Gate Electrodes For Transistors With Floating Gate (epo) Patents (Class 257/E29.129)
  • Patent number: 7859042
    Abstract: Methods of fabricating a nonvolatile memory device include forming a trench mask pattern on a semiconductor substrate including a first region and a second region. Substrate trenches defining active regions are formed in the semiconductor substrate in the first region and the second region using the trench mask pattern as a mask. Device isolation layer patterns are formed on the semiconductor substrate including the trench mask pattern and substrate trenches. The device isolation patterns fill the substrate trenches in the first region and in the second region. First and second openings are formed exposing top surfaces of the corresponding active regions in the first and second regions by removing the trench mask pattern. The second opening has a greater width than the first opening. A first lower conductive pattern is formed in the first opening and has a bottom portion in a lower region of the first opening and an extended portion extending from the bottom portion to an upper region of the first opening.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Tae Park, Jeong-Hyuk Choi
  • Patent number: 7858464
    Abstract: Methods of manufacturing non-volatile memory devices that can reduce or prevent loss of charges stored in a charge storage layer and/or that can improve charge storage capacity by neutral beam irradiation of an insulating layer are disclosed. The methods include forming a tunneling insulating layer on a substrate, forming a charge storage layer on the tunneling insulating layer, forming a blocking insulating layer on the charge storage layer, irradiating the blocking insulating layer and/or the tunneling insulating layer with a neutral beam, and forming a gate conductive layer on the blocking insulating layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soo-doo Chae, Chung-woo Kim, Choong-man Lee, Yung-hee Lee, Chan-jin Park, Sung-wook Hwang, Jeong-hee Han, Do-haing Lee, Jin-seok Lee
  • Patent number: 7847338
    Abstract: Semiconductor memory having both volatile and non-volatile modes and methods of operation.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: December 7, 2010
    Inventor: Yuniarto Widjaja
  • Patent number: 7838922
    Abstract: An electronic device can include a substrate including a trench having a bottom and a first wall. The electronic device can also include a first gate electrode within the trench and adjacent to the first wall and overlying the bottom of the trench, a second gate electrode overlying the substrate outside of the trench, and a third gate electrode within the trench and adjacent to the first gate electrode and overlying the bottom of the trench. The electronic device can also include discontinuous storage elements including a first set of discontinuous storage elements, wherein the first set of the discontinuous storage elements lies adjacent to the first wall of the trench. Processes of forming and using the electronic device are also described.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: November 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chi-Nan Li, Cheong Min Hong
  • Patent number: 7834391
    Abstract: Coupling among adjacent rows of memory cells on an integrated circuit substrate may reduced by forming the adjacent rows of memory cells on adjacent semiconductor pedestals that extend different distances away from the integrated circuit substrate. NAND flash memory devices that include different pedestal heights and fabrication methods for integrated circuit memory devices are also disclosed.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Soo Kang, Choong-Ho Lee
  • Patent number: 7833856
    Abstract: According to an aspect of the invention, there is provided a semiconductor device comprising a semiconductor substrate, a first insulating layer formed on the semiconductor substrate, a first conductive layer formed as a floating gate on the first insulating layer, a second insulating layer formed as an interelectrode insulating film on the first conductive layer, and comprising three layers of a first film mainly including silicon and oxygen, a second film mainly including silicon and nitrogen, and a third film mainly including silicon and oxygen, wherein a silicon and nitrogen composition ratio of the second film is in a state in which the silicon is in excess of a stoichiometric composition, and a second conductive layer formed as a control gate on the second insulating film.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Tanaka, Hirokazu Ishida
  • Patent number: 7834390
    Abstract: A nonvolatile semiconductor memory device has: a semiconductor substrate; a control gate and a floating gate that are formed side by side on a gate insulating film on a channel region in the semiconductor substrate; an erase gate facing an upper surface of the floating gate; a first device isolation structure having a first projecting portion; and a second device isolation structure having a second projecting portion. The first and second projecting portions have a first sloping surface and a second sloping surface, respectively. The first sloping surface and the second sloping surface face each other, and an interval between the first and second sloping surfaces becomes larger away from the semiconductor substrate. The floating gate is sandwiched between the first and second projecting portions and at least has a portion located on the semiconductor substrate side of the first and second sloping surfaces.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 16, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Takaaki Nagai
  • Patent number: 7829933
    Abstract: A write and erase method of a semiconductor memory device includes a floating gate type transistor having a semiconductor substrate, a gate insulating film formed on the semiconductor substrate, a floating gate electrode formed on the gate insulating film, and a control gate electrode opposing the floating gate electrode with a hollow portion being sandwiched therebetween. A capacitance between the semiconductor substrate and the control gate electrode is controlled by one of an operation of forming, in the hollow portion, an electrical path which electrically connects the floating gate electrode and the control gate electrode, and an operation of eliminating the electrical path.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyohito Nishihara
  • Patent number: 7829948
    Abstract: A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Ichiro Mizushima, Makoto Mizukami
  • Patent number: 7829934
    Abstract: A flash memory device has a resistivity measurement pattern and method of forming the same. A trench is formed in an isolation film in a Self-Aligned Floating Gate (SAFG) scheme. The trench is buried to form a resistivity measurement floating gate. This allows the resistivity of the floating gate to be measured even in the SAFG scheme. Contacts for resistivity measurement are directly connected to the resistivity measurement floating gate. Therefore, variation in resistivity measurement values, which is incurred by the parasitic interface, can be reduced.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Hong Yang, Sang Wook Park
  • Patent number: 7825453
    Abstract: A semiconductor device includes a memory cell gate structure having a first gate insulating film, a first gate electrode, a second gate insulating film, and a second gate electrode, a select gate structure having a third gate insulating film and a third gate electrode including a first electrode portion, a second electrode portion, and a third electrode portion between the first electrode portion and the second electrode portion, a first impurity diffusion layer formed in a surface area of the semiconductor substrate and located at a portion which corresponds to an area between the memory cell gate structure and the first electrode portion, and a second impurity diffusion layer formed in a surface area of the semiconductor substrate and located at a portion which corresponds to an area between the first electrode portion and second electrode portion.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shoichi Miyazaki
  • Patent number: 7825454
    Abstract: In one embodiment, an EEPROM device is formed to include a metal layer having an opening therethrough. The opening overlies a portion of a floating gate of the EEPROM device.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: November 2, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: John J. Naughton, Matthew Tyler
  • Patent number: 7821054
    Abstract: A semiconductor device includes a semiconductor substrate, a first and second semiconductor regions formed on the semiconductor substrate insulated and separated from each other, a gate dielectric film formed on the substrate to overlap the first and second semiconductor regions, a floating gate electrode formed on the gate dielectric film and in which a coupling capacitance of the first semiconductor region is larger than that of the second semiconductor region, first source and drain layers formed on the first semiconductor region to interpose the floating gate electrode therebetween, a first and second wiring lines connected to the first source and drain layers, respectively, second source and drain layers formed on the second semiconductor region to interpose the floating gate electrode therebetween, and a third wiring line connected to the second source and drain layers in common.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Watanabe
  • Patent number: 7821057
    Abstract: A nonvolatile semiconductor memory device includes a semiconductor substrate of a first conductivity type, a pair of source and drain diffusion regions of a second conductivity type oppositely formed on a surface of the semiconductor substrate, and a stacked structure having a gate insulating film, a charge accumulation film, an interlayer insulating film and a control gate which are formed in order on a channel region of the surface of the semiconductor substrate interposed between the source and drain diffusion regions. An edge of the stacked structure in the vicinity of the source region is formed away from a junction position between the source diffusion region and the channel region.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takamitsu Ishihara
  • Patent number: 7808031
    Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: October 5, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
  • Patent number: 7808035
    Abstract: A semiconductor memory has a gate electrode and a pair of multilayer memory elements formed on side surfaces of the gate electrode. Each multilayer memory element includes, in sequence from the gate electrode outward, a first silicon oxide layer, a charge trapping silicon nitride layer, a second silicon oxide layer, all with L-shaped cross sections, and a protective silicon nitride layer with an approximately rectangular cross section seated in the L-shape of the second silicon oxide layer. The protective silicon nitride layer protects the charge trapping silicon nitride layer from etching damage during the formation of contact holes without adding to the area occupied by the memory cell.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: October 5, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Katsutoshi Saeki
  • Patent number: 7795665
    Abstract: A flash memory comprising a substrate, a stacked structure over the substrate, a source, a drain and a source-side spacer is provided. The stacked structure includes a tunneling oxide layer, a floating gate on the tunneling oxide layer, an inter-gate dielectric layer on the floating gate and a control gate on the inter-gate dielectric layer. The source and the drain are disposed in the substrate on the sides of the floating gate, respectively. The source-side spacer is disposed on a sidewall of the stacked structure near the source, thereby preventing the tunneling oxide layer and the inter-gate dielectric layer near the source from being re-oxidized, resulting in an increased thickness.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: September 14, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventor: Cheng-Ming Yih
  • Patent number: 7791128
    Abstract: The present invention relates to a non-volatile memory device on a substrate layer comprising semiconductor source and drain regions, a semiconductor channel region, a charge storage stack and a control gate; the channel region being fin-shaped having two sidewall portions and a top portion, and extending between the source region and the drain region; the charge storage stack being positioned between the source and drain regions and extending over the fin-shaped channel, substantially perpendicularly to the length direction of the fin-shaped channel; the control gate being in contact with the charge storage stack, wherein—an access gate is provided adjacent to one sidewall portion and separated therefrom by an intermediate gate oxide layer, and—the charge storage stack contacts the fin-shaped channel on the other sidewall portion and is separated from the channel by the intermediate gate oxide layer.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: September 7, 2010
    Assignee: NXP B.V.
    Inventors: Gerben Doornbos, Pierre Goarin
  • Patent number: 7791172
    Abstract: The invention relates to a nonvolatile semiconductor memory device including a semiconductor layer which has a source region, a drain region, and a channel forming region which is provided between the source region and the drain region; and a first insulating layer, a first gate electrode, a second insulating layer, and a second gate electrode which are layered over the semiconductor layer in that order. Part or all of the source and drain regions is formed using a metal silicide layer. The first gate electrode contains a noble gas element.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: September 7, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kengo Akimoto
  • Patent number: 7776686
    Abstract: An interpoly insulating film is modified in the film quality, while preventing generation of trap sites. A floating gate 101 is provided on a channel-forming region in the vicinity of the surface of a silicon substrate 112, an interpoly insulating film 134 is provided so as to contact with the floating gate 101, and a control gate 103 is provided so as to contact with the interpoly insulating film 134 and so as to be opposed to at least a part of the floating gate 101. A process step of providing the interpoly insulating film 134 further includes a step of forming on the floating gate 101, the interpoly insulating film 134 so as to contact with the floating gate 101, and a step of exposing, subsequently to the formation of the interpoly insulating film 134, the interpoly insulating film 134 to an atmosphere containing a nitrogen-containing gas and oxygen, to thereby simultaneously proceed nitriding and oxidation of the interpoly insulating film 134.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: August 17, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Mariko Makabe, Eiji Hasegawa
  • Patent number: 7777271
    Abstract: A system and method are disclosed for increasing the reliability of a channel erase procedure in an electrically erasable programmable read only memory (EEPROM) memory cell. A memory cell of the present invention comprises a program gate, a control gate, and a floating gate that erase data using a channel erase procedure. An erase capacitor is coupled to the floating gate to provide a low voltage bias that decreases the voltage that is required to perform a Fowler-Nordheim erase process in the memory cell. The erase capacitor of the present invention is formed without adding a step in the manufacturing process of the memory cell. Memory cells of the present invention are low cost, high endurance, low voltage memory cells.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 17, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Jiankang Bu, David Courtney Parker
  • Patent number: 7772643
    Abstract: A method of fabricating a semiconductor device having a metal gate pattern is provided in which capping layers are used to control the relative oxidation rates of portions of the metal gate pattern during a oxidation process. The capping layer may be a multilayer structure and may be etched to form insulating spacers on the sidewalls of the metal gate pattern. The capping layer(s) allow the use of a selective oxidation process, which may be a wet oxidation process utilizing partial pressures of both H2O and H2 in an H2-rich atmosphere, to oxidize portions of the substrate and metal gate pattern while suppressing the oxidation of metal layers that may be included in the metal gate pattern. This allows etch damage to the silicon substrate and edges of the metal gate pattern to be reduced while substantially maintaining the original thickness of the gate insulating layer and the conductivity of the metal layer(s).
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: August 10, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ja-Hum Ku, Chang-Won Lee, Seong-Jun Heo, Sun-Pil Youn, Sung-Man Kim
  • Patent number: 7772639
    Abstract: Nonvolatile memory devices including device isolation patterns on a semiconductor substrate are provided. The device isolation patterns define a cell active region and a peripheral active region of the semiconductor substrate. Cell gate electrodes are provided that cross over the cell active regions. Memory cell patterns are provided between the cell gate electrodes and the cell active regions and extend toward the device isolation patterns. A tunnel insulation film is provided between the memory cell pattern and the cell active region. Related methods of fabricating nonvolatile memory devices are also provided herein.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 10, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Seok Kang, Jung-Dal Choi, Ju-Hyung Kim, Jong-Sun Sel, Jae-Sung Sim, Sang-Hun Jeon
  • Patent number: 7768059
    Abstract: A non-volatile single-poly memory device is disclosed. The non-volatile single-poly memory device includes two mirror symmetric unit cells, which is capable of providing improved data correctness. Further, the non-volatile single-poly memory device is operated at low voltages and is fully compatible with logic processes.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: August 3, 2010
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Ming-Chou Ho, Shih-Jye Shen
  • Patent number: 7763928
    Abstract: A multi-time programmable (MTP) memory includes a tunneling dielectric layer, a floating gate, an inter-gate dielectric layer and a control gate. The tunneling dielectric layer is disposed on a substrate. The floating gate is disposed on the tunneling dielectric layer. The inter-gate dielectric layer is disposed on the floating gate, and a thickness of the inter-gate dielectric layer at edges of the floating gate is larger than a thickness of the inter-gate dielectric layer in a central portion of the floating gate. The control gate is disposed on the inter-gate dielectric layer.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: July 27, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Yu-Hsien Lin, Wen-Fang Lee, Ya-Huang Huang, Ming-Yen Liu, Yu-Kang Shen
  • Patent number: 7759719
    Abstract: A nonvolatile memory cell is provided. The cell has a charge filter, a tunneling gate, a ballistic gate, a charge storage layer, a source, and a drain with a channel defined between the source and drain. The charge filter permits transporting of charge carriers of one polarity type from the tunneling gate through the blocking material and the ballistic gate to the charge storage layer while blocking the transport of charge carriers of an opposite polarity from the ballistic gate to the tunneling gate. Further embodiments of the present invention provide a cell having a charge filter, a supplier gate, a tunneling gate, a ballistic gate, a source, a drain, a channel, and a charge storage layer. The present invention further provides an energy band engineering method permitting the memory cell be operated without suffering from disturbs, from dielectric breakdown, from impact ionization, and from undesirable RC effects.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: July 20, 2010
    Inventor: Chih-Hsin Wang
  • Patent number: 7759721
    Abstract: A non-volatile memory device comprises a substrate with the dielectric layer formed thereon. A control gate and a floating gate are then formed on top of the dielectric layer. Accordingly, a non-volatile memory device can be constructed using a single poly process that is compatible with conventional CMOS processes. In addition, an assist gate, or assist gates are formed on the dielectric layer next to and between the control gate and floating gate respectively. The assist gates are used to form inversion diffusion regions in the substrate. By using the assist gates to form inversion diffusion regions, the overall size of the device can be reduced, which can improve device density.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: July 20, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Chang Kuo, Chao-I Wu
  • Patent number: 7755131
    Abstract: A NAND-type non-volatile semiconductor memory device has a semiconductor substrate, an element isolation insulating film which is formed on a surface of the semiconductor substrate spaced apart at a predetermined distance from each other, a first insulating film which is formed between the element isolation insulating films on the semiconductor substrate, a floating gate which is formed on the first insulating films, a second insulating gate which is formed on an end region of the floating gate, a control gate which is formed on the second insulating film, and a contact plug which is formed on a surface of the floating gate so that one end of the contact plug is electrically connected to the control gate.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideyuki Kinoshita
  • Patent number: 7755133
    Abstract: Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: July 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-bum Kim, Young-pil Kim, Si-young Choi, Byeong-chan Lee, Jong-wook Lee
  • Patent number: 7750387
    Abstract: Disclosed are a semiconductor device and method of fabricating the same. The semiconductor device includes a floating gate on a semiconductor layer; a first contact on the floating gate; a MIM capacitor including a lower electrode, an insulating layer, and an upper electrode on the first contact; a second contact on a drain region of the semiconductor layer; a metal island on the second contact; a via on the metal island; and a bit line on the via.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 6, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7750394
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor substrate; and a memory cell. The memory cell includes: a source region and a drain region formed at a distance from each other on the semiconductor substrate; a tunnel insulating film formed on a channel region of the semiconductor substrate, the channel region being located between the source region and the drain region; a charge storage film formed on the tunnel insulating film; a charge block film formed on the charge storage film; and a control electrode that is formed on the charge block film. The control electrode includes a Hf oxide film or a Zr oxide film having at least one element selected from the first group consisting of V, Cr, Mn, and Tc added thereto, and having at least one element selected from the second group consisting of F, H, and Ta added thereto.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Koichi Muraoka
  • Patent number: 7745870
    Abstract: A floating gate memory cell has a floating gate in which there are two floating gate layers. The top layer is etched to provide a contour in the top layer while leaving the lower layer unchanged. The control gate follows the contour of the floating gate to increase capacitance therebetween. The two layers of the floating gate can be polysilicon separated by a very thin etch stop layer. This etch stop layer is thick enough to provide an etch stop during a polysilicon etch but preferably thin enough to be electrically transparent. Electrons are able to easily move between the two layers. Thus the etch of the top layer does not extend into the lower layer but the first and second layer have the electrical effect for the purposes of a floating gate of being a continuous conductive layer.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, Craig T. Swift
  • Patent number: 7745236
    Abstract: A method of deprocessing a semiconductor structure is provided. The method involves removing a silicide layer over a second poly layer, an interpoly dielectric layer, a first poly layer, an optionally an oxide layer on a substrate. The method may further involve at least one of removing a second poly layer, removing an interpoly dielectric layer, removing a first poly layer, removing an oxide layer, and removing an unimplanted portion of a substrate. The exposed layer/portion of the semiconductor structure can be subjected to an inspection for defects and/or other characteristics. The inspection can aid in defect reduction strategies, among other things, when applied to new technology ramp, monitoring of baseline wafer starts, customer returns, etc.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 29, 2010
    Assignee: Spansion LLC
    Inventors: Charles Ray Mathews, Alex Bierwag, Stuart Litwin
  • Patent number: 7741717
    Abstract: A metal line of a semiconductor device comprising contact plugs, a plurality of first trenches, first metal lines, a plurality of second trenches, and second metal lines. The contact plugs are formed over a semiconductor substrate and are insulated from each other by a first insulating layer. The plurality of first trenches are formed in the first insulating layer and are connected to first contact plugs of the contact plugs. The first metal lines are formed within the first trenches and are connected to the first contact plugs. The plurality of second trenches are formed over the first metal lines and the first insulating layer and comprise a second insulating layer connected to second contact plugs of the contact plugs. The second metal lines are formed within the second trenches and are connected to the second contact plugs.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Young Ok Hong, Dong Hwan Lee
  • Patent number: 7737486
    Abstract: A non-volatile semiconductor storage device includes: a semiconductor substrate; a source region and a drain region formed in the semiconductor substrate so as to be separated from each other; a first insulating film formed between the source region and the drain region, on the semiconductor substrate; a floating electrode formed on the first insulating film and including a semiconductor conductive material layer having extension strain; a second insulating film formed on the floating electrode; and a control electrode formed on the second insulating film. The extension strain of the floating electrode becomes gradually small as the location advances from the second insulating film toward the first insulating film, and the floating electrode has extension strain of 0.01% or more at an interface between the floating electrode and the second insulating film, and has extension strain less than 0.01% at an interface between the floating electrode and the first insulating film.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masumi Saitoh, Ken Uchida
  • Patent number: 7732271
    Abstract: According to this invention, there is provided a NAND-type semiconductor storage device including a semiconductor substrate, a semiconductor layer formed on the semiconductor substrate, a buried insulating film selectively formed between the semiconductor substrate and the semiconductor layer in a memory transistor formation region, diffusion layers formed on the semiconductor layer in the memory transistor formation region, floating body regions between the diffusion layers, a first insulating film formed on each of the floating body regions, a floating gate electrode formed on the first insulating film, a control electrode on a second insulating film formed on the floating gate electrode, and contact plugs connected to ones of the pairs of diffusion layers which are respectively located at ends of the memory transistor formation region, wherein the ones of the pairs of diffusion layers, which are located at the ends of the memory transistor formation region, are connected to the semiconductor substrate belo
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 8, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Hamamoto, Akihiro Nitayama
  • Patent number: 7728378
    Abstract: A nonvolatile semiconductor memory device capable of improving injection efficiency and simplifying manufacturing process is provided. The device comprises a memory cell having second conductive type of first impurity diffusion area and second impurity diffusion area on a first conductive type of semiconductor substrate, between the first and second impurity diffusion areas, a first laminate section formed by laminating a first insulating film, a charge storage layer, a second insulating film and a first gate electrode in this order from the bottom, and a second laminate section formed by laminating a third insulating film and a second gate electrode in this order from the bottom, wherein an area sandwiched between the first and second laminate sections is the second conductive type of a third impurity diffusion area having impurity density lower than that of the first and second impurity diffusion areas and not higher than 5×1012 ions/cm2.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: June 1, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoki Ueda, Yoshimitsu Yamauchi
  • Patent number: 7718499
    Abstract: In a method of fabricating a semiconductor device, an additive gas is mixed with an etching gas to reduce a fluorine ratio of the etching gas. The etching gas having a reduced fluorine rate is utilized in the process for etching a nitride layer formed on an oxide layer to prevent the oxide layer formed below the nitride layer from being etched along with the nitride layer. The method comprises primarily etching an exposed charge storage layer using an etching gas; and secondarily etching the charge storage layer using the etching gas under a condition that a ratio of fluorine contained in the etching gas utilized in the secondary etching step is less than a ratio of fluorine contained in the etching gas utilized in the primary etching step. Thus, the tunnel insulating layer formed below the charge storage layer is not damaged when the charge storage layer is patterned.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 18, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Choong Bae Kim
  • Patent number: 7714378
    Abstract: In a method for manufacturing a semiconductor device, an oxide layer, a first polysilicon layer, and a second polysilicon layer are sequentially provided on a substrate. A first hard mask pattern is provided on the second polysilicon layer. The oxide layer, the first polysilicon layer, and the second polysilicon layer are patterned using the first hard mask pattern as a mask to form a lower gate structure including an oxide pattern, a first polysilicon pattern, and a second polysilicon pattern. The lower gate structure is etched to provide an oxidation layer on sidewalls of the lower gate structure. An insulating layer is provided on the lower gate structure including the oxidation layer. The first hard mask pattern is removed to form a first opening in the insulating layer, the first opening exposing the second polysilicon pattern. A metal pattern is formed in the first opening on the second polysilicon pattern, the second polysilicon pattern having the oxidation layer on sidewalls thereof.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: May 11, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-kyung Kim, Jeong-hyuk Choi
  • Patent number: 7714373
    Abstract: There is disclosed a semiconductor device including a plurality of memory cell transistors, each memory cell transistor including a floating gate electrode isolated from each other via an isolation insulating film every memory cell transistor, an inter-electrode insulating film comprising a HfxAl1-xOy film (0.8?x?0.95) formed on the floating gate electrode, and a control gate electrode formed on the inter-electrode insulating film, wherein the memory cell transistors are arrayed to form a memory cell array.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuaki Natori, Masayuki Tanaka, Katsuyuki Sekine, Hirokazu Ishida, Masumi Matsuzaki, Yoshio Ozawa
  • Patent number: 7709884
    Abstract: The invention relates to a nonvolatile two-transistor semiconductor memory cell and an associated fabrication method, source and drain regions (2) for a selection transistor (AT) and a memory transistor (ST) being formed in a substrate (1). The memory transistor (ST) has a first insulation layer (3), a charge storage layer (4), a second insulation layer (5) and a memory transistor control layer (6), while the selection transistor (AT) has a first insulation layer (3?) and a selection transistor control layer (4*). By using different materials for the charge storage layer (4) and the selection transistor control layer (4*), it is possible to significantly improve the charge retention properties of the memory cell by adapting the substrate doping with electrical properties remaining the same.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 4, 2010
    Assignee: Infineon Technologies AG
    Inventors: Franz Schuler, Georg Tempel
  • Patent number: 7709881
    Abstract: A control gate includes a first conductive film formed in contact with an inter-gate insulating film and a second conductive film electrically connected to the first conductive film. An inter-level insulating film which insulates first and second stacked gate structures from each other. The inter-level insulating film includes a first insulating film, a second insulating film, and a third insulating film formed between the first and second insulating films. The first insulating film insulates the floating gates from each other and portions of the control gates from each other. The second and third insulating films insulate the other portions of the control gates from each other. The third insulating film has a selective etching ratio with respect to the first and second insulating films.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuhiko Matsunaga
  • Patent number: 7705394
    Abstract: A nonvolatile semiconductor memory includes a memory cell transistor including a first floating gate electrode layer formed on a first tunneling insulating film, a first inter-gate insulating film, first and second control gate electrode layers, and a first metallic silicide film; a high voltage transistor including a high voltage gate electrode layer formed on the high voltage gate insulating film, a second inter-gate insulating film having an aperture, third and fourth control gate electrode layers, and a second metallic silicide film; a low voltage transistor including a second floating gate electrode layer formed on a second tunneling insulating film, a third inter-gate insulating film having an aperture, fifth and sixth control gate electrode layers, and a third metallic silicide film; and a liner insulating film directly disposed on first, second and third source and drain regions of the memory cell transistor, low voltage transistor, and high voltage transistor, respectively.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: April 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kikuko Sugimae, Masayuki Ichige, Fumitaka Arai, Yasuhiko Matsunaga, Atsuhiro Sato
  • Patent number: 7700473
    Abstract: A method for fabricating a gated semiconductor device, and the device resulting from performing the method. In a preferred embodiment, the method includes forming a hard mask for use in gate formation on one or more layers of alternately insulating and conducting material that have been formed on a substrate. The hard mask preferably includes three layers; a lower nitride layer, a middle oxide, and an upper nitride layer. In this embodiment, the middle oxide layer is formed with the rest of the hard mask, and then reduced in a lateral dimension, preferably using a DHF dip. A dielectric layer formed over the gate structure, including the hard mask, then etched back, self-aligns to be reduced-dimension oxide layer. In addition, where two conducting, that is gate layers are present, the lower layer is laterally reduced in dimension on at least one side to create an undercut.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chang Liu, Ming-Hui Shen, Chi-Hsin Lo, Chia-Shiung Tsai, Yi-Shin Chu
  • Patent number: 7687847
    Abstract: A method of fabricating a semiconductor device is described. A substrate having a memory cell region and a high voltage circuit region are provided. First and second source/drain regions are formed in the substrate within these two regions. A silicon oxide layer, a first conductive layer and a top layer are sequentially formed over the substrate. A floating gate is defined in the memory cell region and the top layer and the first conductive layer of the high voltage circuit region are removed. The exposed silicon oxide layer is thickened. Thereafter, the top layer is removed and then a barrier layer is formed on the exposed surface of the floating gate. A second conductor layer is formed over the substrate, and then a gate is defined in the high voltage circuit region and a control gate is defined in the memory cell region.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 30, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Fang Lee, Dave Hsu, Asam Lin
  • Patent number: 7687345
    Abstract: Disclosed are a flash memory device having a silicon-oxide-nitride-oxide-silicon (SONOS) structure and a method of manufacturing the same. The flash memory device includes source and drain diffusion regions separated from each other on opposite sides of a trench in an active region of a semiconductor substrate, a control gate inside the trench and protruding upward from the substrate, a charge storage layer between the control gate and an inner wall of the trench, and a pair of insulating spacers formed on opposite sidewalls of the control gate with the charge storage layer therebetween. Here, the charge storage layer has an oxide-nitride-oxide (ONO) structure. Further, the depth of the trench from the surface of the substrate is greater than that of each of the source and drain diffusion regions.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: March 30, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7683422
    Abstract: Non-volatile memory devices include memory cells therein with reduced cell-to-cell coupling capacitance. These memory cells include floating gate electrodes with open-ended wraparound shapes that operate to reduce the cell-to-cell coupling capacitance in a bit line direction, while still maintaining a high coupling ratio between control and floating gate electrodes within each memory cell.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woon-Kyung Lee, Jeong-Hyuk Choi, Jai-Hyuk Song
  • Patent number: 7679127
    Abstract: A semiconductor device including a semiconductor substrate; a first gate insulating film formed on the semiconductor substrate; a first gate electrode layer formed on the first gate insulating film; an element isolation insulating film formed so as to isolate a plurality of the first gate electrode layers; a second gate insulating film layer formed so as to cover upper surfaces of the plurality of first gate electrode layers and the element isolation insulating films; and a second gate electrode layer formed on the second gate insulating film layer; and the second gate insulating film layer includes a NONON stacked film structure and a nitride film layer contacting the first gate electrode layer and constituting a lowermost layer of the NONON stack film structure is separated at a portion interposing the plurality of neighboring first gate electrode layers.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: March 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Shiozawa, Takeo Furuhata, Akiko Sekihara
  • Patent number: 7663177
    Abstract: A non-volatile memory device and fabricating method thereof are provided. In the deposition to form a tunneling dielectric layer, a composite charge trapping layer and a block dielectric layer, an ingredient of a depositing material or the depositing material is adjusted to form a grading energy level structure, such that carriers are trapped or erased more easily in accordance with a variation in grading energy level. Therefore, the carriers are stored more effectively and the probability that the electric leakage occurs is reduced substantially.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: February 16, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Cha-Hsin Lin, Lurng-Shehng Lee, Pei-Jer Tzeng
  • Patent number: RE41868
    Abstract: A memory cell with a small surface area is fabricated by forming source lines and data lines above and below and by running the channels to face up and down. The local data lines for each vertically stacked memory cell are connected to a global data line by way of separate selection by a molecular oxide semiconductor, and use of a large surface area is avoided by making joint use of peripheral circuits such as global data lines and sensing amplifiers by performing read and write operations in a timed multiplex manner. Moreover, data lines in multi-layers and memory cells (floating electrode cell) which are non-destructive with respect to readout are utilized to allow placement of memory cells at all intersecting points of word lines and data lines while having a folded data line structure. An improved noise tolerance is attained by establishing a standard threshold voltage for identical dummy cells even in any of the read verify, write verify and erase verify operations.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: October 26, 2010
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd.
    Inventors: Toshiaki Sano, Tomoyuki Ishii, Kazuo Yano, Toshiyuki Mine