Vertical Transistor (epo) Patents (Class 257/E29.262)
  • Patent number: 8704293
    Abstract: A three-dimensional semiconductor device includes a stacked structure including a plurality of conductive layers stacked on a substrate, a distance along a first direction between sidewalls of an upper conductive layer and a lower conductive layer being smaller than a distance along a second direction between sidewalls of the upper conductive layer and the lower conductive layer, the first and second directions crossing each other and defining a plane parallel to a surface supporting the substrate, and vertical channel structures penetrating the stacked structure.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Yong Park, Jintaek Park
  • Publication number: 20140103426
    Abstract: A trench MOSFET with multiple trenched source-body contacts is disclosed for reducing gate charge by applying multiple trenched source-body contacts in unit cell. Furthermore, source regions are only formed along channel regions near the gate trenches, not between adjacent trenched source-body contacts for UIS (Unclamped Inductance Switching) current enhancement.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Inventor: FU-YUAN HSIEH
  • Patent number: 8698230
    Abstract: An electrical circuit includes first and second transistors. Each transistor includes a substrate and, positioned thereon, a first electrically conductive material layer including a reentrant profile functioning as a gate. First and second discrete portions of a second electrically conductive material layer are in contact with first and second portions, respectively, of a semiconductor material layer in contact with an electrically insulating material layer, both of which conform to the reentrant profile. The first and second discrete portions are source/drain and drain/source electrodes of the first and second transistors, respectively. A third electrically conductive material layer, in contact with a third portion of the semiconductor material layer, is positioned over the gate, but is not in electrical contact with it.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 15, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8697518
    Abstract: A trench MOSFET with trench contact holes and a method for fabricating the same are disclosed. The MOSFET includes an N type substrate, an N type epitaxial layer on the substrate; a P well region on top of the epitaxial layer; a source region formed on the P well region; an oxide layer on the source region; a plurality of trenches which traverse the source region and the P well region and contact the epitaxial layer; a gate oxide layer and polysilicon formed in the trenches; a source contact hole and a gate contact hole, wherein the source contact hole and the gate contact hole have a titanium metal layer, a titanium nitride layer, and tungsten metal sequentially, respectively; a P+ implanted region; a source electrode formed above the source contact hole and a gate electrode formed above the gate contact hole.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 15, 2014
    Assignee: Will Semiconductor Ltd.
    Inventors: Gang Ji, Jianping Gu, Kaibin Ni, Tianbing Zhong
  • Patent number: 8698231
    Abstract: A semiconductor device includes vertical channel layers, a pipe channel layer coupling bottoms of the vertical channel layers, a pipe gate contacting a bottom surface and side surfaces of the pipe channel layer, and a dummy pipe gate formed of a non-conductive material and contacting a top surface of the pipe channel layer.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 15, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Jin Ho Bin
  • Publication number: 20140097491
    Abstract: A dielectrically-terminated superjunction field-effect transistor (FET) architecture for use in high voltage applications. The architecture adds a dielectric termination to general features of a high voltage superjunction process. The dielectrically-terminated FET (DFET) is more compact and more manufacturable than a conventional, semiconductor-terminated superjunction FET.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 10, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Constantin Bulucea
  • Patent number: 8692314
    Abstract: A non-volatile memory device includes a pair of columnar cell channels vertically extending from a substrate, a doped pipe channel arranged to couple lower ends of the pair of columnar cell channels, insulation layers over the substrate in which the doped pipe channel is buried, memory layers arranged to surround side surfaces of the columnar cell channels, and control gate electrodes arranged to surround the memory layers.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 8, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki-Hong Lee, Moon-Sig Joo, Kwon Hong
  • Publication number: 20140091384
    Abstract: A semiconductor device is disclosed. In accordance with a first aspect of the present invention the device includes a semiconductor chip having a substrate, a first supply terminal electrically coupled to the substrate to provide a first supply potential (VS) and a load current to the substrate, and a second supply terminal operably provided with a second supply potential. A first vertical transistor is integrated in the semiconductor chip and electrically coupled between the supply terminal and an output terminal. The first vertical transistor is configured to provide a current path for the load current to the output terminal in accordance with a control signal, which is provided to a gate electrode of the first vertical transistor.
    Type: Application
    Filed: September 29, 2012
    Publication date: April 3, 2014
    Applicant: Infineon Technologies AG
    Inventors: Luca Petruzzi, Bernhard Auer, Paolo Del Croce, Markus Ladurner
  • Publication number: 20140084239
    Abstract: Non-planar semiconductor devices having channel regions with low band-gap cladding layers are described. For example, a semiconductor device includes a vertical arrangement of a plurality of nanowires disposed above a substrate. Each nanowire includes an inner region having a first band gap and an outer cladding layer surrounding the inner region. The cladding layer has a second, lower band gap. A gate stack is disposed on and completely surrounds the channel region of each of the nanowires. The gate stack includes a gate dielectric layer disposed on and surrounding the cladding layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the channel regions of the nanowires.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung, Dipanjan Basu, Sanaz K. Gardner, Satyarth Suri, Ravi Pillarisetty, Niloy Mukherjee, Han Wui Then, Robert S. Chau
  • Publication number: 20140084363
    Abstract: In one embodiment, an MOS transistor is formed to have an active region and a termination region. Within the termination region a plurality of conductors are formed to make electrical contact to conductors that are within a plurality of trenches. The plurality of conductors in the termination region are formed to be substantially coplanar.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Inventors: Jeffrey Pearse, Prasad Venkatraman, James Sellers, Hemanshu D. Bhatt
  • Patent number: 8679903
    Abstract: A method is provided for fabricating a vertical insulated gate transistor. A horizontal isolation region is formed in a substrate to separate and electrically isolate upper and lower portions of the substrate. A vertical semiconductor pillar with one or more flanks and a cavity is formed so as to rest on the upper portion, and a dielectrically isolated gate is formed so as to include an internal portion within the cavity and an external portion resting on the flanks and on the upper portion. One or more internal walls of the cavity are coated with an isolating layer and the cavity is filled with a gate material so as to form the internal portion of the gate within the cavity and the external portion of the gate that rests on the flanks, and to form two connecting semiconductor regions extending between source and drain regions of the transistor.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics, Inc.
    Inventor: Richard A. Blanchard
  • Patent number: 8680577
    Abstract: A semiconductor device having a gate positioned in a recess between the source region and a drain region that are adjacent either side of the gate electrode. A channel region is below a majority of the source region as well as a majority of the drain region and the entire gate electrode.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 25, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu
  • Patent number: 8680612
    Abstract: According to one embodiment, a semiconductor device includes an element region partitioned by an isolation region in a semiconductor substrate, and a source region and a drain region formed in a surface layer of the element region by being isolated by a gate trench along a predetermined direction across the element region. The semiconductor device includes a gate electrode formed to reach a position deeper than the source region and the drain region by embedding at least part thereof in the gate trench with a gate dielectric film interposed therebetween. An interface in the drain region, which is in contact with the gate dielectric film, includes a projection projecting toward the gate electrode side.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Nobutoshi Aoki
  • Patent number: 8680608
    Abstract: According to one embodiment, a power semiconductor device includes a second semiconductor layer of a first conductivity type and a third semiconductor layer of a second conductivity type periodically disposed repeatedly along a surface of the first semiconductor layer on a first semiconductor layer of the first conductivity type. A first main electrode is provided to electrically connect to the first semiconductor layer. A fourth semiconductor layer of the second conductivity type is provided to connect to the third semiconductor layer. Fifth semiconductor layers of the first conductivity type are selectively provided in the fourth semiconductor layer surface. A second main electrode is provided on a surface of the fourth and fifth semiconductor layers. A control electrode is provided on a surface of the fourth, fifth, and second semiconductor layers via a gate insulating film. First insulating films are provided by filling a trench made in the second semiconductor layer.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Munehisa Yabuzaki, Nana Hatano, Miho Watanabe
  • Patent number: 8680605
    Abstract: A stacked memory device may include at least one memory unit and at least one peripheral circuit unit arranged either above or below the at least one memory unit. The at least one memory unit may include a memory string array, a plurality of bit lines, and a plurality of string selection pads. The memory string may include a plurality of memory strings arranged in a matrix and each of the memory strings may include a plurality of memory cells and a string selection device arranged perpendicular to a substrate. The plurality of bit lines may extend in a first direction and may be connected to ends of the plurality of memory strings. The plurality of string selection pads may be arrayed in a single line along the first direction and may be connected to the string selection devices included in the plurality of memory strings.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-hun Jeon, Ho-jung Kim
  • Patent number: 8680611
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 8679919
    Abstract: An electronic device can include a semiconductor layer overlying a substrate and having a primary surface and a thickness, wherein a trench extends through at least approximately 50% of the thickness of semiconductor layer to a depth. The electronic device can further include a conductive structure within the trench, wherein the conductive structure extends at least approximately 50% of the depth of the trench. The electronic device can still further include a vertically-oriented doped region within the semiconductor layer adjacent to and electrically insulated from the conductive structure; and an insulating layer disposed between the vertically-oriented doped region and the conductive structure. A process of forming an electronic device can include patterning a semiconductor layer to define a trench extending through at least approximately 50% of the thickness of the semiconductor layer and forming a vertically-oriented doped region after patterning the semiconductor layer to define the trench.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Prasad Venkatraman, Gordon M. Grivna, Gary H. Loechelt
  • Publication number: 20140077290
    Abstract: A trench MOSFET with embedded schottky rectifier having at least one anti-punch through implant region using reduced masks process is disclosed for avalanche capability enhancement and cost reduction. The source regions have a higher doping concentration and a greater junction depth along sidewalls of the trenched source-body contacts than along adjacent channel regions near the gate trenches.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventor: FU-YUAN HSIEH
  • Publication number: 20140077778
    Abstract: A trench MOSFET is disclosed that includes a semiconductor substrate having a vertically oriented trench containing a gate. The trench MOSFET further includes a source, a drain, and a conductive element. The conductive element, like the gate is contained in the trench, and extends between the gate and a bottom of the trench. The conductive element is electrically isolated from the source, the gate, and the drain. When employed in a device such as a DC-DC converter, the trench MOSFET may reduce power losses and electrical and electromagnetic noise.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Inventors: Tetsuo Sato, Tomoaki Uno, Hirokazu Kato, Nobuyoshi Matsuura
  • Publication number: 20140077287
    Abstract: In one embodiment, a breakdown voltage blocking device can include an epitaxial region located above a substrate and a plurality of source trenches formed in the epitaxial region. Each source trench can include a dielectric layer surrounding a conductive region. The breakdown voltage blocking device can also include a contact region located in an upper surface of the epitaxial region along with a gate trench formed in the epitaxial region. The gate trench can include a dielectric layer that lines the sidewalls and bottom of the gate trench and a conductive region located between the dielectric layer. The breakdown voltage blocking device can include source metal located above the plurality of source trenches and the contact region. The breakdown voltage blocking device can include gate metal located above the gate trench.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Applicant: VISHAY-SILICONIX
    Inventors: Robert Q. Xu, Qufei Chen
  • Publication number: 20140070307
    Abstract: Embodiments relate to a field-effect transistor (FET) replacement gate apparatus. The apparatus includes a channel structure including a base and side walls defining a trench. A high-dielectric constant (high-k) layer is formed on the base and side walls of the trench. The high-k layer has an upper surface conforming to a shape of the trench. A first layer is formed on the high-k layer and conforms to the shape of the trench. The first layer includes an aluminum-free metal nitride. A second layer is formed on the first layer and conforms to the shape of the trench. The second layer includes aluminum and at least one other metal. A third layer is formed on the second layer and conforms to the shape of the trench. The third layer includes aluminum-free metal nitride.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Aritra Dasgupta, Unoh Kwon, Sean M. Polvino
  • Publication number: 20140061775
    Abstract: A method for forming a field-effect transistor with a raised drain structure is disclosed. The method includes forming a frustoconical source by etching a semiconductor substrate, the frustoconical source protruding above a planar surface of the semiconductor substrate; forming a transistor gate, a first portion of the transistor gate surrounding a portion of the frustoconical source and a second portion of the gate configured to couple to a first electrical contact; and forming a drain having a raised portion configured to couple to a second electrical contact and located at a same level above the planar surface of the semiconductor substrate as the second portion of the transistor gate. A semiconductor device having a raised drain structure is also disclosed.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hak-Lay Chuang, Ming Zhu
  • Publication number: 20140054678
    Abstract: An n-type field effect transistor includes silicon-comprising semiconductor material comprising a pair of source/drain regions having a channel region there-between. At least one of the source/drain regions is conductively doped n-type with at least one of As and P. A conductivity-neutral dopant is in the silicon-comprising semiconductor material in at least one of the channel region and the at least one source/drain region. A gate construction is operatively proximate the channel region. Methods are disclosed.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Yongjun Jeff Hu, Allen McTeer
  • Publication number: 20140054682
    Abstract: In one embodiment, a structure for a semiconductor device has trench shield electrodes formed above and below a gate electrode. The structure can be configured to function as a bidirectional power field effect transistor.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Inventors: Balaji PADMANABHAN, Prasad VENKATRAMAN
  • Publication number: 20140054679
    Abstract: In doping a non-planar semiconductor device, a substrate having a non-planar semiconductor body formed thereon is obtained. A first ion implant is performed in a region of the non-planar semiconductor body. The first ion implant has a first implant energy and a first implant angle. A second ion implant is performed in the same region of the non-planar semiconductor body. The second ion implant has a second implant energy and a second implant angle. The first implant energy may be different from the second implant energy. Additionally, the first implant angle may be different from the second implant angle.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Daniel TANG, Tzu-Shih YEN
  • Patent number: 8659074
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type formed thereon. The semiconductor device also includes a body layer extending a first predetermined distance into the semiconductor layer of the second conductivity type and a pair of trenches extending a second predetermined distance into the semiconductor layer of the second conductivity type. Each of the pair of trenches consists essentially of a dielectric material disposed therein and a concentration of doping impurities present in the semiconductor layer of the second conductivity type and a distance between the pair of trenches define an electrical characteristic of the semiconductor device. The semiconductor device further includes a control gate coupled to the semiconductor layer of the second conductivity type and a source region coupled to the semiconductor layer of the second conductivity type.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: February 25, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventor: Mohamed N. Darwish
  • Patent number: 8659076
    Abstract: Improved highly reliable power RFP structures and fabrication and operation processes. The structure includes plurality of localized dopant concentrated zones beneath the trenches of RFPs, either floating or extending and merging with the body layer of the MOSFET or connecting with the source layer through a region of vertical doped region. This local dopant zone decreases the minority carrier injection efficiency of the body diode of the device and alters the electric field distribution during the body diode reverse recovery.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: February 25, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Jun Zeng, Mohamed N. Darwish
  • Patent number: 8659075
    Abstract: Methods of forming an array of memory cells and memory cells that have pillars. Individual pillars can have a semiconductor post formed of a bulk semiconductor material and a sacrificial cap on the semiconductor post. Source regions can be between columns of the pillars, and gate lines extend along a column of pillars and are spaced apart from corresponding source regions. Each gate line surrounds a portion of the semiconductor posts along a column of pillars. The sacrificial cap structure can be selectively removed to thereby form self-aligned openings that expose a top portion of corresponding semiconductor posts. Individual drain contacts formed in the self-aligned openings are electrically connected to corresponding semiconductor posts.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: John Zahurak, Sanh D. Tang, Gurtej S. Sandhu
  • Patent number: 8653587
    Abstract: This invention discloses a trench MOSFET comprising a top side drain region in a wide trench in a termination area besides a BV sustaining area, wherein said top side drain comprises a top drain metal connected to an epitaxial layer and a substrate through a plurality of trenched drain contacts, wherein the wide trench is formed simultaneously when a plurality of gate trenches are formed in an active area, and the trenched drain contacts are formed simultaneously when a trenched source-body contact is formed in the active area.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 18, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8653585
    Abstract: A nonvolatile memory device having a vertical structure and a method of manufacturing the same, the nonvolatile memory device including a channel region that vertically extends from a substrate; gate electrodes on the substrate, the gate electrodes being disposed along an outer side wall of the channel region and spaced apart from one another; and a channel pad that extends from one side of the channel region to an outside of the channel region, the channel pad covering a top surface of the channel region.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-sun Youm, Sang-yong Park, Jin-taek Park, Yong-top Kim
  • Patent number: 8653575
    Abstract: A method for fabricating a semiconductor device includes forming buried bit lines separated from each other by a trench in a substrate, forming a plurality of first pillar holes that expose a top surface of the substrate, forming first active pillars buried in the first pillar holes, forming a gate conductive layer over entire surface of a resultant structure including the first active pillars, forming a gate electrode by etching the gate conducting layer to cover the first active pillars, forming a plurality of second pillar holes that expose the first active pillars by partially etching the gate electrode, and forming second active pillars buried in the second pillar holes and connected to the first active pillars.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 18, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 8653586
    Abstract: A superjunction device is disclosed, wherein P-type regions in an active region are not in contact with the N+ substrate, and the distance between the surface of the N+ substrate and the bottom of the P-type regions in the active region is greater than the thickness of a transition region in the N-type epitaxial layer. Methods for manufacturing the superjunction device are also disclosed. The present invention is capable of improving the uniformity of reverse breakdown voltage and overshoot current handling capability in a superjunction device.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventor: Shengan Xiao
  • Patent number: 8653584
    Abstract: A dual vertical channel transistor includes a tuning fork-shaped substrate body; a buried bit line embedded at a bottom of a recess between two prong portions of the tuning fork-shaped substrate body; an out-diffused drain region adjacent to the buried bit line in the tuning fork-shaped substrate body; a source region situated at a top portion of each of the two prong portions of the tuning fork-shaped substrate body; an epitaxial portion connecting the two prong portions of the tuning fork-shaped substrate body between the out-diffused drain region and the source region; a front gate situated on a first side surface of the tuning fork-shaped substrate body; and a back gate situated on a second side surface opposite to the first side surface of the tuning fork-shaped substrate body.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 18, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Shing-Hwa Renn
  • Patent number: 8653593
    Abstract: A semiconductor device includes a semiconductor layer provided with a gate trench, a first conductivity type source region exposed on a surface side of the semiconductor layer, a second conductivity type channel region formed on a side of the source region closer to aback surface of the semiconductor layer to be in contact with the source region, a first conductivity type drain region formed on a side of the channel region to be in contact with the channel region, a gate insulating film formed on an inner surface of the gate trench, and agate electrode embedded inside the gate insulating film in the gate trench, while the channel region includes a channel portion formed along the side surface of the gate trench and a projection projecting from an end portion of the channel portion closer to the back surface of the semiconductor layer toward the back surface.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: February 18, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Kengo Omori
  • Patent number: 8653588
    Abstract: A semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type on the first semiconductor layer; trenches in the first semiconductor layer; a semiconductor protruding part on the first semiconductor layer; a third semiconductor layer on the semiconductor protruding part; a fourth semiconductor layer on the third semiconductor layer; a gate insulating layer disposed along the trench; a first interlayer insulating layer disposed along the trench; a first conductive layer facing to the fourth semiconductor layer; a second conductive layer on the first interlayer insulating layer; a second interlayer insulating layer covering the second conductive layer; a third conductive layer on the third semiconductor layer and fourth semiconductor layer; a contacting part connecting the third conductive layer and third semiconductor layer; and a fourth conductive layer formed on the second semiconductor layer.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: So Watanabe, Masaki Shiraishi, Hiroshi Suzuki, Mutsuhiro Mori
  • Publication number: 20140042524
    Abstract: A device includes a wafer substrate, a conical frustum structure formed in the wafer substrate, and a gate all-around (GAA) structure circumscribing the middle portion of the conical frustum structure. The conical frustum structure includes a drain formed at a bottom portion of the conical frustum, a source formed at a top portion of the vertical conical frustum, and a channel formed at a middle portion of the conical frustum connecting the source and the drain. The GAA structure overlaps with the source at one side of the GAA structure, crosses over the channel, and overlaps with the drain at another side of the GAA structure.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hak-Lay Chuang, Ming Zhu, Yi-Ren Chen
  • Patent number: 8648353
    Abstract: Silicon carbide semiconductor device includes trench, in which connecting trench section is connected to straight trench section. Straight trench section includes first straight trench and second straight trench extending in parallel to each other. Connecting trench section includes first connecting trench perpendicular to straight trench section, second connecting trench that connects first straight trench and first connecting trench to each other, and third connecting trench that connects second straight trench and first connecting trench to each other. Second connecting trench extends at 30 degrees of angle with the extension of first straight trench. Third connecting trench extends at 30 degrees of angle with the extension of second straight trench. A manufacturing method according to the invention for manufacturing a silicon carbide semiconductor device facilitates preventing defects from being causes in a silicon carbide semiconductor device during the manufacture thereof.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: February 11, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasuyuki Kawada, Takeshi Tawara
  • Patent number: 8648413
    Abstract: A super-junction trench MOSFET with split gate electrodes is disclosed for high voltage device by applying multiple trenched source-body contacts with narrow CDs in unit cell. Furthermore, source regions are only formed along channel regions near the gate trenches, not between adjacent trenched source-body contacts for UIS (Unclamped Inductance Switching) current enhancement.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 11, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8648414
    Abstract: Semiconductor structures that include bodies of a semiconductor material spaced apart from an underlying substrate. The bodies may be physically separated from the substrate by at least one of a dielectric material, an open volume and a conductive material. The bodies may be electrically coupled by one or more conductive structures, which may be used as an interconnect structure to electrically couple components of memory devices. By providing isolation between the bodies, the semiconductor structure provides the properties of a conventional SOI substrate (e.g., high speed, low power, increased device density and isolation) while substantially reducing fabrication acts and costs associated with such SOI substrates. Additionally, the semiconductor structures of the present disclosure provide reduced parasitic coupling and current leakage due to the isolation of the bodies by the intervening dielectric material.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: February 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, David H. Wells, Tuman E. Allen
  • Patent number: 8648398
    Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 11, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
  • Patent number: 8647947
    Abstract: It is intended to provide a semiconductor device including a MOS transistor, comprising: a semiconductor pillar; a bottom doped region formed in contact with a lower part of the semiconductor pillar; a first gate formed around a sidewall of the semiconductor pillar through a first dielectric film therebetween; and a top doped region formed so as to at least partially overlap a top surface of the semiconductor pillar, wherein the top doped region has a top surface having an area greater than that of the top surface of the semiconductor pillar.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 11, 2014
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai
  • Publication number: 20140035029
    Abstract: A semiconductor device including a semiconductor substrate of a first conductivity type and an epitaxial layer of the first conductivity type disposed thereon is disclosed. Pluralities of first and second trenches are alternately arranged in the epitaxial layer. First and second doped regions of the first conductivity type are formed in the epitaxial layer and surrounding each first trench. A third doped region of a second conductivity type is formed in the epitaxial layer and surrounding each second trench. A first dopant in the first doped region has diffusivity larger than that of a second dopant in the second doped region. A method for fabricating a semiconductor device is also disclosed.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Inventors: Rudy Octavius Sihombing, Chia-Hao Lee, Tsung-Hsiung Lee, Shang-Hui Tu
  • Patent number: 8643096
    Abstract: A semiconductor device includes trenches defined in a substrate, buried bit lines partially filling the trenches, a first source/drain layer filling remaining portions of the trenches on the buried bit lines, stack patterns having a channel layer and a second source/drain layer stacked therein and bonded to the first source/drain layer, wherein the channel layer contacts with the first source/drain layer, and word lines crossing with the buried bit lines and disposed adjacent to sidewalls of the channel layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 4, 2014
    Assignee: SK Hynix Inc.
    Inventor: Eui-Seong Hwang
  • Patent number: 8643067
    Abstract: Semiconductor devices are described that include a dual-gate configuration. In one or more implementations, the semiconductor devices include a substrate having a first surface and a second surface. The substrate includes a first and a second body region formed proximal to the first surface. Moreover, each body region includes a source region formed therein. The substrate further includes a drain region formed proximal to the second surface and an epitaxial region that is configured to function as a drift region between the drain region and the source regions. A dual-gate is formed over the first surface of the substrate. The dual-gate includes a first gate region and a second gate region that define a gap there between to reduce the gate to drain capacitance. A conductive layer may be formed over the first gate region and the second gate region to lower the effective resistance of the dual-gate.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Scott J. Alberhasky, David E. Hart, Sudarsan Uppili
  • Patent number: 8643091
    Abstract: A semiconductor device includes first, second, third, and fourth semiconductor layers of alternating first and second conductivity types, an embedded electrode in a first trench that penetrates through the second semiconductor layer, a control electrode above the embedded electrode in the first trench, and first and second main electrodes. The fourth semiconductor layer is selectively provided in the first semiconductor layer and is connected to a lower end of a second trench, which penetrates through the second semiconductor layer. The first main electrode is electrically connected to the first semiconductor layer, and the second main electrode is in the second trench and electrically connected to the second, third, and fourth semiconductor layers. The embedded electrode is electrically connected to the second main electrode or the control electrode. A Shottky junction formed of the second main electrode and the first semiconductor layer is formed at a sidewall of the second trench.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Patent number: 8643085
    Abstract: A high-voltage-resistant semiconductor component (1) has vertically conductive semiconductor areas (17) and a trench structure (5). These vertically conductive semiconductor areas are formed from semiconductor body areas (10) of a first conductivity type and are surrounded by a trench structure (5) on the upper face (6) of the semiconductor component. For this purpose the trench structure has a base (7) and a wall area (8) and is filled with a material (9) with a relatively high dielectric constant (?r). The base area (7) of the trench structure (5) is provided with a heavily doped semiconductor material (11) of the same conductivity type as the lightly doped semiconductor body areas (17), and/or having a metallically conductive material (12).
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventor: Frank Pfirsch
  • Patent number: 8643097
    Abstract: A trench-gate metal oxide semiconductor device includes a substrate, a first gate dielectric layer, a first gate electrode and a first source/drain structure. The substrate has a first doping region, a second doping region and at least one trench. A P/N junction is formed between the first doping region and the second doping region. The trench extends from a surface of the substrate to the first doping region through the second doping region and the P/N junction. The first gate dielectric layer is formed on a sidewall of the second trench. The first gate electrode is disposed within the trench. A height difference between the top surface of the first gate electrode and the surface of the substrate is substantially smaller than 1500 ?. The first source/drain structure is formed in the substrate and adjacent to the first gate dielectric layer.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 4, 2014
    Assignee: United Microelectronics Corporation
    Inventors: Kuan-Ling Liu, Shih-Yuan Ueng
  • Publication number: 20140027812
    Abstract: A semiconductor device includes a trench extending into a drift zone of a semiconductor body from a first surface. The semiconductor device further includes a gate electrode in the trench and a body region adjoining a sidewall of the trench. The semiconductor device further includes a dielectric structure in the trench. The dielectric structure includes a high-k dielectric in a lower part of the trench. The high-k dielectric includes a dielectric constant higher than that of SiO2. An extension of the high-k dielectric in a vertical direction perpendicular to the first surface is limited between a bottom side of the trench and a level where a bottom side of the body region adjoins the sidewall of the trench.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Franz Hirler, Hans-Peter Felsl, Franz-Josef Niedernostheide
  • Publication number: 20140029352
    Abstract: An embodiment of an apparatus includes a substrate, a body semiconductor, a vertical memory access line stack over the body semiconductor, and a body connection to the body semiconductor.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventor: Toru Tanzawa
  • Publication number: 20140027840
    Abstract: The present disclosure describes a termination structure for a high voltage semiconductor transistor device. The termination structure is composed of at least two termination zones and an electrical disconnection between the body layer and the edge of the device. A first zone is configured to spread the electric field within the device. A second zone is configured to smoothly bring the electric field back up to the top surface of the device. The electrical disconnection prevents the device from short circuiting the edge of the device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Hamza Yilmaz