Further Characterized By Doping Material (epo) Patents (Class 257/E29.093)
  • Patent number: 11888040
    Abstract: According to one embodiment, a semiconductor device includes a first electrode, a second electrode, a third electrode, a first semiconductor layer, a second semiconductor layer, and a first insulating layer. A position of the third electrode in a first direction is between a position of the first electrode in the first direction and a position of the second electrode in the first direction. The first semiconductor layer includes Alx1Ga1-x1N and includes a first partial region, a second partial region, and a third partial region. The second semiconductor layer includes Alx2Ga1-x2N. A portion of the second semiconductor layer is between the third partial region and the third electrode in the second direction. The first insulating layer includes a first insulating region. The first insulating region is between the third electrode and the portion of the second semiconductor layer in the second direction.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: January 30, 2024
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshiki Hikosaka, Hiroshi Ono, Jumpei Tajima, Masahiko Kuraguchi, Shinya Nunoue
  • Patent number: 11699722
    Abstract: A stacked, high-blocking III-V semiconductor power diode having a first metallic terminal contact layer, formed at least in regions, and a highly doped semiconductor contact region of a first conductivity type and a first lattice constant. A drift layer of a second conductivity type and having a first lattice constant is furthermore provided. A semiconductor contact layer of a second conductivity, which includes an upper side and an underside, and a second metallic terminal contact layer are formed, and the second metallic terminal contact layer being integrally connected to the underside of the semiconductor contact layer, and the semiconductor contact layer having a second lattice constant at least on the underside, and the second lattice constant being the lattice constant of InP, and the drift layer and the highly doped semiconductor contact region each comprising an InGaAs compound or being made up of InGaAs.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: July 11, 2023
    Assignees: AZUR SPACE, 3-5 Power Electronics GmbH
    Inventors: Daniel Fuhrmann, Gregor Keller, Clemens Waechter, Volker Dudek
  • Patent number: 11652165
    Abstract: A method and vertical FET device fabricated in GaN or other suitable material. The device has a selective area implant region comprising an activated impurity configured from a bottom portion of a recessed regions, and substantially free from ion implant damage by using an annealing process. A gate region is configured from the selective area implant region, and each of the recessed regions is characterized by a depth configured to physically separate an n+ type source region and the p-type gate region such that a low reverse leakage gate-source p-n junction is achieved. An extended drain region is configured from a portion of an n? type GaN region underlying the recessed regions. An n+ GaN region is formed by epitaxial growth directly overlying the backside region of the GaN substrate and a backside drain contact region configured from the n+ type GaN region overlying the backside region.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: May 16, 2023
    Assignee: Odyssey Semiconductor, Inc.
    Inventors: James R. Shealy, Richard J. Brown
  • Patent number: 11563097
    Abstract: The present disclosure relates to a high electron mobility transistor (HEMT) and a fabrication method thereof. The HEMT may include a substrate; a channel layer disposed on the substrate; a barrier layer disposed on the channel layer; a semiconductor gate disposed on the barrier layer; a metal gate disposed on the semiconductor gate, the metal gate having a trapezoidal cross-sectional shape; and a passivation layer directly contacting the metal gate. A first surface of the metal gate contacts a first surface of the semiconductor gate, and an edge of the first surface of the metal gate is located inside an edge of the first surface of the semiconductor gate.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: January 24, 2023
    Assignee: INNOSCIENCE (ZHUHAI) TECHNOLOGY CO., LTD.
    Inventors: Ming-Hong Chang, Kingyuen Wong, Han-Chin Chiu, Hang Liao
  • Patent number: 11545553
    Abstract: According to one embodiment, a semiconductor device includes a first electrode, a second electrode, a third electrode, a first semiconductor layer, a second semiconductor layer, and a first insulating layer. A position of the third electrode in a first direction is between a position of the first electrode in the first direction and a position of the second electrode in the first direction. The first semiconductor layer includes Alx1Ga1-x1N and includes a first partial region, a second partial region, and a third partial region. The second semiconductor layer includes Alx2Ga1-x2N. A portion of the second semiconductor layer is between the third partial region and the third electrode in the second direction. The first insulating layer includes a first insulating region. The first insulating region is between the third electrode and the portion of the second semiconductor layer in the second direction.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: January 3, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshiki Hikosaka, Hiroshi Ono, Jumpei Tajima, Masahiko Kuraguchi, Shinya Nunoue
  • Patent number: 8709925
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 29, 2014
    Assignee: The Regents of the University of California
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8680508
    Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type layer, a p-type layer, and a light emitting unit provided between the n-type layer and the p-type layer and including barrier layers and well layers. At least one of the barrier layers includes first and second portion layers. The first portion layer is disposed on a side of the n-type layer. The second portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the first portion layer. At least one of the well layers includes third and fourth portion layers. The third portion layer is disposed on a side of the n-type layer. The fourth portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the third portion layer.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiki Hikosaka, Koichi Tachibana, Hajime Nago, Shinya Nunoue
  • Patent number: 8598626
    Abstract: Provided is an epitaxial substrate for semiconductor device that is capable of achieving a semiconductor device having high reliability in reverse characteristics of schottky junction. An epitaxial substrate for semiconductor device obtained by forming, on a base substrate, a group of group III nitride layers by lamination such that a (0001) crystal plane of each layer is approximately parallel to a substrate surface includes: a channel layer formed of a first group III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); and a barrier layer formed of a second group III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0), wherein the second group III nitride is a short-range-ordered mixed crystal having a short-range order parameter ? satisfying a range where 0???1.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 3, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20130075748
    Abstract: A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: David P. Bour, Richard J. Brown, Isik C. Kizilyalli, Thomas R. Prunty, Linda Romano, Andrew P. Edwards, Hui Nie, Mahdan Raj
  • Patent number: 8377683
    Abstract: A dynamic and noninvasive method of monitoring the adhesion and proliferation of biological cells through multimode operation (acoustic and optical) using a ZnO nanostructure-modified quartz crystal microbalance (ZnOnano-QCM) biosensor is disclosed.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: February 19, 2013
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Yicheng Lu, Pavel Ivanoff Reyes, Nada N. Boustany
  • Patent number: 8253220
    Abstract: A nitride semiconductor device includes a first nitride semiconductor layer formed on a substrate, a defect induced layer formed on the first nitride semiconductor layer, and a second nitride semiconductor layer formed on the defect induced layer, contacting the defect induced layer, and having an opening through which the defect induced layer is exposed. The defect induced layer has a higher crystal defect density than those of the first and second nitride semiconductor layers.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 28, 2012
    Assignee: Panasonic Corporation
    Inventors: Ryo Kajitani, Satoshi Tamura, Hideki Kasugai
  • Patent number: 8237245
    Abstract: To provide a nitride semiconductor crystal, comprising: laminated homogeneous nitride semiconductor layers, with a thickness of 2 mm or more, wherein the laminated homogeneous nitride semiconductor layers are constituted so that a nitride semiconductor layer with low dopant concentration and a nitride semiconductor layer with high dopant concentration are alternately laminated by two cycles or more.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 7, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventor: Hajime Fujikura
  • Publication number: 20120187415
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120168811
    Abstract: A nitride-based semiconductor device includes a p-type AldGaeN layer 25 whose growing plane is an m-plane and an electrode 30 provided on the p-type AldGaeN layer 25. The AldGaeN layer 25 includes a p-AldGaeN contact layer 26 that is made of an AlxGayInzN (x+y+z=1, x?0, y>0, z?0) semiconductor, which has a thickness of not less than 26 nm and not more than 60 nm. The p-AldGaeN contact layer 26 includes a body region 26A which contains Mg of not less than 4×1019 cm?3 and not more than 2×1020 cm?3 and a high concentration region 26B which is in contact with the electrode 30 and which has a Mg concentration of not less than 1×1021 cm?3.
    Type: Application
    Filed: March 6, 2012
    Publication date: July 5, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Toshiya YOKOGAWA, Ryou KATO, Naomi ANZUE
  • Patent number: 8207556
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device includes a group III nitride semiconductor supporting base, a GaN based semiconductor region, an active layer, and a GaN semiconductor region. The primary surface of the group III nitride semiconductor supporting base is not any polar plane, and forms a finite angle with a reference plane that is orthogonal to a reference axis extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region, grown on the semipolar primary surface, includes a semiconductor layer of, for example, an n-type GaN based semiconductor doped with silicon. A GaN based semiconductor layer of an oxygen concentration of 5×1016 cm?3 or more provides an active layer, grown on the primary surface, with an excellent crystal quality.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 26, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 8193079
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 5, 2012
    Assignee: The Regents of the University of California
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120119218
    Abstract: A method for forming a single crystalline Group-III Nitride film. A substrate is provided, having a first passivation layer, a monocrystalline layer, and a second passivation layer. The substrate is patterned to form a plurality of features with elongated sidewalls having a second crystal orientation. Group-III Nitride films are formed on the elongated sidewalls, but not on the first or second passivation layers. In one embodiment, the dimensions of the patterned features and the film deposition process result in a single crystalline Group-III Nitride film having a third crystal orientation normal to the substrate surface. In another embodiment, the dimensions and orientation of the patterned features and the film deposition process result in a plurality of single crystalline Group-III Nitride films. In other embodiments, additional layers are formed on the Group-III Nitride film or films to form semiconductor devices, for example, a light-emitting diode.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 17, 2012
    Applicant: Applied Materials, Inc.
    Inventor: Jie Su
  • Patent number: 8120013
    Abstract: A nitride semi-conductor light emitting device has a p-type nitride semi-conductor layer 7, an n-type nitride semi-conductor layer 3, and a light emission layer 6 which is interposed between the p-type nitride semi-conductor layer 7 and the n-type nitride semi-conductor layer 3. The light emission layer 6 has a quantum well structure with a barrier layer 6b and a well layer 6a. The barrier layer 6b is formed of AlaGabIn(1-a-b)N (0<a<1, 0<b<1, 1?a?b>0), and contains a first impurity at a concentration of A greater than zero. The well layer 6a is formed of AlcGadIn(1-c-d)N (0<c<1, c<a, 0<d<1, 1?c?d>0), and contains a second impurity at a concentration of B equal to or greater than zero. In the nitride semi-conductor light emitting device of the present invention, the concentration of A is larger than that of B, in order that the barrier layer 6b has a concentration of oxygen smaller than that in the well layer 6a.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 21, 2012
    Assignees: Panasonic Electric Works Co., Ltd., Riken
    Inventors: Takayoshi Takano, Kenji Tsubaki, Hideki Hirayama, Sachie Fujikawa
  • Patent number: 8076700
    Abstract: This disclosure describes a semiconductor device that can be used as a mixer at RF frequencies extending from a few tens of GHz into the THz frequency range. The device is composed of narrow bandgap semiconductors grown by solid source molecular beam epitaxy. The device can comprise a GaSb substrate, a AlSb layer on the GaSb substrate, a In0.69Al0.31As0.41Sb0.59 layer, on the AlSb layer and wherein the In0.69Al0.31As0.41Sb0.59 comprises varying levels of Te doping, a In0.27Ga0.73Sb layer on the In0.69Al0.31As0.41 Sb0.59 layer, wherein the In0.27Ga0.73Sb layer is Be doped, wherein the first section of the In0.69Al0.31As0.41Sb0.59 layer has is Te doped, wherein the second section of the In0.69Al0.31As0.41Sb0.59 layer has a grade in Te concentration, and wherein the third section of the In0.69Al0.31As0.41Sb0.59 layer is Te doped.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: December 13, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard Magno, Mario Ancona, John Bradley Boos, James G Champlain, Harvey S Newman
  • Patent number: 8044414
    Abstract: In formation of a quantum dot structure in a light emitting layer, a matrix region (an n-type conductive layer and matrix layers) is formed on a growth underlying layer of AlN whose abundance ratio of Al is higher (or whose lattice constant is smaller) than that in the matrix region by an MBE technique, thereby to realize conditions where compression stress is caused in an in-plane direction perpendicular to the direction of growth of the matrix region, and then to form island crystals by self-organization in the presence of this compression stress. The compression stress inhibits an increase in lattice constant caused by the reduced abundance ratio of Al in the matrix region, i.e., to compensate for a difference in lattice constant between the island crystals and the matrix region. The compression stress functions to enlarge compositional limits for formation of the island crystals by self-organization to the Ga-rich side.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 25, 2011
    Assignees: NGK Insulators, Ltd., Commissariat a l'Energie Atomique
    Inventors: Yuji Hori, Bruno Daudin, Edith Bellet-Amalric
  • Patent number: 8034669
    Abstract: The drive current capability of a pull-down transistor and a pass transistor formed in a common active region may be adjusted on the basis of different strain levels obtained by providing at least one embedded semiconductor alloy in the active region, thereby providing a simplified overall geometric configuration of the active region. Hence, static RAM cells may be formed on the basis of a minimum channel length with a simplified configuration of the active region, thereby avoiding significant yield losses as may be observed in sophisticated devices, in which a pronounced variation of the transistor width is conventionally used to adjust the ratio of the drive currents for the pull-down and pass transistors.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 11, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel
  • Publication number: 20110220912
    Abstract: A large-area, high-purity, low-cost single crystal semi-insulating gallium nitride that is useful as substrates for fabricating GaN devices for electronic and/or optoelectronic applications is provided. The gallium nitride is formed by doping gallium nitride material during ammonothermal growth with a deep acceptor dopant species, e.g., Mn, Fe, Co, Ni, Cu, etc., to compensate donor species in the gallium nitride, and impart semi-insulating character to the gallium nitride.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 15, 2011
    Applicant: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Publication number: 20110198610
    Abstract: To provide a nitride semiconductor crystal, comprising: laminated homogeneous nitride semiconductor layers, with a thickness of 2 mm or more, wherein the laminated homogeneous nitride semiconductor layers are constituted so that a nitride semiconductor layer with low dopant concentration and a nitride semiconductor layer with high dopant concentration are alternately laminated by two cycles or more.
    Type: Application
    Filed: August 27, 2010
    Publication date: August 18, 2011
    Applicant: HITACHI CABLE, LTD.
    Inventor: Hajime FUJIKURA
  • Patent number: 7989851
    Abstract: The present invention provides the multifunctional biological and biochemical sensor technology based on the integration of ZnO nanotips with bulk acoustic wave (BAW) devices, particularly, quartz crystal microbalance (QCM) and thin film bulk acoustic wave resonator (TFBAR). ZnO nanotips provide giant effective surface area and strong bonding sites. Furthermore, the controllable wettability of ZnO nanostructured surface dramatically reduces the liquid consumption and enhances the sensitivity of the biosensor device.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: August 2, 2011
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Yicheng Lu, Ying Chen, Zheng Zhang
  • Publication number: 20110175201
    Abstract: A Group III nitride semiconductor device has a semiconductor region, a metal electrode, and a transition layer. The semiconductor region has a surface comprised of a Group III nitride crystal. The semiconductor region is doped with a p-type dopant. The surface is one of a semipolar surface and a nonpolar surface. The metal electrode is provided on the surface. The transition layer is formed between the Group III nitride crystal of the semiconductor region and the metal electrode. The transition layer is made by interdiffusion of a metal of the metal electrode and a Group III nitride of the semiconductor region.
    Type: Application
    Filed: July 13, 2010
    Publication date: July 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinji Tokuyama, Masaki Ueno, Masahiro Adachi, Takashi Kyono, Takamichi Sumitomo, Koji Katayama, Yoshihiro Saito
  • Publication number: 20110156048
    Abstract: A nitride-based semiconductor light-emitting device 100 includes a GaN substrate 10, of which the principal surface is an m-plane 12, a semiconductor multilayer structure 20 that has been formed on the m-plane 12 of the GaN-based substrate 10, and an electrode 30 arranged on the semiconductor multilayer structure 20. The electrode 30 includes an Mg layer 32, which contacts with the surface of a p-type semiconductor region in the semiconductor multilayer structure 20.
    Type: Application
    Filed: June 4, 2009
    Publication date: June 30, 2011
    Inventors: Toshiya Yokogawa, Mitsuaki Oya, Atsushi Yamada, Ryou Kato
  • Publication number: 20110084363
    Abstract: A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
    Type: Application
    Filed: November 24, 2010
    Publication date: April 14, 2011
    Inventors: Keiji ISHIBASHI, Fumitake NAKANISHI
  • Publication number: 20110057200
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 10, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Patent number: 7872285
    Abstract: Affords epitaxial substrates for vertical gallium nitride semiconductor devices that have a structure in which a gallium nitride film of n-type having a desired low carrier concentration can be provided on a gallium nitride substrate of n type. A gallium nitride epitaxial film (65) is provided on a gallium nitride substrate (63). A layer region (67) is provided in the gallium nitride substrate (63) and the gallium nitride epitaxial film (65). An interface between the gallium nitride substrate (43) and the gallium nitride epitaxial film (65) is positioned in the layer region (67). In the layer region (67), a peak value of donor impurity along an axis from the gallium nitride substrate (63) to the gallium nitride epitaxial film (65) is 1×1018 cm?3 or more. The donor impurity is at least either silicon or germanium.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: January 18, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Hashimoto, Makoto Kiyama, Tatsuya Tanabe, Kouhei Miura, Takashi Sakurada
  • Patent number: 7795044
    Abstract: An electronically scannable multiplexing device is capable of addressing multiple bits within a volatile or non-volatile memory cell. The multiplexing device generates an electronically scannable conducting channel with two oppositely formed depletion regions. The depletion width of each depletion region is controlled by a voltage applied to a respective control gate at each end of the multiplexing device. The present multi-bit addressing technique allows, for example, 10 to 100 bits of data to be accessed or addressed at a single node. The present invention can also be used to build a programmable nanoscale logic array or for randomly accessing a nanoscale sensor array.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hemantha Kumar Wickramasinghe, Kailash Gopalakrishnan
  • Publication number: 20100187541
    Abstract: Fabrication of doped AlN crystals and/or AlGaN epitaxial layers with high conductivity and mobility is accomplished by, for example, forming mixed crystals including a plurality of impurity species and electrically activating at least a portion of the crystal.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 29, 2010
    Applicant: Crystal IS, Inc.
    Inventors: Glen A. Slack, Leo J. Schowalter
  • Patent number: 7696546
    Abstract: A silicide layer (first silicide layer, second silicide layer) is laminated on top laminate surfaces of gates of a transmission transistor and a reset transistor, respectively. Each of the first silicide layer and the second silicide layer respectively formed on each of the gates extends in a direction along the main surface of the semiconductor substrate among at least a portion of a plurality of image pixels, connecting gates with one another among the respective image pixels. On the other hand, a signal outputter is not in contact with any silicide layers, has the top laminate surface that is covered with an insulating layer, and is connected with other transistors via a metal wiring layer.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Hirata, Shouzi Tanaka, Ryohei Miyagawa
  • Publication number: 20090302352
    Abstract: This disclosure describes a semiconductor device that can be used as a mixer at RF frequencies extending from a few tens of GHz into the THz frequency range. The device is composed of narrow bandgap semiconductors grown by solid source molecular beam epitaxy. The device can comprise a GaSb substrate, a AlSb layer on the GaSb substrate, a In0.69Al0.31As0.41Sb0.59 layer, on the AlSb layer and wherein the In0.69Al0.31As0.41Sb0.59 comprises varying levels of Te doping, a In0.27Ga0.73Sb layer on the In0.69Al0.31As0.41 Sb0.59 layer, wherein the In0.27Ga0.73Sb layer is Be doped, wherein the first section of the In0.69Al0.31As0.41Sb0.59 layer has is Te doped, wherein the second section of the In0.69Al0.31As0.41Sb0.59 layer has a grade in Te concentration, and wherein the third section of the In0.69Al0.31As0.41Sb0.59 layer is Te doped.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 10, 2009
    Applicant: The Government of the United States of America, as represenied by the Secretary of the Navy
    Inventors: Richard Magno, Mario Ancona, John Bradley Boos, James G. Champlain, Harvey S. Newman
  • Publication number: 20090261385
    Abstract: A bipolar transistor includes a base layer design and a method for fabricating such a bipolar transistor that employ a built-in accelerating field focused on a base region adjacent to a collector, where minority carrier transport is otherwise retarded. The accelerating field of the base layer includes on average, a relatively low p-doping level in a first region proximate to the collector and a relatively high p-doping level in a second region proximate to an emitter. Alternatively, the accelerating field can be derived from band gap grading, wherein the grade of band gap in the first region is greater than the grade of band gap in the second region, and the average band gap of the first region is lower than that of the second region.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 22, 2009
    Applicant: Kopin Corporation
    Inventors: Eric M. Rehder, Roger E. Welser, Charles R. Lutz
  • Publication number: 20090194796
    Abstract: Affords epitaxial substrates for vertical gallium nitride semiconductor devices that have a structure in which a gallium nitride film of n-type having a desired low carrier concentration can be provided on a gallium nitride substrate of n type. A gallium nitride epitaxial film (65) is provided on a gallium nitride substrate (63). A layer region (67) is provided in the gallium nitride substrate (63) and the gallium nitride epitaxial film (65). An interface between the gallium nitride substrate (43) and the gallium nitride epitaxial film (65) is positioned in the layer region (67). In the layer region (67), a peak value of donor impurity along an axis from the gallium nitride substrate (63) to the gallium nitride epitaxial film (65) is 1×1018 cm?3 or more. The donor impurity is at least either silicon or germanium.
    Type: Application
    Filed: March 1, 2006
    Publication date: August 6, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Hashimoto, Makoto Kiyama, Tatsuya Tanabe, Kouhei Miura, Takashi Sakurada
  • Publication number: 20090121775
    Abstract: In a transistor, an AlN buffer layer 102, an undoped GaN layer 103, an undoped AlGaN layer 104, a p-type control layer 105, and a p-type contact layer 106 are formed in this order on a sapphire substrate 101. The transistor further includes a gate electrode 110 in ohmic contact with the p-type contact layer 106, and a source electrode 108 and a drain electrode 109 provided on the undoped AlGaN layer 104. By applying a positive voltage to the p-type control layer 105, holes are injected into a channel to increase a current flowing in the channel.
    Type: Application
    Filed: June 27, 2006
    Publication date: May 14, 2009
    Inventors: Daisuke Ueda, Tsuyoshi Tanaka, Yasuhiro Uemoto, Tetsuzo Ueda, Manabu Yanagihara, Masahiro Hikita, Hiroaki Ueno
  • Publication number: 20090108407
    Abstract: Oxygen can be doped into a gallium nitride crystal by preparing a non-C-plane gallium nitride seed crystal, supplying material gases including gallium, nitrogen and oxygen to the non-C-plane gallium nitride seed crystal, growing a non-C-plane gallium nitride crystal on the non-C-plane gallium nitride seed crystal and allowing oxygen to infiltrating via a non-C-plane surface to the growing gallium nitride crystal.
    Type: Application
    Filed: November 20, 2008
    Publication date: April 30, 2009
    Inventors: Kensaku Motoki, Masaki Ueno
  • Publication number: 20090008647
    Abstract: A thermal expansion interface between silicon (Si) and gallium nitride (GaN) films using multiple buffer layers of aluminum compounds has been provided, along with an associated fabrication method. The method provides a (111) Si substrate and deposits a first layer of AlN overlying the substrate by heating the substrate to a relatively high temperature of 1000 to 1200° C. A second layer of AlN is deposited overlying the first layer of AlN at a lower temperature of 500 to 800° C. A third layer of AlN is deposited overlying the second layer of AlN by heating the substrate to the higher temperature range. Then, a grading Al1-XGaXN layer is formed overlying the third layer of AlN, where 0<X<1, followed by a fixed composition Al1-XGaXN layer overlying the first grading Al1-XGaXN layer. An epitaxial GaN layer can then be grown overlying the fixed composition Al1-XGaXN layer.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Tingkai Li, Douglas J. Tweet, Jer-Shen Maa, Sheng Teng Hsu
  • Publication number: 20080296585
    Abstract: A method of producing a GaN crystal is directed to growing a GaN crystal on a GaN seed crystal substrate. The method includes the steps of preparing a GaN seed crystal substrate including a first dopant such that the thermal expansion coefficient of the GaN seed crystal substrate becomes greater than that of the GaN crystal, and growing the GaN crystal to a thickness of at least 1 mm on the GaN seed crystal substrate. Accordingly, there can be provided a method of producing a GaN crystal that can suppress generation of a crack and grow a thick GaN crystal, and a GaN crystal substrate.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 4, 2008
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Naoki MATSUMOTO, Fumitaka Sato, Seiji Nakahata, Takuji Okahisa, Koji Uematsu
  • Publication number: 20080246053
    Abstract: An object of the present invention is to provide a method for producing a p-type Group III nitride semiconductor which can be used to produce a light-emitting device exhibiting a low operation voltage and a sufficiently high reverse voltage. The inventive method for producing a p-type Group III nitride semiconductor comprises, during lowering temperature after completion of growth of a Group III nitride semiconductor containing a p-type dopant, immediately after completion of the growth, starting, at a temperature at which the growth has been completed, supply of a carrier gas composed of an inert gas and reduction of the flow rate of a nitrogen source; and stopping supply of the nitrogen source at a time in the course of lowering the temperature.
    Type: Application
    Filed: May 11, 2005
    Publication date: October 9, 2008
    Applicant: SHOWA DENKO K.K.
    Inventors: Hisayuki Miki, Hitoshi Takeda
  • Publication number: 20080237663
    Abstract: A method for fabricating a gallium arsenide MOSFET device is presented. A dummy gate is formed over a gallium arsenide substrate. Source-drain extensions are implanted into the substrate adjacent the dummy gate. Dummy spacers are formed along dummy gate sidewalls and over a portion of the source-drain extensions. Source-drain regions are implanted. Insulating spacers are formed on dummy oxide spacer sidewalls. A conductive layer is formed over the source-drain regions. The conductive layer is annealed to form contacts to the source-drain regions. The dummy gate and the dummy oxide spacers are removed to form a gate opening. A passivation layer is in-situ deposited in the gate opening. The surface of the passivation layer is oxidized to create an oxide layer. A dielectric layer is ex-situ deposited over the oxide layer. A gate metal is deposited over the dielectric layer to form a gate stack in the gate opening.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventor: Hussein I. Hanafi
  • Publication number: 20080023799
    Abstract: A nitride semiconductor device includes an n-type GaN substrate with a semiconductor device formed thereon and an n-type electrode which is a metal electrode formed on the rear surface of the GaN substrate. A surface modified layer and a reaction layer are interposed between the GaN substrate and n-type electrode. The surface modified layer serves as a carrier supplying layer, and is formed by causing the rear surface of the GaN substrate to react with a Si-containing plasma to be modified. The reaction layer is generated by partially removing a deposited material deposited on the surface modified layer by cleaning to generate a deposited layer and then causing Ti contained in a first metal layer and the deposited layer to partially react by heat treatment.
    Type: Application
    Filed: July 2, 2007
    Publication date: January 31, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kyozo KANAMOTO, Katsuomi Shiozawa, Kazushige Kawasaki, Hitoshi Sakuma, Junichi Horie, Toshihiko Shiga, Toshiyuki Oishi
  • Publication number: 20070296060
    Abstract: A substrate 103 is set in a film-forming apparatus, such as a metal organic vapor phase epitaxy system 101, and a GaN buffer film 105, an undoped GaN film 107, and a GaN film 109 containing a p-type dopant are successively grown on the substrate 103 to form an epitaxial substrate E1. The semiconductor film 109 also contains hydrogen, which was included in a source gas, in addition to the p-type dopant. Then the epitaxial substrate E1 is placed in a short pulsed laser beam emitter 111. A laser beam LB1 is applied to a part or the whole of a surface of the epitaxial substrate E1 to activate the p-type dopant by making use of a multiphoton absorption process. When the substrate is irradiated with the pulsed laser beam LB1 which can induce multiphoton absorption, a p-type GaN film 109a is formed. There is thus provided a method of optically activating the p-type dopant in the semiconductor film to form the p-type semiconductor region, without use of thermal annealing.
    Type: Application
    Filed: August 2, 2005
    Publication date: December 27, 2007
    Inventors: Keiichiro Tanabe, Susumu Yoshimoto
  • Patent number: 7233041
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 19, 2007
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, Parce J. Wallace, Jay L. Goldman