the charge transfer section to control transfer of the signal charge from the charge storage section to the charge transfer section. The charge storage section includes: a first region formed on a side near to the first control gate section; and a second region formed on a side near to the second control gate section and configured to have a channel potential increased more than that of the first region. The second region is configured to hold the signal charge in a pinning condition.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 11, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Ryoichi GOTO
  • Publication number: 20110187911
    Abstract: A solid-state imaging device is provided, which includes a pixel region in which pixels including a photoelectric conversion section and a plurality of pixel transistors are arranged. In the solid-state imaging device, a transfer transistor of the pixel transistors includes: a transfer gate electrode extended in a surface of the substrate formed on the surface of a semiconductor substrate; and a transfer gate electrode buried in the substrate which is electrically insulated from the transfer gate electrode extended in a surface of the substrate and is embedded in the inside of the semiconductor substrate in the vertical direction through the transfer gate electrode extended in a surface of the substrate.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 4, 2011
    Applicant: SONY CORPORATION
    Inventor: Takekazu Shinohara
  • Publication number: 20110187908
    Abstract: The present invention provides a high-speed charge-transfer photodiode encompassing a first conductivity type semiconductor layer (20) serving as a charge-generation region; and a second conductivity type surface-buried region (21a) serving as a charge-transfer region of charges generated by the charge-generation region, wherein a specified direction in the surface-buried region (21a) provided along a plane parallel to a surface of the semiconductor layer (20) is assigned as a charge-transfer direction of the charges, and at least one of a variation of widths of the surface-buried region (21a) measured in an orthogonal direction to the charge-transfer direction and a variation of impurity concentration distributions of the surface-buried region (21a), which are measured along the charge-transfer direction, is determined such that an electric field distribution in the charge-transfer direction is constant.
    Type: Application
    Filed: July 31, 2009
    Publication date: August 4, 2011
    Applicant: NATIONAL UNIV. CORP. SHIZUOKA UNIV.
    Inventors: Shoji Kawahito, Hiroaki Takeshita
  • Publication number: 20110186913
    Abstract: In a solid state imaging device with an electron multiplying function, in a section normal to an electron transfer direction of a multiplication register EM, an insulating layer 2 is thicker at both side portions than in a central region. A pair of overflow drains 1N is formed at a boundary between a central region and both side portions of an N-type semiconductor region 1C. Each overflow drain 1N extends along the electron transfer direction of the multiplication register EM. Overflow gate electrodes G extend from the thin portion to the thick portion of the insulating layer 2. The overflow gate electrodes G are disposed between both ends of each transfer electrode 8 in a longitudinal direction and the insulating layer 2, and they also function as shield electrodes for each electrode 8 (8A and 8B).
    Type: Application
    Filed: January 27, 2010
    Publication date: August 4, 2011
    Applicant: Hamamatsu Photonics K.K.
    Inventors: Hisanori Suzuki, Yasuhito Yoneta, Shin-ichiro Takagi, Kentaro Maeta, Masaharu Muramatsu
  • Publication number: 20110157448
    Abstract: An image sensor and an image sensing method can obtain image signals with a high S/N ratio in a high-speed image pickup operation. Signal charges are input to input transfer stage 31 of CCD memory 30. Final transfer stage 32 is formed so as to be connected to the input transfer stage 31 and able to transfer signal charges to the input transfer stage 31. In an accumulation mode, read gate 42 and drain gate 40 are not turned on and the next transfer operation of the CCD memory 30 is conducted. The accumulated signal charges are transferred on a stage by stage basis and the signal charges obtained at the first image pickup timing are transferred again straightly to the input transfer stage 31. In this state, the signal charges obtained newly at photoelectric conversion section 20 at the next image pickup timing are injected into the input transfer stage 31 by way of input gate 21.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Applicants: JAPAN ATOMIC ENERGY AGENCY, KINKI UNIVERSITY
    Inventors: Masatoshi Kureta, Masatoshi Arai, Takeharu Etoh, Konoe Etoh, Toshiaki Akino
  • Patent number: 7964451
    Abstract: A first oxide film (102) is formed on a semiconductor substrate (101). A first nitride film (103) is formed on first gate electrode formation regions of the first oxide film (102). A plurality of first gate electrodes (104) are provided on the first nitride film (103) so as to be spaced apart from one another with a predetermined distance therebetween. A second oxide film (105) covers upper part and side walls of each of the first gate electrodes (104). A sidewall spacer (106) of a third oxide film is buried in an overhang portion generated on each side wall of each of the first gate electrodes (104) covered by the second oxide film (105). A second nitride film (107) covers the second oxide film (105), the sidewall spacer (106) and part of the first oxide film (102) located between the first gate electrodes (104). A plurality of second gate electrodes (108) are formed on at least part of the second nitride film (107) located between adjacent two of the first gate electrodes (104).
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Naoto Niisoe, Kazuhisa Hirata, Tohru Yamada
  • Publication number: 20110140177
    Abstract: According to one embodiment, a solid-state imaging device includes a semiconductor region, a first diffusion layer, a second diffusion layer, a third diffusion layer, an insulating film, a potential layer, and a read electrode. The semiconductor region includes first and second surfaces. The first diffusion layer is formed in the first surface. The first diffusion layer's concentration is a maximum value in a position at a first depth. The charge accumulation layer has a second depth. The second diffusion layer contacts the first diffusion layer. The third diffusion layer is formed in a position which faces the second diffusion layer in respect to the first diffusion layer. The insulating film is formed on the first surface. The potential layer is formed on the insulating film and has a predetermined potential. The read electrode is formed on the insulating film.
    Type: Application
    Filed: September 17, 2010
    Publication date: June 16, 2011
    Inventor: Hirofumi YAMASHITA
  • Publication number: 20110139962
    Abstract: Disclosed herein is a solid-state image pickup device, including: a plurality of pixels each composed of a photoelectric conversion element formed in a semiconductor substrate for generating and accumulating signal electric charges corresponding to a light quantity of incident light, and an electric charge reading portion formed on a front surface side of the semiconductor substrate for reading out the signal electric charges generated and accumulated in the photoelectric conversion element; a wiring for a substrate potential formed on a back surface side, becoming a light receiving surface, of the semiconductor substrate for supplying a desired voltage to the semiconductor substrate; and a back surface side contact portion through which the wiring for a substrate potential and the semiconductor substrate are electrically connected to each other.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 16, 2011
    Applicant: SONY CORPORATION
    Inventor: Bairo Masaaki
  • Publication number: 20110143488
    Abstract: A solid-state imaging device having a light-receiving section that photoelectrically converts incident light includes an insulating film formed on a light-receiving surface of the light-receiving section and a film and having negative fixed charges formed on the insulating film. A hole accumulation layer is formed on a light-receiving surface side of the light-receiving section. A peripheral circuit section in which peripheral circuits are formed is provided on a side of the light-receiving section. The insulating film is formed between a surface of the peripheral circuit section and the film having negative fixed charges such that a distance from the surface of the peripheral circuit section to the film having negative fixed charges is larger than a distance from a surface of the light-receiving section to the film having negative fixed charges.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 16, 2011
    Applicant: SONY CORPORATION
    Inventors: Harumi Ikeda, Susumu Hiyama, Takashi Ando, Kiyotaka Tabuchi, Tetsuji Yamaguchi, Yuko Ohgishi
  • Publication number: 20110134299
    Abstract: A CCD-type solid-state imaging device includes: light receiving devices arranged in vertical and horizontal directions; vertical transfer parts arranged along vertical rows of the arranged light receiving devices, reading out charge accumulated in the adjacent light receiving devices, and transferring the read out charge in the vertical direction; a horizontal transfer part supplied with the charge transferred in the vertical transfer parts and transferring the supplied charge in the horizontal direction; an output part outputting the charge transferred in the vertical transfer parts; an input terminal for readout and transfer clocks that command readout of the charge from the light receiving devices and transfer of the read out charge in the vertical transfer parts; a resistor connected between the input terminal and a clock supply part of the vertical transfer parts; and a switch part connected to the resistor in parallel and switching between the charge readout and the charge transfer in the vertical trans
    Type: Application
    Filed: November 30, 2010
    Publication date: June 9, 2011
    Applicant: Sony Corporation
    Inventors: Yuya Kani, Katsumi Yamagishi
  • Patent number: 7956388
    Abstract: It is intended to provide a solid-state image pickup element capable of reducing an area of a read channel to increase a light-receiving area. The solid-state image pickup element comprises a p-type planar semiconductor, a hole formed in the p-type planar semiconductor, a p+-type region formed in a bottom of the hole, a p+-type isolation region formed in a part of a sidewall of the hole and connected to the p+-type region, an n-type photoelectric conversion region formed beneath the p+-type region, a transfer electrode formed on the entire sidewall of the hole through a gate dielectric film, a CCD channel region formed in a top of the p-type planar semiconductor, and a read channel formed in a region of the p-type planar semiconductor between the n-type photoelectric conversion region and the CCD channel region.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: June 7, 2011
    Assignee: Unisantis Electronics (Japan) Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 7956389
    Abstract: A solid-state imaging device includes: a semiconductor substrate; photoelectric conversion elements; vertical charge transfer paths that transfer charges generated in photoelectric conversion elements, in a vertical direction; a horizontal charge transfer path that transfers the charges transferred in vertical charge transfer paths, in a horizontal direction orthogonal to the vertical direction; a plurality of charge accumulating sections between the vertical charge transfer paths and the horizontal charge transfer path; a plurality of electrodes disposed above the respective charge accumulating sections, the plurality of electrodes being classified into a plurality of kinds of electrodes; wirings corresponding to the respective kinds of electrodes and extending in the horizontal direction above the plurality of electrodes; and a planarizing layer disposed between the wirings and an uneven surface caused by the plurality of electrodes that are present in areas overlapping the wirings, so as to planarize the u
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: June 7, 2011
    Assignee: Fujifilm Corporation
    Inventors: Hirokazu Shiraki, Katsumi Ikeda
  • Patent number: 7939358
    Abstract: In an example embodiment, an image sensor includes a semiconductor layer and isolation regions disposed in the semiconductor layer. The isolation regions define active regions of the semiconductor layer. The image sensor further includes photoelectric converters disposed in the semiconductor layer and at least one wiring layer disposed over a top surface of the semiconductor layer. The image sensor also includes color filters disposed below a bottom surface of the semiconductor layer and lenses disposed below the color filters. Each lens is arranged to concentrate incoming light into an area spanned by a corresponding photoelectric converter.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Young Choi
  • Patent number: 7939859
    Abstract: A solid state imaging device includes a transfer transistor for transferring signal charges generated by photoelectric conversion to a floating diffusion layer, a reset transistor for resetting a potential of the floating diffusion layer, and an amplifying transistor for outputting a signal corresponding to the potential of the floating diffusion layer. A low concentration impurity region having an impurity concentration lower than that of the first conductivity type semiconductor region is formed in part of a surface portion of the first conductivity type semiconductor region which is located below a gate electrode of the amplifying transistor and serves as a well region of the amplifying transistor.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: May 10, 2011
    Assignee: Panasonic Corporation
    Inventor: Morikazu Tsuno
  • Publication number: 20110084316
    Abstract: A pickup device according to the present invention includes a photoelectric conversion portion, a charge holding portion configured to include a first semiconductor region, and a transfer portion configured to include a transfer gate electrode that controls a potential between the charge holding portion and a sense node. A second semiconductor region is disposed on a surface of a semiconductor region between the control electrode and the transfer gate electrode. A third semiconductor region is disposed below the second semiconductor region. An impurity concentration of the third semiconductor region is higher than the impurity concentration of the first semiconductor region.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 14, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yuichiro Yamashita, Masahiro Kobayashi, Yusuke Onuki
  • Patent number: 7910964
    Abstract: A part of a semiconductor layer directly under a light-receiving gate electrode functions as a charge generation region, and electrons generated in the charge generation region are injected into a part of a surface buried region directly above the charge generation region. The surface buried region directly under a first transfer gate electrode functions as a first transfer channel, and the surface buried region directly under a second transfer gate electrode functions as a second transfer channel. Signal charges are alternately transferred to an n-type first floating drain region and a second floating drain region through the first and second floating transfer channels.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: March 22, 2011
    Assignees: National University Corporation Shizuoka University, Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Mitsuru Homma
  • Patent number: 7897969
    Abstract: A solid-state image pickup device includes a pixel array area in which pixels each including a photoelectric conversion element are two-dimensionally arranged; first control means for performing control such that signals of pixels in a desired region of the pixel array area are sequentially read row by row; and second control means for performing control such that, when the signals of the pixels in the desired region are sequentially read row by row by the first control means, pixels in particular regions below and above the desired region are sequentially reset row by row.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: March 1, 2011
    Assignee: Sony Corporation
    Inventors: Yoshinori Muramatsu, Takahiro Abiru, Takaichi Hirata
  • Publication number: 20110031376
    Abstract: A solid-state image pickup element 1 is structured so as to include: a semiconductor layer 2 having a photodiode formed therein, photoelectric conversion being carried out in the photodiode; a first film 21 having negative fixed charges and formed on the semiconductor layer 2 in a region in which at least the photodiode is formed; and a second film 22 having the negative fixed charges, made of a material different from that of the first film 21 having the negative fixed charges, and formed on the first film 21 having the negative fixed charges.
    Type: Application
    Filed: March 2, 2010
    Publication date: February 10, 2011
    Applicant: Sony Corporation
    Inventors: Itaru Oshiyama, Susumu Hiyama
  • Publication number: 20110031378
    Abstract: Provided is an electromagnetic wave reception device capable of being downsized and directly and simply (at least at a room temperature) detecting electromagnetic waves in a wider bandwidth including the terahertz range. The electromagnetic wave reception device that obtains charges according to an electric field of the electromagnetic waves incident on a semiconductor substrate includes: a high charge-density region provided on the semiconductor substrate and having a first charge density; a conductive region covering the high charge-density region via an insulation region; and a low charge-density region provided adjacent to the high charge-density region on the semiconductor substrate and having a second charge density lower than the first charge density, wherein the low charge-density region is connected to a charge detecting circuit that is not illustrated.
    Type: Application
    Filed: April 13, 2009
    Publication date: February 10, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Yutaka Hirose
  • Patent number: 7880206
    Abstract: Provided is a CMOS image sensor with an asymmetric well structure of a source follower. The CMOS image sensor includes: a well disposed in an active region of a substrate; a drive transistor having one terminal connected to a power voltage and a first gate electrode disposed to cross the well; and a select transistor having a drain-source junction between another terminal of the drive transistor and an output node, and a second gate electrode disposed in parallel to the drive transistor. A drain region of the drive transistor and a source region of the select transistor are asymmetrically arranged.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 1, 2011
    Assignee: Crosstek Capital, LLC
    Inventor: Hee-Jeong Hong
  • Publication number: 20110018037
    Abstract: Provided is a solid-state imaging device including: a photodiode which converts an optical signal to signal charges; a transfer gate which transfers the signal charges from the photodiode; an impurity diffusion layer to which the signal charges are transferred by the transfer gate; and a MOS transistor of which a gate is connected to the impurity diffusion layer. The impurity diffusion layer has a first conduction type semiconductor layer and a second conduction type semiconductor layer which is formed in the first conduction type semiconductor layer and under an end portion of the transfer gate.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 27, 2011
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Ohri, Yasunori Sogoh