Vertical Transistor (epo) Patents (Class 257/E29.262)
  • Publication number: 20140027841
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8637923
    Abstract: A transistor includes a substrate including a trench, an insulation layer filled in a portion of the trench, the insulation layer having a greater thickness over an edge portion of a bottom surface of the trench than over a middle portion of the bottom surface of the trench, a gate insulation layer formed over inner sidewalls of the trench, the gate insulation layer having a thickness smaller than the insulation layer, and a gate electrode filled in the trench.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: January 28, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Cheol-Ho Cho
  • Patent number: 8637913
    Abstract: A nonvolatile memory device includes a channel vertically extending from a substrate and comprising a first region that is doped with first impurities and a second region that is disposed under the first region, a plurality of memory cells and a selection transistor stacked over the substrate along the channel, and a diffusion barrier interposed between the first region and the second region, wherein a density of the first impurities is higher than a density of impurities of the second region.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: January 28, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyun-Seung Yoo, Eun-Seok Choi
  • Publication number: 20140021535
    Abstract: A method for forming a semiconductor device with a vertical gate is disclosed, including providing a substrate, forming a recess in the substrate, forming a gate dielectric layer on a sidewall and a bottom of the recess, forming an adhesion layer in the recess and on the gate dielectric layer, wherein the adhesion layer is a metal silicide nitride layer, and forming a gate layer in the recess and on the adhesion layer.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 23, 2014
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Wen-Ping Liang, Chiang-Hung Lin, Kuo-Hui Su
  • Publication number: 20140021532
    Abstract: Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Krishna Bhuwalka, Gerben Doornbos, Matthias Passlack
  • Publication number: 20140021538
    Abstract: In one aspect, a method of fabricating a nanowire FET device includes the following steps. A wafer is provided. At least one sacrificial layer and silicon layer are formed on the wafer in a stack. Fins are patterned in the stack. Dummy gates are formed over portions of the fins which will serve as channel regions, and wherein one or more portions of the fins which remain exposed will serve as source and drain regions. A gap filler material is deposited surrounding the dummy gates and planarized. The dummy gates are removed forming trenches in the gap filler material. Portions of the silicon layer (which will serve as nanowire channels) are released from the fins within the trenches. Replacement gates are formed within the trenches that surround the nanowire channels in a gate all around configuration. A nanowire FET device is also provided.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Applicant: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8633539
    Abstract: A semiconductor device includes a semiconductor body including a first surface and a second surface. The semiconductor device further includes a trench structure extending into the semiconductor body from the first surface. The trench structure includes a first gate electrode part and a first gate dielectric part in a first part of the trench structure, and a second gate electrode part and a second gate dielectric part in a second part of the trench structure. A width of the trench structure in the first part is equal to the width of the trench structure in the second part. The semiconductor device further includes a body region adjoining the first and second gate dielectric parts at a side wall of the trench structure. A distance d1 between a bottom edge of the first gate dielectric part and the first surface and a distance d2 between a bottom edge of the second gate dielectric part and the first surface satisfies 50 nm<d1?d2.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: January 21, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Poelzl, Franz Hirler
  • Patent number: 8633564
    Abstract: A method of formation of an isolation structure for vertical semiconductor devices, the resulting isolation structure, and a memory device to prevent leakage among adjacent vertical semiconductor devices are described.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kamal Karda, Chandra Mouli
  • Publication number: 20140015046
    Abstract: A semiconductor device a field of transistor cells integrated in a semiconductor body. A number of the transistor cells forming a power transistor and at least one of the transistor cells forming a sense transistor. A first source electrode is arranged on the semiconductor body electrically connected to the transistor cell(s) of the sense transistor but electrically isolated from the transistor cells of the power transistor. A second source electrode is arranged on the semiconductor body and covers the transistor cells of both the power transistor and the sense transistor, and at least partially covering the first source electrode in such a manner that the second source electrode is electrically connected only to the transistor cells of the power transistor but electrically isolated from the transistor cells of the sense transistor.
    Type: Application
    Filed: July 14, 2012
    Publication date: January 16, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Steffen THIELE, Andreas MEISER, Markus ZUNDEL
  • Publication number: 20140015039
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Inventor: Zia Hossain
  • Publication number: 20140015038
    Abstract: A MOS transistor comprises a substrate, a first region formed over the substrate, a second region grown from the first region, a third region of formed in the second region, a first drain/source region formed in the third region, a first gate electrode formed in a first trench, a second drain/source region formed in the second region and on an opposite side of the first trench from the first drain/source region and a second trench coupled between the second drain/source region and the second region, wherein the second trench is of a same depth as the first trench.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20140015037
    Abstract: The present disclosure relates to a power MOSFET device having a relatively low resistance hybrid gate electrode that enables good switching performance. In some embodiments, the power MOSFET device has a semiconductor body. An epitaxial layer is disposed on the semiconductor body. A hybrid gate electrode, which controls the flow of electrons between a source electrode and a drain electrode, is located within a trench extending into the epitaxial layer. The hybrid gate electrode has an inner region having a low resistance metal, an outer region having a polysilicon material, and a barrier region disposed between the inner region and the outer region. The low resistance of the inner region provides for a low resistance to the hybrid gate electrode that enables good switching performance for the power MOSFET device.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20140015040
    Abstract: A power semiconductor device includes a substrate, a semiconductor layer grown on the substrate, a plurality of alternately arranged first conductivity type doping trenches and second conductivity type doping trenches in the semiconductor substrate, a first diffusion region of the first conductivity type around each of the first conductivity type doping trenches, and a second diffusion region of the second conductivity type around each of the second conductivity type doping trenches, wherein distance between an edge of the first conductivity type doping trench and PN junction between the first and second diffusion regions substantially equals to a distance between an edge of the second conductivity type doping trench and the PN junction.
    Type: Application
    Filed: August 20, 2012
    Publication date: January 16, 2014
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa Lin, Chia-Hao Chang, Yi-Chun Shih
  • Patent number: 8629493
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type having a first surface and a second surface, a source region disposed on the first surface, a gate region disposed on the first surface adjacent the source region, and a drain region disposed on the first surface. The semiconductor device also includes a pair of charge control trenches disposed between the gate region and the drain region. Each of the pair of charge control trenches is characterized by a width and includes a first dielectric material disposed therein and a second material disposed internal to the first dielectric material. Additionally, a concentration of doping impurities present in the semiconductor layer of the first conductivity type and a distance between the pair of charge control trenches define an electrical characteristic of the semiconductor device that is independent of the width of each of the pair of charge control trenches.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 14, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventor: Mohamed N. Darwish
  • Patent number: 8629494
    Abstract: A data storing device may include a substrate, transistors on the substrate that include gate line structures, and conductive isolation patterns defining active regions of the transistors. Each conductive isolation pattern includes at least one portion buried in the substrate and the conductive isolation patterns are electrically connected with each other.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: January 14, 2014
    Assignee: Samsung Electronics Co Ltd.
    Inventors: Yong Kwan Kim, Youngnam Hwang
  • Patent number: 8629499
    Abstract: A MOSFET power chip includes a first vertical MOSFET and a second vertical MOSFET. The first vertical MOSFET includes a semiconductor body having a first surface defining a source and a second surface defining a drain and a gate structure formed in the semiconductor body near the second surface. A via is formed within the semiconductor body and is substantially perpendicular to the first surface and the second surface. The via has a first end electrically coupled to the first surface and a second end electrically coupled to the gate structure. The second vertical MOSFET includes a semiconductor body having a first surface defining a source, a second surface defining a drain and a gate structure formed in the semiconductor body near the first surface.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: January 14, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Ahmad Ashrafzadeh
  • Patent number: 8618602
    Abstract: A semiconductor device may include, but is not limited to, a semiconductor substrate, a word line, and an isolation region. The semiconductor substrate has an active region and first and second grooves. Each of the first and second grooves extends across the active region. The first groove is wider in width than the second groove. The word line is disposed in the first groove. The isolation region is disposed in the second groove. The isolation region is narrower in width than the word line.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 31, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Kiyonori Oyu
  • Patent number: 8618598
    Abstract: A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: December 31, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Joachim Krumrey, Franz Hirler, Walter Rieger
  • Patent number: 8618601
    Abstract: A semiconductor device formed on a semiconductor substrate having a substrate top surface, includes: a gate trench extending from the substrate top surface into the semiconductor substrate; a gate electrode in the gate trench; a dielectric material disposed over the gate electrode; a body region adjacent to the gate trench; a source region embedded in the body region, at least a portion of the source region extending above the dielectric material; a contact trench that allows contact such as electrical contact between the source region and the body region; and a metal layer disposed over at least a portion of a gate trench opening, at least a portion of the source region, and at least a portion of the contact trench.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 31, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: John Chen
  • Patent number: 8618594
    Abstract: The present invention provides a technique capable of attaining an improvement in current detection accuracy in a trench gate type power MISFET equipped with a current detection circuit. Inactive cells are disposed so as to surround the periphery of a sense cell. That is, the inactive cell is provided between the sense cell and an active cell. All of the sense cell, active cell and inactive cells are respectively formed of a trench gate type power MISFET equipped with a dummy gate electrode. At this time, the depth of each trench extends through a channel forming region and is formed up to the deep inside (the neighborhood of a boundary with a semiconductor substrate) of an n-type epitaxial layer. Further, a p-type semiconductor region is provided at a lower portion of each trench. The p-type semiconductor region is formed so as to contact the semiconductor substrate.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: December 31, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Shinbori, Yoshito Nakazawa
  • Patent number: 8614479
    Abstract: A vertical transistor structure includes a substrate, a source, a first gate, a first insulating layer, a second gate, a gate insulating layer, a drain, a second insulating layer, and a semiconductor channel layer. The source is configured on the substrate. The first gate is configured on the source and has at least one first through hole. The first insulating layer is between the first gate and the source. The second gate is configured on the first gate and has at least one second through hole. The gate insulating layer is between the first and second gates and has at least one third through hole. The first, second, and third through holes are communicated with one another. The drain is configured on the second gate. The second insulating layer is configured between the second gate and the drain. The semiconductor channel layer fills the first, second, and third through holes.
    Type: Grant
    Filed: March 12, 2011
    Date of Patent: December 24, 2013
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Shou-Cheng Weng, Huai-An Li
  • Publication number: 20130334595
    Abstract: Provided is one embodiment of a semiconductor structure that includes a STI feature, wherein the STI feature is a continuous feature and includes a first portion in a first region and a second portion in a second region, and the first portion is recessed relative to the second portion; an active region bordered by the STI feature; a gate stack disposed on the active region and extended in a first direction to the first region of the STI feature; source and drain features formed in the active region and interposed by the gate stack; and a channel formed in the active region and spanned between the source and drain features in a second direction being different from the first direction. The channel includes top portion having a width W in the first direction and two side portions each having a height H less than the width W.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Publication number: 20130334565
    Abstract: Source zones of a first conductivity type and body zones of a second conductivity type are formed in a semiconductor die. The source zones directly adjoin a first surface of the semiconductor die. A dielectric layer adjoins the first surface. Polysilicon plugs extend through the dielectric layer and are electrically connected to the source and the body zones. An impurity source containing at least one metallic recombination element is provided in contact with deposited polycrystalline silicon material forming the polysilicon plugs and distant to the semiconductor die. Atoms of the metallic recombination element, for example platinum atoms, may be diffused out from the impurity source into the semiconductor die to reliably reduce the reverse recovery charge.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Michael Hutzler, Ralf Siemieniec, Oliver Blank
  • Publication number: 20130334585
    Abstract: The semiconductor device includes a vertical channel layer formed on a substrate; conductive layer patterns and insulating layer patterns alternately formed around a length of each of the vertical channel layer; and a charge storing layer pattern formed between each of the vertical channel layers and the conductive layer patterns, where each of the charge storing layer patterns is isolated by the insulating layer patterns.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 19, 2013
    Inventor: Sang Bum LEE
  • Patent number: 8609523
    Abstract: A memory array with staggered local data/bit lines extending generally in a first direction formed in an upper surface of a substrate and memory cell access transistors extending generally upward and aligned generally atop a corresponding local data/bit line. Selected columns of the memory cell access transistors are sacrificed to define local data/bit access transistors which are interconnected with overlying low resistance global data/bit lines. The global data/bit lines provide selectable low resistance paths between memory cells and sense amplifiers. The sacrificed memory cell access transistors and staggered local data/bit lines provide increased footprints for sense amplifiers to facilitate increased circuit integration.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8610203
    Abstract: A method for manufacturing a semiconductor device comprises forming a buried gate after forming an active region to have a line type. The buried gate comprises an operation gate and a non-operation gate. A height of a gate electrode layer (conductive material) of the non-operation gate is formed to be lower than that of a gate electrode layer of the operation gate, thereby increasing a threshold voltage and preventing an overlap of the ion-implanted active region with the non-operation gate. As a result, a Gate Induced Drain Leakage (GIDL) is prevented to improve a refresh characteristic of the semiconductor device.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 17, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Patent number: 8610204
    Abstract: A first semiconductor device comprising: a first conductivity type drift region formed in a semiconductor substrate; a second conductivity type body region formed at an upper surface of the semiconductor substrate on an upper surface side of the drift region; a first conductivity type first semiconductor region formed on a part of an upper surface of the body region; and a trench gate type insulated gate penetrating the first semiconductor region and the body region, and formed to a depth at which the insulated gate contacts the drift region. A part of the insulated gate on a drift region side relative to the body region is deeper at a center portion than at both end portions in a longitudinal direction of the insulated gate.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: December 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Publication number: 20130328122
    Abstract: A split trench-gate MOSFET device and method for forming this device is disclosed. The device has a trench gate structure, comprising a shield electrode and two gate electrodes, wherein a substantial portion of shield electrode region is lower than the gate electrode region, and wherein a portion of the shield electrode region extends to the top surface between the two gate electrodes. The device further comprises a source metal layer, contacting to an initial layer, a well region, the shield electrode and a source region at the top surface, wherein the contact between the source metal layer and the initial layer forms a Schottky diode.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Tiesheng Li, Rongyao Ma, Lei Zhang
  • Publication number: 20130328121
    Abstract: A semiconductor power device includes a thick bottom insulator formed in a lower portion of a trench in a semiconductor epitaxial region. An electrically conductive gate electrode is formed in the trench above the bottom insulator. The gate electrode is electrically insulated from the epitaxial region by the bottom insulator and a gate insulator. Charge is deliberately induced in the thick bottom insulator proximate an interface between the bottom insulator and the epitaxial semiconductor region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Inventors: Xiaobin Wang, Anup Bhalla, Daniel Ng
  • Patent number: 8604520
    Abstract: A vertical transistor includes a substrate, a gate, a source region, a drain region, a channel region and a gate dielectric layer. A trench is formed in the substrate, and the gate is disposed in the trench. The source region is disposed in the substrate beneath the gate. The drain region is disposed above the gate. The channel region is disposed at two sides of the gate and located between the source region and the drain region. The gate dielectric layer is located between the gate and the channel region.
    Type: Grant
    Filed: October 4, 2009
    Date of Patent: December 10, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Tieh-Chiang Wu, Yu-Teh Chiang
  • Patent number: 8604541
    Abstract: This invention discloses a specific superjunction MOSFET structure and its fabrication process. Such structure includes: a drain, a substrate, an EPI, a source, a side-wall isolation structure, a gate, a gate isolation layer and source. There is an isolation layer inside the active area underneath the source. Along the side-wall of this isolation layer, a buffer layer with same doping type as body can be introduced & source can be extended down too to form field plate. Such buffer layer & field plate can make the EPI doping much higher than convention device which results in lower Rdson, better performance, shorter gate so that to reduce both gate charge Qg and gate-to-drain charge Qgd. The process to make such structure is simpler and more cost effective.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 10, 2013
    Assignee: Wuxi Versine Semiconductor Corp. Ltd.
    Inventors: Qin Huang, Yuming Bai, Yang Gao
  • Patent number: 8603891
    Abstract: Methods of forming vertical memory devices include forming first trenches, at least partially filling the first trenches with a polysilicon material, and forming second trenches generally perpendicular to the first trenches. The second trenches may be formed by removing one of silicon and oxide with a first material removal act and by removing the other of silicon and oxide in a different second material removal act. Methods of forming an apparatus include forming isolation trenches, at least partially filling the isolation trenches with a polysilicon material, and forming word line trenches generally perpendicular to the isolation trenches, the word line trenches having a depth in a word line end region about equal to or greater than a depth thereof in an array region. Word lines may be formed in the word line trenches. Semiconductor devices, vertical memory devices, and apparatuses are formed by such methods.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Shyam Surthi
  • Publication number: 20130320427
    Abstract: A tunnel field-effect transistor is provided, which includes a fin-shaped, source-drain circuit structure with a source region and a drain region. The circuit structure is angled in cross-sectional elevation, and includes a first portion and a second portion. The first portion extends away from the second portion, and the source region is disposed in the first or second portion, and the drain region is disposed in the other of the first or second portion. The transistor further includes a gate electrode for gating the circuit structure and a self-aligned tunneling region. The tunneling region is self-aligned to at least a portion of the circuit structure and extends between the gate electrode and the first or second portion of the fin-shaped circuit structure, and the self-aligned tunneling region is at least partially disposed in parallel, spaced opposing relation to a control surface of the gate electrode.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: SEMATECH, INC.
    Inventors: Wei-Yip LOH, Richard HILL, Prashant MAJHI
  • Publication number: 20130320433
    Abstract: A method for fabricating vertical channel transistors includes forming a plurality of pillars which have laterally opposing both sidewalls, over a substrate; forming a gate dielectric layer on both sidewalls of the pillars; forming first gate electrodes which cover any one sidewalls of the pillars and shield gate electrodes which cover the other sidewalls of the pillars and have a height lower than the first gate electrodes, over the gate dielectric layer; and forming second gate electrodes which are connected with upper portions of sidewalls of the first gate electrodes.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 5, 2013
    Inventors: Heung-Jae CHO, Eui-Seong Hwang, Eun-Shil Park
  • Publication number: 20130320915
    Abstract: A gated diode may include source zones and a drain zone which are both of a first conductivity type. The source zones directly adjoin a first surface of a semiconductor die and the drain zone directly adjoins an opposite second surface of the semiconductor die. The drain zone includes a drift zone formed in an epitaxial layer of the semiconductor die. Base zones of a second conductivity type, which is the opposite of the first conductivity type, are provided between the drain zones and the source zones. The drift zone further includes adjustment zones directly adjoining a base zone and arranged between the respective base zone and the second surface, respectively. A net dopant concentration in the adjustment zone is at least twice a net dopant concentration in the second sub-zone. The adjustment zones precisely define the reverse breakdown voltage.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Dirk Ahlers, Markus Zundel, Dietrich Bonart, Ludger Borucki
  • Publication number: 20130320435
    Abstract: A device includes a semiconductor region of a first conductivity type, a trench extending into the semiconductor region, and a conductive field plate in the trench. A first dielectric layer separates a bottom and sidewalls of the field plate from the semiconductor region. A main gate is disposed in the trench and overlapping the field plate. A second dielectric layer is disposed between and separating the main gate and the field plate from each other. A Doped Drain (DD) region of the first conductivity type is under the second dielectric layer, wherein an edge portion of the main gate overlaps the DD region. A body region includes a first portion at a same level as a portion of the main gate, and a second portion at a same level as, and contacting, the DD region, wherein the body region is of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Ruey-Hsin Liu, Po-Chih Su
  • Publication number: 20130320430
    Abstract: A device includes a semiconductor layer of a first conductivity type, and a first and a second body region over the semiconductor layer, wherein the first and the second body regions are of a second conductivity type opposite the first conductivity type. A doped semiconductor region of the first conductivity type is disposed between and contacting the first and the second body regions. A gate dielectric layer is disposed over the first and the second body regions and the doped semiconductor region. A first and a second gate electrode are disposed over the gate dielectric layer, and overlapping the first and the second body regions, respectively. The first and the second gate electrodes are physically separated from each other by a space, and are electrically interconnected. The space between the first and the second gate electrodes overlaps the doped semiconductor region.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Ruey-Hsin Liu, Po-Chih Su
  • Publication number: 20130320424
    Abstract: A semiconductor device includes a first source layer; at least one of a second source layer, the second source layer formed substantially in the first source layer; a plurality of conductive layers stacked substantially over the first source layer; channel layers that pass through the plurality of conductive layers and couple to the second source layer; and at least one of a third source layer, the third source layer formed substantially in the second source layer, wherein the third source layer passes through the second source layer and is coupled to the first source layer.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 5, 2013
    Applicant: SK HYNIX INC.
    Inventors: Ki Hong LEE, Seung Ho PYI, Seok Min JEON
  • Publication number: 20130320438
    Abstract: A semiconductor device comprises a gate electrode buried in a trench within a semiconductor substrate, a first sealing insulating film disposed over the gate electrode and the semiconductor substrate, an ion-implanting region disposed in portions of the semiconductor substrate adjacent to sidewalls of the trench, and a second sealing insulating film formed over the first sealing insulating film to bury the trench.
    Type: Application
    Filed: October 11, 2012
    Publication date: December 5, 2013
    Applicant: SK HYNIX INC.
    Inventor: Shin Gyu CHOI
  • Publication number: 20130320437
    Abstract: A device includes a trench extending into a semiconductor region and having a first conductivity type, and a conductive field plate in the trench. A first dielectric layer separates a bottom and sidewalls of the field plate from the semiconductor region. A main gate is disposed in the trench and overlapping the field plate. A second dielectric layer is disposed between and separating the main gate and the field plate from each other. A Doped Drain (DD) region of the first conductivity type is under the second dielectric layer and having an edge portion overlapping the DD region. A body region includes a first portion at a same level as a portion of the main gate, and a second portion contacting the DD region, wherein the body region is of a second conductivity type opposite the first conductivity type. A MOS-containing device is at a surface of the semiconductor region.
    Type: Application
    Filed: September 13, 2012
    Publication date: December 5, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20130320431
    Abstract: A device includes a semiconductor region in a semiconductor chip, a gate dielectric layer over the semiconductor region, and a gate electrode over the gate dielectric. A drain region is disposed at a top surface of the semiconductor region and adjacent to the gate electrode. A gate spacer is on a sidewall of the gate electrode. A dielectric layer is disposed over the gate electrode and the gate spacer. A conductive field plate is over the dielectric layer, wherein the conductive field plate has a portion on a drain side of the gate electrode. A deep metal via is disposed in the semiconductor region. A source electrode is underlying the semiconductor region, wherein the source electrode is electrically shorted to the conductive field plate through the deep metal via.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Ruey-Hsin Liu, Chun-Wai Ng
  • Publication number: 20130320436
    Abstract: A semiconductor device includes a substrate including an active region, an insulation layer formed over the substrate, a plurality of openings formed in the insulation layer, a plurality of contact plugs filling the plurality of openings, a silicide layer formed over the substrate and between the substrate and each contact plug of the contact plugs in order to cover a bottom of each contact plug. The semiconductor device may decrease contact resistance by forming a silicide layer before the formation of openings regardless of the linewidth and aspect ratio of the openings. Also, because it does not have to consider step coverage based on the aspect ratio of openings, there is no limitation in the method of depositing a metal layer. Therefore, productivity may be improved.
    Type: Application
    Filed: September 11, 2012
    Publication date: December 5, 2013
    Inventor: Hyung-Kyun KIM
  • Patent number: 8598651
    Abstract: A semiconductor device includes a transistor having multiple trenches with the thickness thereof being intermittently changed in the lateral direction of a gate, a gate insulating film formed on the side walls and at the bottom of each of the trenches, a gate electrode formed over the gate insulating film, a source region formed in the surface of the substrate on one side in the longitudinal direction of the gate, and a drain region formed in the surface of the substrate on the other side in the longitudinal direction of the gate.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Oga, Hiroshi Kawaguchi
  • Patent number: 8598650
    Abstract: It is intended to provide a semiconductor device comprising a circuit which has a connection between a drain region or a source region of a first MOS transistor and a drain region or a source region of a second MOS transistor. Each surround gate transistor (SGT) has a gate electrode that surrounds a sidewall of a pillar-shaped semiconductor layer.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 3, 2013
    Assignee: Unisantis Electronics Singapore PTE Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai
  • Patent number: 8598623
    Abstract: A termination structure for a semiconductor device includes an array of termination cells formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In other embodiments, semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: December 3, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Publication number: 20130313633
    Abstract: A semiconductor device has a substrate and trench formed partially through the substrate. A drain region is formed in the substrate as a second surface of the substrate. An epitaxial region is formed in the substrate over the drain region. A vertical drift region is formed along a sidewall of the trench. An insulating material is deposited within the trench. A channel region is formed along the sidewall of the trench above the insulating material. The channel region is separated from the insulating material. A gate structure is formed within the trench adjacent to the channel region. The gate structure includes an insulating layer formed along the sidewall of the trench adjacent to the channel region and polysilicon layer formed within the trench over the insulating layer. A source region is formed in a first surface of the substrate contacting the channel region.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: GREAT WALL SEMICONDUCTOR CORPORATION
    Inventors: Zheng John Shen, Patrick M. Shea, David N. Okada
  • Publication number: 20130313634
    Abstract: An edge terminal structure of a power semiconductor device is provided that includes a substrate, a first and a second electrodes disposed on a surface and a back of the substrate respectively, a first field plate, and a second field plate. The power semiconductor device includes an active area and an edge termination area, and there is a trench in a surface of the substrate in the edge terminal area beside the active area. The first field plate is disposed on a sidewall of the trench and extends on a tail of the trench, and it includes at least a L-shaped electric-plate, a gate insulation layer under the L-shaped electric-plate, and the first electrode on the L-shaped electric-plate. The second field plate includes at least an insulation layer and the first electrode thereon. The insulation layer covers the tail of the trench and a tail of the L-shaped electric-plate further.
    Type: Application
    Filed: September 12, 2012
    Publication date: November 28, 2013
    Applicant: EXCELLIANCE MOS CORPORATION
    Inventor: Chu-Kuang Liu
  • Publication number: 20130313636
    Abstract: Representative implementations of devices and techniques provide a termination arrangement for a transistor structure. The periphery of a transistor structure may include a recessed area having features arranged to improve performance of the transistor at or near breakdown.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Inventors: Andrew WOOD, Markus ZUNDEL
  • Patent number: 8592912
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes: a plurality of conductive patterns stacked on a substrate and spaced apart from each other and a pad pattern including a flat portion extending in a first direction parallel to the substrate from one end of any one of the plurality of conductive patterns, and a landing sidewall portion extending upward from a top surface of the flat portion, wherein a width of a portion of the landing sidewall portion in a second direction parallel to the substrate and perpendicular to the first direction is less than a width of the flat portion.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Hwang, Hansoo Kim, Wonseok Cho, Jaehoon Jang, Jae-Joo Shim
  • Patent number: 8592896
    Abstract: A semiconductor device includes a semiconductor layer of a second conductive type, a first diffused region of a first conductive type formed in the semiconductor layer, a second diffused region of the second conductive type selectively formed in the first diffused region, a trench formed in the semiconductor layer, a gate electrode housed in the trench with a gate insulator intervening, a top surface of the gate electrode being lower than a top surface of the second diffused region, a first oxide film housed in the trench and formed over the gate electrode, a second oxide film housed in the trench and formed over the first oxide film, a third oxide film housed in the trench and formed over the second oxide film, and a source electrode formed over the third oxide film and electrically connecting to the first and second diffused regions.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshimitsu Murase, Kenya Kobayashi, Atsushi Kaneko, Hideo Yamamoto