Thyristor-type Device (e.g., Having Four-zone Regenerative Action) (epo) Patents (Class 257/E29.211)
-
Patent number: 12057444Abstract: A structure includes trigger control circuitry for an SCR including: a first transistor having two P-type semiconductor terminals connected to an Nwell and a Pwell of the SCR; a second transistor having two N-type semiconductor terminals connected to the Pwell and ground; and, optionally, an additional transistor having two P-type semiconductor terminals connected to the Nwell and ground. Control terminals of the transistors receive the same control signal (e.g., RST from a power-on-reset). When a circuit connected to the SCR for ESD protection is powered on, ESD risk is limited so RST switches to high. Thus, the first transistor and optional additional transistor turn off and the second transistor turns on, reducing leakage. When the circuit is powered down, the ESD risk increases so RST switches to low. Thus, the first transistor and optional additional transistor turn on and the second transistor turns off, lowering the trigger voltage and current.Type: GrantFiled: June 23, 2022Date of Patent: August 6, 2024Assignee: GlobalFoundries U.S. Inc.Inventors: Souvick Mitra, Alain F. Loiseau, Robert J. Gauthier, Jr., Meng Miao, Anindya Nath, Wei Liang
-
Patent number: 11631759Abstract: An ESD protection device may be provided, including: a substrate including a first conductivity region and a second conductivity region arranged therein. The first conductivity region may include a first terminal region and a second terminal region electrically coupled with each other. The second conductivity region may include a third terminal region and a fourth terminal region electrically coupled with each other. The second conductivity region may further include a fifth terminal region electrically coupled with the first and second terminal regions. The fifth terminal region may be arranged laterally between the third terminal region and the fourth terminal region. The first conductivity region, the first terminal region, the third terminal region, and the fifth terminal region may have a first conductivity type. The second conductivity region, the second terminal region, and the fourth terminal region may have a second conductivity type different from the first conductivity type.Type: GrantFiled: February 2, 2021Date of Patent: April 18, 2023Assignee: GLOBALFOUNDRIES U.S. Inc.Inventors: Meng Miao, Alain François Loiseau, Souvick Mitra, Robert John Gauthier, Jr., You Li, Wei Liang
-
Patent number: 8952418Abstract: Some embodiments include gated bipolar junction transistors. The transistors may include a base region between a collector region and an emitter region; with a B-C junction being at an interface of the base region and the collector region, and with a B-E junction being at an interface of the base region and the emitter region. The transistors may include material having a bandgap of at least 1.2 eV within one or more of the base, emitter and collector regions. The gated transistors may include a gate along the base region and spaced from the base region by dielectric material, with the gate not overlapping either the B-C junction or the B-E junction. Some embodiments include memory arrays containing gated bipolar junction transistors. Some embodiments include methods of forming gated bipolar junction transistors.Type: GrantFiled: March 1, 2011Date of Patent: February 10, 2015Assignee: Micron Technology, Inc.Inventors: Rajesh N. Gupta, Farid Nemati, Scott T. Robins
-
Patent number: 8928030Abstract: An A-NPC circuit is configured so that the intermediate potential of two connected IGBTs is clamped by a bidirectional switch including two RB-IGBTs. Control is applied to the turn-on di/dt of the IGBTs during the reverse recovery of the RB-IGBTs. The carrier life time of an n? drift region in each RB-IGBT constituting the bidirectional switch is comparatively longer than that in a typical NPT structure device. A low life time region is also provided in the interface between the n? drift region and a p collector region, and extends between the n? drift region and the p collector region. Thus, it is possible to provide a low-loss semiconductor device, a method for manufacturing the semiconductor device and a method for controlling the semiconductor device, in which the reverse recovery loss is reduced while the reverse recovery current peak and the jump voltage peak during reverse recovery are suppressed.Type: GrantFiled: April 15, 2013Date of Patent: January 6, 2015Assignee: Fuji Electric Co., Ltd.Inventor: Hong-fei Lu
-
Patent number: 8907372Abstract: A thyristor includes a base region, a pair of first doping regions, at least one second doping region, at least one third doping region, and a pair of metal layers. The first doping regions are formed in two opposite sides of the base region and touch the base region. The second doping region is formed between the base region and one of the first doping regions. The second doping region touches the base region and the first doping region. The third doping region is formed in one of the first doping regions and touches the first doping region. The type of the first doping region is different from the types of the second doping region, the third doping region, and the base region. The metal layers touch the first doping regions respectively. The first doping regions and the third doping region are located between the metal layers.Type: GrantFiled: October 19, 2012Date of Patent: December 9, 2014Assignee: Lite-On Semiconductor Corp.Inventors: Pen-Te Chang, Wen-Chung Liu
-
Publication number: 20140124828Abstract: A semiconductor controlled rectifier (FIG. 4A) for an integrated circuit is disclosed. The semiconductor controlled rectifier comprises a first lightly doped region (100) having a first conductivity type (N) and a first heavily doped region (108) having a second conductivity type (P) formed within the first lightly doped region. A second lightly doped region (104) having the second conductivity type is formed proximate the first lightly doped region. A second heavily doped region (114) having the first conductivity type is formed within the second lightly doped region. A buried layer (101) having the first conductivity type is formed below the second lightly doped region and electrically connected to the first lightly doped region. A third lightly doped region (102) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region.Type: ApplicationFiled: November 2, 2012Publication date: May 8, 2014Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Akram A. Salman, Farzan Farbiz, Amitava Chatterjee, Xiaoju Wu
-
Patent number: 8717724Abstract: Provided is an electrostatic discharge (ESD) protection diode that is formed on an input/output pad of an integrated circuit (IC), the ESD protection diode including: an N-type semiconductor that constitutes a first diode and is connected to a pad for a power supply voltage; a P-type semiconductor that constitutes the first diode and is connected to a signal line; an N-type semiconductor that constitutes a second diode and is connected to the signal line; a P-type semiconductor that constitutes the second diode and is connected to a pad for grounding; and a third diode that is formed by contacting the N-type semiconductor of the first diode and the P-type semiconductor of the second diode.Type: GrantFiled: October 13, 2011Date of Patent: May 6, 2014Assignee: Soongsil University research Consortium techno-ParkInventors: Joon Young Park, Jong Hoon Park, Chang Kun Park
-
Publication number: 20140110751Abstract: A thyristor includes a base region, a pair of first doping regions, at least one second doping region, at least one third doping region, and a pair of metal layers. The first doping regions are formed in two opposite sides of the base region and touch the base region. The second doping region is formed between the base region and one of the first doping regions. The second doping region touches the base region and the first doping region. The third doping region is formed in one of the first doping regions and touches the first doping region. The type of the first doping region is different from the types of the second doping region, the third doping region, and the base region. The metal layers touch the first doping regions respectively. The first doping regions and the third doping region are located between the metal layers.Type: ApplicationFiled: October 19, 2012Publication date: April 24, 2014Applicant: LITE-ON SEMICONDUCTOR CORP.Inventors: PAN-TE CHANG, WEN-CHUNG LIU
-
Patent number: 8703547Abstract: The present invention provides a device for electrostatic discharge and the method of manufacturing thereof. P-well is formed on the substrate, and a first N+ doped region, a second N+ doped region and a P+ doped region are formed in the P-well; both ends of each doped region adopt shallow trench isolation for isolation. A lightly doped source-drain region portion is formed between the first N+ doped region and the shallow trench isolation connected thereto. Under the source-drain region, a halo injection with an inverse type is formed. The reverse conduction voltage of the collector of the bipolar transistor is lowered through the introduction of special doped region and the adoption of lightly doped source-drain technology for manufacturing the source-drain region as well as the manufacturing of halo injection with inverse type under the source-drain region, thus reducing the trigger voltage of the device.Type: GrantFiled: December 22, 2008Date of Patent: April 22, 2014Assignee: Grace Semiconductor Manufacturing CorporationInventors: Yi Shan, Jun He
-
Patent number: 8680621Abstract: An integrated circuit comprising electro-static discharge (ESD) protection circuitry arranged to provide ESD protection to an external terminal of the integrated circuit. The ESD protection circuitry comprises: a thyristor circuit comprising a first bipolar switching device operably coupled to the external terminal and a second bipolar switching device operably coupled to another external terminal, a collector of the first bipolar switching device being coupled to a base of the second bipolar switching device and a base of the first bipolar switching device being coupled to a collector of the second bipolar switching device. A third bipolar switching device is also provided and operably coupled to the thyristor circuit and has a threshold voltage for triggering the thyristor circuit, the threshold voltage being independently configurable of the thyristor circuit.Type: GrantFiled: May 18, 2010Date of Patent: March 25, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Patrice Besse, Jean Philippe Laine
-
Patent number: 8674400Abstract: A latchup silicon controlled rectifier (SCR) includes a p+ region and an n+ region located in a p-well of the latchup SCR; and a p+ region and an n+ region located in a n-well of the latchup SCR, wherein the latchup SCR further comprises one of embedded silicon germanium (eSiGe) in the p+ region in the n-well of the latchup SCR and silicon carbide (SiC) in the n+ region in the p-well of the latchup SCR.Type: GrantFiled: January 17, 2013Date of Patent: March 18, 2014Assignee: International Business Machines CorporationInventors: John B. Campi, Robert J. Gauthier, Jr., Junjun Li, Rahul Mishra
-
Patent number: 8669554Abstract: A fast recovery rectifier structure with the combination of Schottky structure to relieve the minority carriers during the forward bias condition for the further reduction of the reverse recovery time during switching in addition to the lifetime killer such as Pt, Au, and/or irradiation. This fast recovery rectifier uses unpolished substrates and thick impurity diffusion for low cost production. A reduced p-n junction structure with a heavily p-type doped thin film is provided to terminate and shorten the p-n junction space charge region. This reduced p-n junction with less total charge in the p-n junction to further improve the reverse recovery time. This reduced p-n junction can be used alone, with the traditional lifetime killer method, with the Schottky structure and/or with the epitaxial substrate.Type: GrantFiled: January 11, 2012Date of Patent: March 11, 2014Inventor: Ho-Yuan Yu
-
Patent number: 8598621Abstract: A memory cell includes a thyristor having a plurality of alternately doped, vertically superposed semiconductor regions; a vertically oriented access transistor having an access gate; and a control gate operatively laterally adjacent one of the alternately doped, vertically superposed semiconductor regions. The control gate is spaced laterally of the access gate. Other embodiments are disclosed, including methods of forming memory cells and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor.Type: GrantFiled: February 11, 2011Date of Patent: December 3, 2013Assignee: Micron Technology, Inc.Inventor: Sanh D. Tang
-
Patent number: 8542337Abstract: An embodiment of the invention provides a pixel structure of an active matrix organic light emitting display comprising a gate line, a common electrode line, a signal line, a power line, a first thin film transistor which is used as an addressing element, and a second thin film transistor which controls the organic light emitting display. A short-circuit-ring structure is connected between the common electrode line and the signal line and the short-circuit-ring structure communicates the signal line and the common electrode line in the case where a large current flows.Type: GrantFiled: March 23, 2010Date of Patent: September 24, 2013Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.Inventor: Mi Zhang
-
Publication number: 20130229223Abstract: One embodiment of the present invention relates to a silicon-controlled-rectifier (SCR). The SCR includes a longitudinal silicon fin extending between an anode and a cathode and including a junction region there between. One or more first transverse fins traverses the longitudinal fin at one or more respective tapping points positioned between the anode and the junction region. Other devices and methods are also disclosed.Type: ApplicationFiled: March 5, 2012Publication date: September 5, 2013Applicant: Intel Mobile Communications GmbHInventors: Mayank Shrivastava, Christian Russ, Harald Gossner
-
Patent number: 8384126Abstract: A low voltage protection device that includes a silicon substrate comprises an inner layer of a first dopant type. The device also includes a first outer layer of a second dopant type disposed adjacent a first surface of the inner layer and a second outer layer of the second dopant type disposed adjacent a second surface of the inner layer opposite the first surface. The device further includes a first mesa region disposed in a peripheral region of a first side of the low voltage protection device. The first mesa region includes a first area that includes a peripheral portion of a cathode of the low voltage protection device, the cathode formed by diffusing a high concentration of dopant species of the first type on a first surface of the silicon substrate, and a second area comprising a high concentration of diffused dopant species of the second type.Type: GrantFiled: June 20, 2011Date of Patent: February 26, 2013Assignee: Littelfuse, Inc.Inventors: Richard Rodrigues, Johnny Chen, Ethan Kuo
-
Patent number: 8354690Abstract: Provided is a semiconductor bistable switching device that includes a thyristor portion including an anode layer, a drift layer, a gate layer and a cathode layer, the gate layer operable to receive a gate trigger current that, when the anode layer is positively biased relative to the cathode layer, causes the thyristor portion to latch into a conducting mode between the anode and the cathode. The device also includes a transistor portion formed on the thyristor portion, the transistor portion including a source, a drain and a transistor gate, the drain coupled to the cathode of the thyristor portion.Type: GrantFiled: August 31, 2009Date of Patent: January 15, 2013Assignee: Cree, Inc.Inventors: Robert J. Callanan, Sei-Hyung Ryu, Qingchun Zhang
-
Publication number: 20130009207Abstract: A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.Type: ApplicationFiled: September 13, 2012Publication date: January 10, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: John B. Campi, JR., Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, JR., Junjun Li, Rahul Mishra, Mujahid Muhammad
-
Publication number: 20120326766Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.Type: ApplicationFiled: June 24, 2011Publication date: December 27, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas D. Stricker
-
Publication number: 20120256231Abstract: A low voltage protection device that includes a silicon substrate comprises an inner layer of a first dopant type. The device also includes a first outer layer of a second dopant type disposed adjacent a first surface of the inner layer and a second outer layer of the second dopant type disposed adjacent a second surface of the inner layer opposite the first surface. The device further includes a first mesa region disposed in a peripheral region of a first side of the low voltage protection device. The first mesa region includes a first area that includes a peripheral portion of a cathode of the low voltage protection device, the cathode formed by diffusing a high concentration of dopant species of the first type on a first surface of the silicon substrate, and a second area comprising a high concentration of diffused dopant species of the second type.Type: ApplicationFiled: June 20, 2011Publication date: October 11, 2012Applicant: LITTELFUSE, INC.Inventors: Richard Rodrigues, Johnny Chen, Ethan Kuo
-
Publication number: 20120228629Abstract: Some embodiments include thyristors having first and second electrode regions, first and second base regions, and material having a bandgap of at least 1.2 eV in at least one of the regions. The first base region is between the first electrode region and the second base region, and the second base region is between the second electrode region and the first base region. The first base region interfaces with the first electrode region at a first junction, and interfaces with the second base region at a second junction. The second base region interfaces with the second electrode region at a third junction. A gate is along the first base region, and in some embodiments does not overlap either of the first and second junctions. Some embodiments include methods of programming thyristors, and some embodiments include methods of forming thyristors.Type: ApplicationFiled: March 8, 2011Publication date: September 13, 2012Applicant: Micron Technology, Inc.Inventors: Farid Nemati, Scott T. Robins, Rajesh N. Gupta
-
Publication number: 20120217539Abstract: Disclosed is a semiconductor component that includes a semiconductor body, a first emitter region of a first conductivity type in the semiconductor body, a second emitter region of a second conductivity type spaced apart from the first emitter region in a vertical direction of the semiconductor body, a base region of one conductivity type arranged between the first emitter region and the second emitter region, and at least two higher doped regions of the same conductivity type as the base region and arranged in the base region. The at least two higher doped regions are spaced apart from one another in a lateral direction of the semiconductor body and separated from one another only by sections of the base region.Type: ApplicationFiled: February 28, 2011Publication date: August 30, 2012Applicant: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Hans Peter Felsl, Thomas Raker, Hans-Joachim Schulze, Franz-Josef Niedernostheide
-
Publication number: 20120217541Abstract: A power semiconductor device comprising a trench IGBT, a trench MOSFET and a fast switching diode for reduction of turn-on loss is disclosed. The inventive semiconductor power device employs a fast switching diode instead of body diode in the prior art. Furthermore, the inventive semiconductor power device further comprises an additional ESD protection diode between emitter metal and gate metal.Type: ApplicationFiled: February 24, 2011Publication date: August 30, 2012Applicant: FORCE MOS TECHNOLOGY CO., LTD.Inventor: Fu-Yuan HSIEH
-
Publication number: 20120126285Abstract: A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.Type: ApplicationFiled: November 24, 2010Publication date: May 24, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: John B. Campi, JR., Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, JR., Junjun Li, Rahul Mishra, Mujahid Muhammad
-
Publication number: 20120104456Abstract: A fast recovery rectifier structure with the combination of Schottky structure to relieve the minority carriers during the forward bias condition for the further reduction of the reverse recovery time during switching in addition to the lifetime killer such as Pt, Au, and/or irradiation. This fast recovery rectifier uses unpolished substrates and thick impurity diffusion for low cost production. A reduced p-n junction structure with a heavily p-type doped thin film is provided to terminate and shorten the p-n junction space charge region. This reduced p-n junction with less total charge in the p-n junction to further improve the reverse recovery time. This reduced p-n junction can be used alone, with the traditional lifetime killer method, with the Schottky structure and/or with the epitaxial substrate.Type: ApplicationFiled: January 11, 2012Publication date: May 3, 2012Inventor: Ho-Yuan Yu
-
Publication number: 20120105389Abstract: A electrostatic protection element (101) includes: a substrate (1) of a first conductivity type; a first low-concentration diffusion region (2) of a second conductivity type and a second low-concentration diffusion region (3) of the first conductivity type which are formed on said substrate (1), the second conductivity type being different from the first conductivity type; a first high-concentration diffusion region (4) of the second conductivity type and a second high-concentration diffusion region (5) of the first conductivity type which are (i) formed in said first low-concentration diffusion region (2), and (ii) electrically connected with each other; a third high-concentration diffusion region (9) of the first conductivity type and a fourth high-concentration diffusion region (8) of the second conductivity type which are (i) formed in said second low-concentration diffusion region (3), and (ii) electrically connected with each other; a fifth high-concentration diffusion region (6) of the first conductiviType: ApplicationFiled: November 1, 2010Publication date: May 3, 2012Inventors: Tetsuo Asada, Hirofumi Nakagawa
-
Patent number: 8159026Abstract: This invention provides a lateral high-voltage semiconductor device, which is a three-terminal one with two types of carriers for conduction and consists of a highest voltage region and a lowest voltage region referring to the substrate and a surface voltage-sustaining region between the highest voltage region and the lowest voltage region. The highest voltage region and the lowest region have an outer control terminal and an inner control terminal respectively, where one terminal is for controlling the flow of majorities of one conductivity type and another for controlling the flow of majorities of the other conductivity type. The potential of the inner control terminal is regulated by the voltage applied to the outer control terminal.Type: GrantFiled: April 2, 2010Date of Patent: April 17, 2012Assignee: University of Electronics Science and TechnologyInventor: Xingbi Chen
-
Publication number: 20120080717Abstract: Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.Type: ApplicationFiled: October 5, 2010Publication date: April 5, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Michel J. ABOU-KHALIL, Robert J. GAUTHIER, JR., Tom C. LEE, Junjun LI, Souvick MITRA, Christopher S. PUTNAM
-
Publication number: 20120018738Abstract: Electronic device structures including semiconductor ledge layers for surface passivation and methods of manufacturing the same are disclosed. In one embodiment, the electronic device includes a number of semiconductor layers of a desired semiconductor material having alternating doping types. The semiconductor layers include a base layer of a first doping type that includes a highly doped well forming a first contact region of the electronic device and one or more contact layers of a second doping type on the base layer that have been etched to form a second contact region of the electronic device. The etching of the one or more contact layers causes substantial crystalline damage, and thus interface charge, on the surface of the base layer. In order to passivate the surface of the base layer, a semiconductor ledge layer of the semiconductor material is epitaxially grown on at least the surface of the base layer.Type: ApplicationFiled: July 26, 2010Publication date: January 26, 2012Applicant: CREE, INC.Inventors: Qingchun Zhang, Anant Agarwal
-
Publication number: 20120012892Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.Type: ApplicationFiled: July 19, 2010Publication date: January 19, 2012Inventors: Suraj J. Mathew, Chandra Mouli
-
Patent number: 8093623Abstract: Disclosed herein is a semiconductor integrated circuit including a protected circuit; and a protection element formed on the same semiconductor substrate as the protected circuit and adapted to protect the protected circuit, wherein the protection element includes two diodes having their anodes connected together to form a floating node and two cathodes connected to the protected circuit, the two diodes are formed in a well-in-well structure on the semiconductor substrate, and the well-in-well structure includes a P-type well forming the floating gate, an N-type well which surrounds the surfaces of the P-type well other than that on the front side of the substrate with the deep portion side of the substrate so as to form the cathode of one of the diodes, and a first N-type region formed in the P-type well so as to form the cathode of the other diode.Type: GrantFiled: November 2, 2009Date of Patent: January 10, 2012Assignee: Sony CorporationInventors: Kouzou Mawatari, Motoyasu Yano
-
Publication number: 20110316042Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided reduce a need for manufacturing methods such as deep dopant implants.Type: ApplicationFiled: June 29, 2010Publication date: December 29, 2011Applicant: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak, Michael P. Violette
-
Publication number: 20110309409Abstract: A semiconductor device includes: a semiconductor substrate having an electronic circuit including a power supply line and a ground line formed thereon; and an electrostatic discharge protection element provided between the power supply line and the ground line on the semiconductor substrate, the electrostatic discharge protection element including a thyristor and a trigger diode driving the thyristor, wherein the trigger diode includes an anode diffusion layer formed on the semiconductor substrate, a cathode diffusion layer formed on the semiconductor substrate apart from the anode diffusion layer, and a gate electrode formed between the anode diffusion layer and the cathode diffusion layer on the semiconductor substrate, a gate insulation film being interposed between the semiconductor substrate and the trigger diode, and an external terminal to be connected to an external power supply is electrically connected to the gate electrode.Type: ApplicationFiled: June 10, 2011Publication date: December 22, 2011Applicant: SONY CORPORATIONInventor: Takashi Yamazaki
-
Patent number: 8049248Abstract: A semiconductor device includes a thyristor in which a first-conductivity-type first region, a second-conductivity-type second region having a conductivity type reverse to the first conductivity type, a first-conductivity-type third region, and a second-conductivity-type fourth region are sequentially arranged to form junctions. The third region is formed on a semiconductor substrate separated by an element isolation region. A gate electrode formed via a gate insulating film and side wall formed at wall side of both side of the gate electrode are provided on the third region, and the fourth region is formed so that one end thereof covers the joint portion between the other end of the third region and the element isolation regions, and so that the other end of the fourth region is joined with the sidewall on the other side.Type: GrantFiled: November 25, 2008Date of Patent: November 1, 2011Assignee: Sony CorporationInventor: Tetsuya Ikuta
-
Publication number: 20110254050Abstract: An insulated gate bipolar transistor (IGBT) is provided comprising a semiconductor substrate having the following regions in sequence: (i) a first region of a first conductive type having opposing surfaces, a column region of a second conductive type within the first region extending from a first of said opposing surfaces; (ii) a drift region of the second conductive type; (iii) a second region of the first conductive type, and (iv) a third region of the second conductive type. There is provided a gate electrode disposed to form a channel between the third region and the drift region, a first electrode operatively connected to the second region and the third region, a second electrode operatively connected to the first region and the column region.Type: ApplicationFiled: April 15, 2010Publication date: October 20, 2011Inventors: Florin Udrea, Chih-Wei Hsu, Wei-Chieh Lin
-
Patent number: 8035126Abstract: A one-transistor static random access memory (1T SRAM) device and circuit implementations are disclosed. The 1T SRAM device includes a planar field effect transistor (FET) on the surface of the cell and a vertical PNPN device integrated to one side of the FET. A base of the PNP of the PNPN device is electrically common to the emitter/collector of the FET and a base of the NPN of the PNPN device is electrically common to the channel region of the FET. The anode pin of the PNPN device may be used as a word line or a bit line. A method of forming the 1T SRAM device is also disclosed.Type: GrantFiled: October 29, 2007Date of Patent: October 11, 2011Assignee: International Business Machines CorporationInventors: Phung T. Nguyen, Robert C. Wong
-
Publication number: 20110215371Abstract: Semiconductor devices including a plurality of thyristor-based memory cells, each having a cell size of 4F2, and methods for forming the same are provided. The thyristor-based memory cells each include a thyristor having vertically superposed regions of alternating dopant types, and a control gate. The control gate may be electrically coupled with one or more of the thyristors and may be operably coupled to a voltage source. The thyristor-based memory cells may be formed in an array on a conductive strap, which may function as a cathode or a data line. A system may be formed by integrating the semiconductor devices with one or more memory access devices or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.Type: ApplicationFiled: March 2, 2010Publication date: September 8, 2011Applicant: MICRON TECHNOLOGY, INC.Inventor: Sanh D. Tang
-
Publication number: 20110204413Abstract: In order to improve characteristics of an IGBT, particularly, to reduce steady loss, turn-off time and turn-off loss, a thickness of a surface semiconductor layer is set to about 20 nm to 100 nm in an IGBT including: a base layer; a buried insulating film provided with an opening part; the surface semiconductor layer connected to the base layer below the opening part; a p type channel forming layer formed in the surface semiconductor layer; an n+ type source layer; a p+ type emitter layer; a gate electrode formed over the surface semiconductor layer via a gate insulating film; an n+ type buffer layer; and a p type collector layer.Type: ApplicationFiled: February 25, 2010Publication date: August 25, 2011Inventors: Daisuke Arai, Yoshito Nakazawa, Norio Hosoya
-
Publication number: 20110186907Abstract: A sinker layer is in contact with a first conductivity-type well and a second conductivity-type drift layer, respectively, and is separated from a first conductivity-type collector layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.Type: ApplicationFiled: January 31, 2011Publication date: August 4, 2011Applicant: Renesas Electronics CorporationInventor: Hiroki FUJII
-
Patent number: 7985983Abstract: A semiconductor device includes an ESD device region disposed within a semiconductor body of a first semiconductor type, an isolation region surrounding the ESD device region, a first doped region of a second conductivity type disposed at a surface of the semiconductor body within the ESD region, and a second doped region of the first conductivity type disposed between the semiconductor body within the ESD region and at least a portion of the first doped region, where the doping concentration of the second doped region is higher than the semiconductor body. A third doped region of the second semiconductor type is disposed on the semiconductor body and a fourth region of the first conductivity type is disposed over the third doped region. A fifth doped region of the second conductivity type is disposed on the semiconductor body. A trigger device and an SCR is formed therefrom.Type: GrantFiled: April 28, 2010Date of Patent: July 26, 2011Assignee: Infineon Technologies AGInventors: Cornelius Christian Russ, Kai Esmark, David Alvarez, Jens Schneider
-
Publication number: 20110163351Abstract: This invention provides a structure for low-voltage power supply in high-voltage devices or IC's made on a semiconductor substrate of a first conductivity type. The structure comprises a heavily doped semiconductor region of the first conductivity type between, but not contacted with, two semiconductor regions of the second conductivity type. When the two semiconductor regions of the second conductivity type have reverse-biased voltage with respect to substrate, the depletion region of substrate reaches the heavily doped semiconductor region of the first conductivity type, the heavily doped semiconductor region of the first conductivity type constructs a terminal of low-voltage power supply and any one of the semiconductor region of the second conductivity type constructs another terminal. The heavily doped semiconductor region is used as one terminal of a primary low-voltage power supply and any other region is used as another terminal of it.Type: ApplicationFiled: November 30, 2010Publication date: July 7, 2011Inventor: Xingbi CHEN
-
Publication number: 20110127576Abstract: A bipolar power semiconductor component configured as an IGBT includes a semiconductor body, in which a p-doped emitter, an n-doped base, a p-doped base and an n-doped main emitter are arranged successively in a vertical direction. The p-doped emitter has a number of heavily p-doped zones having a locally increased p-type doping.Type: ApplicationFiled: February 7, 2011Publication date: June 2, 2011Applicant: INFINEON TECHNOLOGIES AGInventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Uwe Kellner-Werdehausen, Reiner Barthelmess
-
Patent number: 7939887Abstract: A semiconductor component in which the active junctions extend perpendicularly to the surface of a semiconductor chip substantially across the entire thickness thereof. The contacts with the regions to be connected are provided by conductive fingers substantially crossing the entire region with which a contact is desired to be established.Type: GrantFiled: December 7, 2009Date of Patent: May 10, 2011Assignee: STMicroelectronics S.A.Inventor: Jean-Luc Morand
-
Patent number: 7935619Abstract: Methods of forming polarity dependent switches for resistive sense memory are described. Methods for forming a memory unit include implanting dopant material more heavily in a source contact than a bit contact of a semiconductor transistor, and electrically connecting a resistive sense memory cell to the bit contact. The resistive sense memory cell is configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell.Type: GrantFiled: May 5, 2010Date of Patent: May 3, 2011Assignee: Seagate Technology LLCInventors: Chulmin Jung, Maroun Georges Khoury, Yong Lu, Young Pil Kim
-
Publication number: 20110049561Abstract: Provided is a semiconductor bistable switching device that includes a thyristor portion including an anode layer, a drift layer, a gate layer and a cathode layer, the gate layer operable to receive a gate trigger current that, when the anode layer is positively biased relative to the cathode layer, causes the thyristor portion to latch into a conducting mode between the anode and the cathode. The device also includes a transistor portion formed on the thyristor portion, the transistor portion including a source, a drain and a transistor gate, the drain coupled to the cathode of the thyristor portion.Type: ApplicationFiled: August 31, 2009Publication date: March 3, 2011Inventors: Robert J. Callanan, Sei-Hyung Ryu, Qingchun Zhang
-
Patent number: 7897440Abstract: A semiconductor device may comprise a plurality of memory cells. A memory cell may comprise a thyristor, at least a portion of which is formed in a pillar of semiconductor material. The pillar may comprise sidewalls defining a cylindrical circumference of a first diameter. In a particular embodiment, the pillars associated with the plurality of memory cells may define rows and columns of an array. In a further embodiment, a pillar may be spaced by a first distance of magnitude up to the first diameter relative to a neighboring pillar within its row. In an additional further embodiment, the pillar may be spaced by a second distance of a magnitude up to twice the first diameter, relative to a neighboring pillar within its column.Type: GrantFiled: November 24, 2008Date of Patent: March 1, 2011Assignee: T-RAM Semiconductor, Inc.Inventor: Andrew E. Horch
-
Patent number: 7880195Abstract: An ESD protection device comprises a P-type substrate, a first substrate-triggered silicon controlled rectifiers (STSCR) disposed in the P-type substrate and a second STSCR disposed in the P-type substrate. The first STSCR comprises a first N-well, a first P-well, a first N+ diffusion region, a first P+ diffusion region, and a first trigger node. The second STSCR comprises a second N-well electrically connected to the first N-well, a second P-well electrically connected to the first P-well, a second N+ diffusion region electrically connected to the first P+ diffusion region, a second P+ diffusion region electrically connected to the first N+ diffusion region, and a second trigger node. A layout area of an integrated circuit and a pin-to-pin ESD current path can be reduced.Type: GrantFiled: December 8, 2008Date of Patent: February 1, 2011Assignees: United Microelectronics Corp., National Chiao-Tung UniversityInventors: Ming-Dou Ker, Yuan-Wen Hsiao, Chang-Tzu Wang
-
Publication number: 20110013668Abstract: A semiconductor circuit arrangement and a method for temperature detection is disclosed. One embodiment includes a semiconductor substrate, on which is formed a first insulating layer and thereon a thin active semiconductor region, which is laterally delimited by a second insulating layer. In the active semiconductor region, a first and second doping zone are formed on the surface of the first insulating layer for the definition of a channel zone, wherein there is formed at the surface of the channel zone a gate dielectric and thereon a control electrode for the realization of a field effect transistor. In the active semiconductor region, a diode doping zone is formed on the surface of the first insulating layer, which zone realizes a measuring diode via a diode side area with the first or second doping zone and is delimited by the second insulating layer at its further side areas.Type: ApplicationFiled: September 23, 2010Publication date: January 20, 2011Applicant: INFINEON TECHNOLOGIES AGInventors: Christian Pacha, Thomas Schulz, Klaus Von Arnim
-
Publication number: 20110012170Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.Type: ApplicationFiled: September 24, 2010Publication date: January 20, 2011Applicant: RICOH COMPANY, LTD.Inventors: Masaya Ohtsuka, Yoshinori Ueda
-
Publication number: 20110012667Abstract: A normally-open pushbutton switch is coupled to and cooperates with a pair of MOSFETs to provide a power on switch function for a personal audio device that does not require power to be drawn from a power source to monitor the pushbutton switch while awaiting operation of the pushbutton switch to cause the personal audio device to be powered on.Type: ApplicationFiled: July 18, 2010Publication date: January 20, 2011Inventor: Paul G. Yamkovoy