With Two-dimensional Charge Carrier Gas Channel (e.g., Hemt; With Two-dimensional Charge-carrier Layer Formed At Heterojunction Interface) (epo) Patents (Class 257/E29.246)
  • Patent number: 8507329
    Abstract: A compound semiconductor device is provided with a substrate, an AlN layer formed over the substrate, an AlGaN layer formed over the AlN layer and larger in electron affinity than the AlN layer, another AlGaN layer formed over the AlGaN layer and smaller in electron affinity than the AlGaN layer. Furthermore, there are provided an i-GaN layer formed over the latter AlGaN layer, and an i-AlGaN layer and an n-AlGaN layer formed over the i-GaN layer.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Limited
    Inventors: Toshihide Kikkawa, Kenji Imanishi
  • Patent number: 8507949
    Abstract: A semiconductor device includes a substrate, a carrier transit layer disposed above the substrate, a compound semiconductor layer disposed on the carrier transit layer, a source electrode disposed on the compound semiconductor layer, a first groove disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate, a drain electrode disposed in the inside of the first groove, a gate electrode located between the source electrode and the first groove and disposed on the compound semiconductor layer, and a second groove located diagonally under the source electrode and between the source electrode and the first groove and disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Limited
    Inventors: Masato Nishimori, Atsushi Yamada
  • Patent number: 8502273
    Abstract: The buffer breakdown of a group III-N HEMT on a p-type Si substrate is significantly increased by forming an n-well in the p-type Si substrate to lie directly below the metal drain region of the group III-N HEMT. The n-well forms a p-n junction which becomes reverse biased during breakdown, thereby increasing the buffer breakdown by the reverse-biased breakdown voltage of the p-n junction and allowing the substrate to be grounded. The buffer layer of a group III-N HEMT can also be implanted with n-type and p-type dopants which are aligned with the p-n junction to minimize any leakage currents at the junction between the substrate and the buffer layer.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 6, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Sandeep Bahl, Constantin Bulucea
  • Patent number: 8502270
    Abstract: A compound semiconductor device including: a substrate; an electron transit layer formed on and above the substrate; and an electron supply layer formed on and above the electron transit layer, wherein a first region or regions having a smaller thermal expansion coefficient than the electron transit layer and a second region or regions having a larger thermal expansion coefficient than the electron transit layer are mixedly present on a surface of the substrate.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 6, 2013
    Assignee: Fujitsu Limited
    Inventors: Sanae Shimizu, Atsushi Yamada
  • Patent number: 8497533
    Abstract: An embodiment is directed to a method of fabricating a semiconductor memory device, the method including preparing a substrate having a cell array region and a contact region, forming a thin film structure on the substrate, including forming sacrificial film patterns isolated horizontally by a lower isolation region, the lower isolation region traversing the cell array region and the contact region, and forming sacrificial films sequentially stacked on the sacrificial film patterns, and forming an opening that penetrates the thin film structure to expose the lower isolation region of the cell array region, the opening being restrictively formed in the cell array region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungwoo Hyun, Byeongchan Lee, Sunghil Lee
  • Publication number: 20130187197
    Abstract: Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
    Type: Application
    Filed: October 15, 2012
    Publication date: July 25, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Electronics and Telecommunications Research In
  • Patent number: 8487356
    Abstract: The graphene device may include an upper oxide layer on at least one embedded gate, and a graphene channel and a plurality of electrodes on the upper oxide layer. The at least one embedded gate may be formed on the substrate. The graphene channel may be formed on the plurality of electrodes, or the plurality of electrodes may be formed on the graphene channel.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin seong Heo, Sun-ae Seo, Dong-chul Kim, Yun-sung Woo, Hyun-jong Chung
  • Patent number: 8487348
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 16, 2013
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Martin D. Giles, Kelin Kuhn, Jack T. Kavalieros, Markus Kuhn
  • Patent number: 8487346
    Abstract: A semiconductor device including: a substrate, which has a composition represented by the formula: Ala?Ga1-a?N, wherein a? satisfies 0<a??1; an active layer, which is formed on the substrate, and which has a composition represented by the formula: Alm?Ga1-m?N, wherein m? satisfies 0?m?<1; a buffer layer disposed between the active layer and the substrate; and a first main electrode and a second main electrode, which are formed on the active layer, and which are separated from each other, wherein the semiconductor device is operated by electric current flowing between the first main electrode and the second main electrode in the active layer, and wherein the buffer layer has a composition represented by the formula: AlbIn1-bN, wherein a composition ratio b satisfies 0<b<1, wherein the composition ratio b satisfies m?<b<a?.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: July 16, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ken Sato
  • Publication number: 20130175539
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes a channel supply layer and a channel layer. The channel layer may include an effective channel region and a high resistivity region. The effective channel region may be between the high resistivity region and the channel supply layer. The high resistivity region may be a region into which impurities are ion-implanted. According to example embodiments, a method of forming a HEMT includes forming a device unit, including a channel layer and a channel supply layer, on a first substrate; adhering a second substrate to the device unit; removing the first substrate; and forming a high resistivity region by ion-implanting impurities into at least a portion of the channel layer.
    Type: Application
    Filed: September 13, 2012
    Publication date: July 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyuk-soon CHOI, Jong-seob KIM, Jai-kwang SHIN, Chang-yong UM, Jae-joon OH, Jong-bong HA, Ki-ha HONG, In-jun HWANG
  • Patent number: 8482035
    Abstract: According to one embodiment, a III-nitride transistor includes a conduction channel formed between first and second III-nitride bodies, the conduction channel including a two-dimensional electron gas. The transistor also includes at least one gate dielectric layer having a charge confined within to cause an interrupted region of the conduction channel and a gate electrode operable to restore the interrupted region of the conduction channel. The transistor can be an enhancement mode transistor. In one embodiment, the gate dielectric layer is a silicon nitride layer. In another embodiment, the at least one gate dielectric layer is a silicon oxide layer. The charge can be ion implanted into the at least one gate dielectric layer. The at least one gate dielectric layer can also be grown with the charge.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 9, 2013
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 8482037
    Abstract: Some exemplary embodiments of a semiconductor device using a III-nitride heterojunction and a novel Schottky structure and related method resulting in such a semiconductor device, suitable for high voltage circuit designs, have been disclosed. One exemplary structure comprises a first layer comprising a first III-nitride material, a second layer comprising a second III-nitride material forming a heterojunction with said first layer to generate a two dimensional electron gas (2DEG) within said first layer, an anode comprising at least a first metal section forming a Schottky contact on a surface of said second layer, a cathode forming an ohmic contact on said surface of said second layer, a field dielectric layer on said surface of said second layer for isolating said anode and said cathode, and an insulating material on said surface of said second layer and in contact with said anode.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 9, 2013
    Assignee: International Rectifier Corporation
    Inventor: Zhi He
  • Publication number: 20130168737
    Abstract: A method of producing a semiconductor component is provided. The method includes providing a silicon substrate having a <111>-surface defining a vertical direction, forming in the silicon substrate at least one electronic component, forming at least two epitaxial semiconductor layers on the silicon substrate to form a heterojunction above the <111>-surface, and forming a HEMT-structure above the <111>-surface.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Gerhard Prechtl, Gebhart Dippold
  • Patent number: 8476677
    Abstract: An aspect of the present invention inheres in a semiconductor device includes a semiconductor region, a source electrode and a drain electrode, which are provided on a main surface of the semiconductor region, a gate electrode exhibiting normally-off characteristics, the gate electrode being provided above the main surface of the semiconductor region while interposing a p-type material film therebetween, and being arranged between the source electrode and the drain electrode, and a fourth electrode that is provided on the main surface of the semiconductor region, and is arranged between the gate electrode and the drain electrode.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Osamu Machida, Akio Iwabuchi
  • Publication number: 20130161638
    Abstract: A HEMT includes a silicon substrate, an unintentionally doped gallium nitride (UID GaN) layer over the silicon substrate, a donor-supply layer over the UID GaN layer, a gate structure, a drain, and a source over the donor-supply layer, and a passivation material layer having one or more buried portions contacting or almost contacting the UID GaN layer. A carrier channel layer at the interface of the donor-supply layer and the UID GaN layer has patches of non-conduction in a drift region between the gate and the drain. A method for making the HEMT is also provided.
    Type: Application
    Filed: January 20, 2012
    Publication date: June 27, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Wei YAO, Chun-Wei HSU, Chen-Ju YU, Jiun-Lei Jerry YU, Fu-Chih YANG, Chih-Wen HSIUNG, King-Yuen WONG
  • Publication number: 20130161698
    Abstract: The present invention describes a transistor based on a Hetero junction FET structure, where the metal gate has been replaced by a stack formed by a highly doped compound semiconductor and an insulating layer in order to achieve enhancement mode operation and at the same time drastically reduce the gate current leakage. The combination of the insulating layer with a highly doped semiconductor allows the tuning of the threshold voltage of the device at the desired value by simply changing the composition of the semiconductor layer forming the gate region and/or its doping allowing a higher degree of freedom. In one of the embodiment, a back-barrier layer and a heavily doped threshold tuning layer are used to suppress Short Channel Effect phenomena and to adjust the threshold voltage of the device at the desired value. The present invention can be realized both with polar and non-polar (or semi-polar) materials.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8471309
    Abstract: A compound semiconductor device includes a substrate; a compound semiconductor layer formed over the substrate; and a gate electrode formed over the compound semiconductor layer with a gate insulating film arranged therebetween. The gate insulating film includes a first layer having reverse spontaneous polarization, the direction of which is opposite to spontaneous polarization of the compound semiconductor layer.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 25, 2013
    Assignee: Fujitsu Limited
    Inventor: Atsushi Yamada
  • Publication number: 20130153919
    Abstract: A semiconductor device such as a diode or transistor includes a semiconductor substrate, a first region of III-V semiconductor material on the semiconductor substrate and a second region of III-V semiconductor material on the first region. The second region is spaced apart from the semiconductor substrate by the first region. The second region is of a different composition than the first region. The semiconductor device further includes a buried contact extending from the semiconductor substrate to the second region through the first region. The buried contact electrically connects the second region to the semiconductor substrate.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Gianmauro Pozzovivo, Oliver Häberlen
  • Publication number: 20130153967
    Abstract: A semiconductor device includes a first compound semiconductor material and a second compound semiconductor material on the first compound semiconductor material. The second compound semiconductor material comprises a different material than the first compound semiconductor material such that the first compound semiconductor material has a two-dimensional electron gas (2DEG). The semiconductor device further includes a buried field plate disposed in the first compound semiconductor material and electrically connected to a terminal of the semiconductor device. The 2DEG is interposed between the buried field plate and the second compound semiconductor material.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8466029
    Abstract: An AlN layer (2), a GaN buffer layer (3), a non-doped AlGaN layer (4a), an n-type AlGaN layer (4b), an n-type GaN layer (5), a non-doped AlN layer (6) and an SiN layer (7) are sequentially formed on an SiC substrate (1). At least three openings are formed in the non-doped AlN layer (6) and the SiN layer (7), and a source electrode (8a), a drain electrode (8b) and a gate electrode (19) are evaporated in these openings.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 18, 2013
    Assignee: Fujitsu Limited
    Inventor: Toshihide Kikkawa
  • Patent number: 8466520
    Abstract: In a transistor, a strain-inducing semiconductor alloy, such as silicon/germanium, silicon/carbon and the like, may be positioned very close to the channel region by providing gradually shaped cavities which may then be filled with the strain-inducing semiconductor alloy. For this purpose, two or more “disposable” spacer elements of different etch behavior may be used in order to define different lateral offsets at different depths of the corresponding cavities. Consequently, enhanced uniformity and, thus, reduced transistor variability may be accomplished, even for sophisticated semiconductor devices.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 18, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Stephan Kronholz, Vassilios Papageorgiou, Gunda Beernink
  • Publication number: 20130146889
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; a nitride compound semiconductor stacked structure formed on or above the substrate; and a gate electrode, a source electrode and a drain electrode formed on or above the compound semiconductor stacked structure. A recess positioning between the gate electrode and the drain electrode in a plan view is formed at a surface of the compound semiconductor stacked structure.
    Type: Application
    Filed: October 31, 2012
    Publication date: June 13, 2013
    Applicant: FUJITSU LIMITED
    Inventor: FUJITSU LIMITED
  • Patent number: 8461626
    Abstract: A hetero-structure field effect transistor (HFET). The HFET may include a first contact and a second contact and a hetero-junction structure. The hetero-junction structure may include a first layer made from a first semiconductor material and a second layer made from a second semiconductor material. An interface at which the first layer and the second layer are in contact with each other may be provided, along which a two dimensional electron gas (2DEG) is formed in a part of the first layer directly adjacent to the interface, for propagating of electrical signals from the first contact to the second contact or vice versa. The transistor may further include a gate structure for controlling a conductance of the channel; a substrate layer made from a substrate semiconductor material, and a dielectric layer separating the first layer from the substrate layer. The second contact may include an electrical connection between the substrate layer and the first layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: June 11, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Philippe Renaud
  • Publication number: 20130140606
    Abstract: A complementary logic device includes: an insulating layer formed on a substrate; a source electrode formed of a ferromagnetic body on the insulating layer; a gate insulating film; a gate electrode formed on the gate insulating film and controlling a magnetization direction of the source electrode; a channel layer formed on each of a first side surface and a second side surface of the source electrode and transmitting spin-polarized electrons from the source electrode; a first drain electrode formed on the first side surface of the source electrode; and a second drain electrode formed on the second side surface of the source electrode, wherein a magnetization direction of the first drain electrode and a magnetization direction of the second drain electrode are antiparallel to each other. Therefore, not only characteristics of low power and high speed but also characteristics of non-volatility and multiple switching by spin may be obtained.
    Type: Application
    Filed: November 2, 2012
    Publication date: June 6, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: KOREA INSTITUTE OF SCIENCE AND TECHNO
  • Publication number: 20130140578
    Abstract: A circuit structure includes a substrate, an unintentionally doped gallium nitride (UID GaN) layer over the substrate, a donor-supply layer over the UID GaN layer, a gate structure, a drain, and a source over the donor-supply layer. A number of islands are over the donor-supply layer between the gate structure and the drain. The gate structure disposed between the drain and the source. The gate structure is adjoins at least a portion of one of the islands and/or partially disposed over at least a portion of at least one of the islands.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Ju YU, Chih-Wen HSIUNG, Fu-Wei YAO, Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Chih YANG
  • Publication number: 20130141156
    Abstract: A device includes a source for transmitting an electronic charge through a conduction path; a drain for receiving the electronic charge; a stack for providing at least part of the conduction path; and a gate operatively connected to the stack for controlling a conduction of the electronic charge. The stack includes an insulator layer, an N-polar layer and a barrier layer selected such that, during an operation of the device, the conduction path formed in the N-polar layer includes a two-dimensional electron gas (2DEG) channel and an inversion carrier channel.
    Type: Application
    Filed: August 6, 2012
    Publication date: June 6, 2013
    Inventors: Koon Hoo Teo, Peijie Feng, Chunjie Duan, Toshiyuki Oishi, Nakayama Masatoshi
  • Patent number: 8455922
    Abstract: A III-nitride semiconductor device which includes a charged gate insulation body.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 4, 2013
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 8455920
    Abstract: A III-nitride heterojunction semiconductor device having a III-nitride heterojunction that includes a discontinuous two-dimensional electron gas under a gate thereof.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 4, 2013
    Assignee: International Rectifier Corporation
    Inventors: Paul Bridger, Robert Beach
  • Publication number: 20130134482
    Abstract: A method of making a high-electron mobility transistor (HEMT) includes forming an unintentionally doped gallium nitride (UID GaN) layer over a silicon substrate, a donor-supply layer over the UID GaN layer, a gate, a passivation layer over the gate and portions of the donor-supply layer, an ohmic source structure and an ohmic drain structure over the donor-supply layer and portions of the passivation layer. The source structure includes a source contact portion and an overhead portion. The overhead portion overlaps the passivation layer between the source contact portion and the gate, and may overlap a portion of the gate and a portion of the passivation layer between the gate and the drain structure.
    Type: Application
    Filed: October 12, 2012
    Publication date: May 30, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, L
  • Publication number: 20130134435
    Abstract: A high electron mobility transistor (HEMT) includes a silicon substrate, an unintentionally doped gallium nitride (UID GaN) layer over the silicon substrate. The HEMT further includes a donor-supply layer over the UID GaN layer, a gate structure, a drain, and a source over the donor-supply layer. The HEMT further includes a dielectric layer having one or more dielectric plug portions in the donor-supply layer and top portions between the gate structure and the drain over the donor-supply layer. A method for making the HEMT is also provided.
    Type: Application
    Filed: October 12, 2012
    Publication date: May 30, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Patent number: 8450721
    Abstract: A III-nitride semiconductor device which includes a barrier body between the gate electrode and the gate dielectric thereof.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: May 28, 2013
    Assignee: International Rectifier Corporation
    Inventors: Robert Beach, Zhi He, Jianjun Cao
  • Patent number: 8450826
    Abstract: Disclosed herein is a nitride based semiconductor device. There is provided a nitride based semiconductor device including a base substrate; a semiconductor layer disposed on the base substrate; and an electrode structure disposed on the semiconductor layer, wherein the electrode structure includes: a first electrode ohmic-contacting the semiconductor layer; a ohmic contact unit ohmic-contacting the semiconductor layer and spaced apart from the first electrode; and a schottky contact unit schottky-contacting the semiconductor layer and covering the ohmic contact unit.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: May 28, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Younghwan Park, Kiyeol Park, Woochul Jeon
  • Publication number: 20130126889
    Abstract: An enhancement-mode group III-N high electron mobility transistor (HEMT) with a reverse polarization cap is formed in a method that utilizes a reverse polarization cap structure, such as an InGaN cap structure, to deplete the two-dimensional electron gas (2DEG) and form a normally off device, and a spacer layer that lies below the reverse polarization cap structure and above the barrier layer of the HEMT which allows the reverse polarization cap layer to be etched without etching into the barrier layer.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Inventor: Sandeep Bahl
  • Patent number: 8445941
    Abstract: A high-power and high-gain ultra-short gate HEMT device has exceptional gain and an exceptionally high breakdown voltage provided by an increased width asymmetric recess for the gate electrode, by a composite channel layer including a thin indium arsenide layer embedded in the indium gallium arsenide channel layer and by double doping through the use of an additional silicon doping spike. The improved transistor has an exceptional 14 dB gain at 110 GHz and exhibits an exceptionally high 3.5-4 V breakdown voltage, thus to provide high gain, high-power and ultra-high frequency in an ultra-short gate device.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 21, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Dong Xu, Xiaoping S. Yang, Wendell Kong, Lee M. Mohnkern, Phillip M. Smith, Pane-chane Chao
  • Patent number: 8445942
    Abstract: A semiconductor device includes: a nitride group semiconductor functional layer including a second nitride group semiconductor region on a first nitride group semiconductor region where a two-dimensional carrier gas layer is made, the second nitride group semiconductor region functioning as a barrier layer; a first main electrode electrically connected to one end of the two-dimensional carrier gas layer; a second main electrode electrically connected to the other end of the two-dimensional carrier gas layer; and a metal oxide film placed between the first and second main electrodes, electrically connected to the first main electrode, the first main electrode extends over an upper surface of the metal oxide film.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 21, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Ryohei Baba, Shinichi Iwakami
  • Patent number: 8441030
    Abstract: A III-nitride power semiconductor device that includes a plurality of III-nitride heterojunctions.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: May 14, 2013
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Publication number: 20130105817
    Abstract: Embodiments of the present disclosure describe structural configurations of an integrated circuit (IC) device such as a high electron mobility transistor (HEMT) switch device and method of fabrication. The IC device includes a buffer layer formed on a substrate, a channel layer formed on the buffer layer to provide a pathway for current flow in a transistor device, a spacer layer formed on the channel layer, a barrier layer formed on the spacer layer, the barrier layer including aluminum (Al), nitrogen (N), and at least one of indium (In) or gallium (Ga), a gate dielectric directly coupled with the spacer layer or the channel layer, and a gate formed on the gate dielectric, the gate being directly coupled with the gate dielectric. Other embodiments may also be described and/or claimed.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventor: Paul Saunier
  • Publication number: 20130105863
    Abstract: An electrode structure, a GaN-based semiconductor device including the electrode structure, and methods of manufacturing the same, may include a GaN-based semiconductor layer and an electrode structure on the GaN-based semiconductor layer. The electrode structure may include an electrode element including a conductive material and a diffusion layer between the electrode element and the GaN-based semiconductor layer. The diffusion layer may include a material which is an n-type dopant with respect to the GaN-based semiconductor layer, and the diffusion layer may contact the GaN-based semiconductor layer. A region of the GaN-based semiconductor layer contacting the diffusion layer may be doped with the n-type dopant. The material of the diffusion layer may comprise a Group 4 element.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 2, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-yub Lee, Wenxu Xianyu, Chang-youl Moon, Yong-young Park, Woo-young Yang, In-jun Hwang
  • Publication number: 20130105808
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A fluorine region is embedded in the second III-V compound layer under the gate electrode. A gate dielectric layer is disposed over the second III-V compound layer. The gate dielectric layer has a fluorine segment on the fluorine region and under at least a portion of the gate electrode.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 2, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: King-Yuen WONG, Chen-Ju YU, Fu-Wei YAO, Chun-Wei HSU, Jiun-Lei Jerry YU, Chih-Wen HSIUNG, Fu-Chih YANG
  • Patent number: 8431960
    Abstract: An enhancement mode gallium nitride (GaN) transistor with a Mg doped layer and a Mg growth interruption (diffusion barrier) layer to trap excess or residual Mg dopant. The Mg growth interruption (diffusion barrier) layer is formed by growing GaN, stopping the supply of gallium while maintaining a supply of ammonia or other nitrogen containing source to form a layer of magnesium nitride (MgN), and then resuming the flow of gallium to form a GaN layer to seal in the layer of MgN.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 30, 2013
    Assignee: Efficient Power Conversion Corporation
    Inventors: Robert Beach, Guang Yuan Zhao
  • Patent number: 8431963
    Abstract: A field-effect transistor according to the present invention includes a silicon substrate that has a resistivity of not more than 0.02 ?·cm, a channel layer that is formed on the silicon substrate and has a thickness of at least 5 ?m, a barrier layer that is formed on the channel layer and supplies the channel layer with electrons, a two dimensional electron gas layer that is formed by a hetero junction between the channel layer and the barrier layer, a source electrode and a drain electrode that each form an ohmic contact with the barrier layer, and a gate electrode that is formed between the source electrode and the drain electrode, and forms a Schottky barrier junction with the barrier layer.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: April 30, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Isao Takenaka, Kazunori Asano, Kohji Ishikura
  • Patent number: 8431965
    Abstract: A control circuit, which controls a transistor including a gate and a field plate, includes: a detecting circuit which detects a driving timing to drive the transistor; a timing controlling circuit which controls a first driving timing to drive the gate and a second driving timing to drive the field plate, in response to the driving timing; and a driving circuit which drives the gate in response to the first driving timing, and drives the field plate in response to the second driving timing.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: April 30, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yoshihiro Takemae
  • Patent number: 8431964
    Abstract: The disclosure relates to electronic devices and associated methods of manufacture including materials of the Group III/N. An exemplary device successively includes, from its base towards its surface: (i) a support substrate, (ii) a layer adapted to contain an electron gas, (iii) a barrier layer, and (iv) a superficial layer extending on at least one part of the surface of the barrier layer, wherein the superficial layer has an electrical field of which the current is controlled so that, in at least one first region of the superficial layer, the electrical field is weaker than in a second region of the superficial layer.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 30, 2013
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventor: Hacène Lahreche
  • Publication number: 20130099285
    Abstract: According to example embodiments a transistor includes a channel layer on a substrate, a first channel supply layer on the channel, a depletion layer, a second channel supply layer, source and drain electrodes on the first channel supply layer, and a gate electrode on the depletion layer. The channel includes a 2DEG channel configured to generate a two-dimensional electron gas and a depletion area. The first channel supply layer corresponds to the 2DEG channel and defines an opening that exposes the depletion area. The depletion layer is on the depletion area of the channel layer. The second channel supply layer is between the depletion layer and the depletion area.
    Type: Application
    Filed: June 14, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-jun Hwang, Jae-joon Oh, Jae-won Lee, Hyo-ji Choi
  • Publication number: 20130099284
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device such as, for example, a high electron mobility transistor (HEMT) or metal-insulator-semiconductor field-effect transistor (MISFET), or combinations thereof. The IC device includes a buffer layer formed on a substrate, a barrier layer formed on the buffer layer, the barrier layer including aluminum (Al), nitrogen (N), and at least one of indium (In) and gallium (Ga), a cap layer formed on the barrier layer, the cap layer including nitrogen (N) and at least one of indium (In) and gallium (Ga), and a gate formed on the cap layer, the gate being directly coupled with the cap layer. Other embodiments may also be described and/or claimed.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventors: Hua-Quen Tserng, Paul Saunier
  • Patent number: 8421123
    Abstract: A semiconductor device having a transistor and a rectifier includes: a current path; a first main electrode having a rectifying function and arranged on one end of the current path; a second main electrode arranged on the other end of the current path; an auxiliary electrode arranged in a region of the current path between the first main electrode and the second main electrode; a third main electrode arranged on the one end of the current path apart from the first main electrode along a direction intersecting the current path; and a control electrode arranged in a region of the current path between the second main electrode and the third main electrode. The transistor includes the current path, the second main electrode, the third main electrode, and the control electrode. The rectifier includes the current path, the first main electrode, the second main electrode, and the auxiliary electrode.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: April 16, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Osamu Machida, Akio Iwabuchi
  • Patent number: 8421121
    Abstract: An apparatus in one example comprises an antimonide-based compound semiconductor (ABCS) stack, an upper barrier layer formed on the ABCS stack, and a gate stack formed on the upper barrier layer. The upper barrier layer comprises indium, aluminum, and arsenic. The gate stack comprises a base layer of titanium and tungsten formed on the upper barrier layer.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: April 16, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Yeong-Chang Chou, Jay Crawford, Jane Lee, Jeffrey Ming-Jer Yang, John Bradley Boos, Nicolas Alexandrou Papanicolaou
  • Publication number: 20130087804
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A carrier channel depleting layer is disposed on the second III-V compound layer. The carrier channel depleting layer is deposited using plasma and a portion of the carrier channel depleting layer is under at least a portion of the gate electrode.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Wei YAO, Chun-Wei HSU, Chen-Ju YU, Jiun-Lei Jerry YU, Fu-Chih YANG, Chih-Wen HSIUNG
  • Publication number: 20130087803
    Abstract: An integrated device including a III-nitride HEMT and a Schottky diode includes a substrate comprising a first III-nitride material and a drift region comprising a second III-nitride material coupled to the substrate and disposed adjacent to the substrate along a vertical direction. The integrated device also includes a first barrier layer coupled to the drift region and a channel layer comprising a third III-nitride material having a first bandgap and coupled to the barrier layer. The integrated device further includes a second barrier layer characterized by a second bandgap and coupled to the channel layer and a Schottky contact coupled to the drift region. The second bandgap is greater than the first bandgap.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20130082306
    Abstract: Transistor devices including stressors are disclosed. One such transistor device includes a channel region, a dielectric layer and a semiconductor substrate. The channel region is configured to provide a conductive channel between a source region and a drain region. In addition, the dielectric layer is below the channel region and is configured to electrically insulate the channel region. Further, the semiconductor substrate, which is below the channel region and below the dielectric layer, includes dislocation defects at a top surface of the semiconductor substrate, where the dislocation defects are collectively oriented to impose a compressive strain on the channel region such that charge carrier mobility is enhanced in the channel region.
    Type: Application
    Filed: September 11, 2012
    Publication date: April 4, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni