With Charge Trapping Gate Insulator (e.g., Mnos-memory Transistors) (epo) Patents (Class 257/E29.309)
  • Patent number: 8664710
    Abstract: A non-volatile memory and a manufacturing method thereof are provided. The non-volatile memory includes a gate dielectric layer, a floating gate, a control gate, an inter-gate dielectric structure and two doped regions. The gate dielectric layer is disposed on a substrate. The floating gate is disposed on the gate dielectric layer. The control gate is disposed on the floating gate. The inter-gate dielectric structure is disposed between the control gate and the floating gate. The inter-gate dielectric structure includes a first oxide layer, a second oxide layer and a charged nitride layer. The first oxide layer is disposed on the floating gate. The second oxide layer is disposed on the first oxide layer. The charged nitride layer is disposed between the first oxide layer and the second oxide layer. The doped regions are disposed in the substrate at two sides of the floating gate, respectively.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 4, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shaw-Hung Ku, Chi-Pei Lu, Chun-Lien Su
  • Patent number: 8664707
    Abstract: Provided is a semiconductor device that can include a lower interconnection on a substrate and at least one upper interconnection disposed on the lower interconnection. At least one gate structure can be disposed between the upper interconnection and the lower interconnection, where the gate structure can include a plurality of gate lines that are vertically stacked so that each of the gate lines has a wiring portion that is substantially parallel to an upper surface of the substrate and a contact portion that extends from the wiring portion along a direction penetrating an upper surface of the substrate. At least one semiconductor pattern can connect the upper and lower interconnections.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 4, 2014
    Assignees: Samsung Electronics Co., Ltd., The Regents of the University of California
    Inventors: Ji-Young Kim, Kang L. Wang, Yong-Jik Park, Jeong-Hee Han, Augustin Jinwoo Hong
  • Patent number: 8664640
    Abstract: A memory device can include an active layer that has a selectable lateral conductivity. The layer can include a plurality of nanoparticles.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: March 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Vladimir Bulović, Seth A. Coe-Sullivan
  • Patent number: 8659071
    Abstract: The invention provides a SONOS structure, a manufacturing method thereof and a semiconductor device with the SONOS structure. The SONOS structure comprises: a first tunneling oxide layer formed on a substrate, a charge storage silicon nitride layer, a second silicon oxide layer, a thin graded silicon nitride layer having graded Si/N content formed on the second silicon oxide layer, a third silicon oxide layer formed on the thin graded silicon nitride layer, and a polysilicon control gate. The Si/N content ratio of the silicon nitride of the thin graded silicon nitride layer increases gradually, wherein the silicon nitride of the graded silicon nitride layer closer to the second silicon oxide layer contains higher nitride content, and the silicon nitride of the graded silicon nitride layer closer to the third silicon oxide layer contains higher silicon content.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 25, 2014
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventor: Zhi Tian
  • Publication number: 20140048867
    Abstract: A device is disclosed. The device includes a substrate and a fin structure disposed on the substrate. The fin structure serves as a common body of n transistors. The transistors include separate charge storage layers and gate dielectric layers. The charge storage layers are disposed over a top surface of the fin structure and the gate dielectric layers are disposed on sidewalls of the fin structure. n=2x, x is a whole number greater or equal to 1. A transistor can interchange between a select transistor and a storage transistor.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat TOH, Shyue Seng TAN, Khee Yong LIM, Elgin QUEK
  • Publication number: 20140048865
    Abstract: A method for enabling fabrication of memory devices requiring no or minimal additional mask for fabrication having a low cost, a small footprint, and multiple-time programming capability is disclosed. Embodiments include: forming a gate stack on a substrate; forming a source extension region in the substrate on one side of the gate stack, wherein no drain extension region is formed on the other side of the gate stack; forming a tunnel oxide liner on side surfaces of the gate stack and on the substrate on each side of the gate stack; forming a charge-trapping spacer on each tunnel oxide liner; and forming a source in the substrate on the one side of the gate stack and a drain in the substrate on the other side of the gate stack.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: GLOBAL FOUNDRIES Singapore Pte. Ltd.
    Inventors: Eng Huat TOH, Khee Yong LIM, Shyue Seng TAN, Elgin QUEK
  • Publication number: 20140048866
    Abstract: An improved gate structure is provided whereby the gate structure is defined by a trench, the trench having a first oxide layer and a second oxide layer. The invention also provides methods for fabricating the gate structure of the invention defined by a trench having a first oxide layer and a second oxide layer.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Jeng Hwa Liao, Jung Yu Shieh, Ling Wuu Yang
  • Patent number: 8653585
    Abstract: A nonvolatile memory device having a vertical structure and a method of manufacturing the same, the nonvolatile memory device including a channel region that vertically extends from a substrate; gate electrodes on the substrate, the gate electrodes being disposed along an outer side wall of the channel region and spaced apart from one another; and a channel pad that extends from one side of the channel region to an outside of the channel region, the channel pad covering a top surface of the channel region.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-sun Youm, Sang-yong Park, Jin-taek Park, Yong-top Kim
  • Patent number: 8654579
    Abstract: A non-volatile memory device includes a plurality of memory cells stacked along a channel protruded from a substrate, a first select transistor connected to one end of the plurality of memory cells, a first interlayer dielectric layer for being coupled between a source line and the first select transistor, and a second interlayer dielectric layer disposed between the first select transistor and the one end of the plurality of memory cells, and configured to include a first recess region.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Beom Yong Kim, Kwon Hong, Kee Jeung Lee, Ki Hong Lee
  • Patent number: 8653577
    Abstract: A nonvolatile semiconductor memory device includes: a stacked body in which insulating films and electrode films are alternately stacked; selection gate electrodes provided on the stacked body; bit lines provided on the selection gate electrodes; semiconductor pillars; connective members separated from one another; and a charge storage layer provided between the electrode film and the semiconductor pillar. One of the connective members is connected between a lower part of one of the semiconductor pillars and a lower part of another of the semiconductor pillars. The one of the semiconductor pillars passes through one of the selection gate electrodes and is connected to one of the bit lines, and the another of the semiconductor pillars passes through another of the selection gate electrodes and is connected to another of the bit lines.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Masaru Kito, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh
  • Patent number: 8653518
    Abstract: A semiconductor device has a floating gate structure in which charge storage layers are stacked on a SiO2 layer formed on a substrate made of n-type Si. The charge storage layer has quantum dots made of undoped Si and an oxide layer that covers the quantum dots. The charge storage layer has quantum dots made of n+-Si and an oxide layer that covers the quantum dots. Electrons originally existing in the quantum dots migrate between the quantum dots and the quantum dots via tunnel junction and are distributed in the quantum dots and/or the quantum dots according to the voltage applied to a gate electrode via pads. The distribution is detected in the form of a current (ISD).
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: February 18, 2014
    Assignee: Hiroshima University
    Inventors: Katsunori Makihara, Seiichi Miyazaki, Seiichiro Higashi, Hideki Murakami
  • Patent number: 8648404
    Abstract: A three-dimensional semiconductor device includes a semiconductor substrate, a plurality of conductive layers and insulating layers, and a plurality of contacts. The plurality of conductive layers and insulating layers are stacked alternately above the semiconductor substrate. The plurality of contacts extend in a stacking direction of the plurality of conductive layers and insulating layers. The plurality of conductive layers form a stepped portion having positions of ends of the plurality of conductive layers gradually shifted from an upper layer to a lower layer. The plurality of contacts are connected respectively to each of steps of the stepped portion. The stepped portion is formed such that, at least from an uppermost conductive layer to a certain conductive layer, the more upwardly the conductive layer is located, the broader a width of the step is.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nikka Ko, Katsunori Yahashi
  • Patent number: 8648408
    Abstract: A semiconductor device includes a substrate, a gate structure disposed on the substrate and which includes a gate insulating layer and a gate electrode layer, a first nitride layer disposed on the substrate and the gate structure and which includes silicon, and a second nitride layer that is disposed on the first nitride layer and has an atomic percentage of silicon less than that of the first nitride layer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Kuk Jeong, Sang-Wook Park, Min-Hee Choi
  • Patent number: 8643077
    Abstract: A non-volatile memory device may include a semiconductor substrate and an isolation layer on the semiconductor substrate wherein the isolation layer defines an active region of the semiconductor substrate. A tunnel insulation layer may be provided on the active region of the semiconductor substrate, and a charge storage pattern may be provided on the tunnel insulation layer. An interface layer pattern may be provided on the charge storage pattern, and a blocking insulation pattern may be provided on the interface layer pattern. Moreover, the block insulation pattern may include a high-k dielectric material, and the interface layer pattern and the blocking insulation pattern may include different materials. A control gate electrode may be provided on the blocking insulating layer so that the blocking insulation pattern is between the interface layer pattern and the control gate electrode. Related methods are also discussed.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Sung-Il Chang, Chang-Seok Kang, Jung-Dal Choi
  • Patent number: 8643079
    Abstract: Nanocrystal structures formed using atomic layer deposition (ALD) processes are useful in the formation of integrated circuits such as memory devices. Rather than continuing the ALD process until a continuous layer is formed, the ALD process is halted prematurely to leave a discontinuous formation of nanocrystals which are then capped by a different material, thus forming a layer with a discontinuous portion and a bulk portion. Such nanocrystals can serve as charge-storage sites within the bulk portion, and the resulting structure can serve as a floating gate of a floating-gate memory cell. A floating gate may contain one or more layers of such nanocrystal structures.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Prashant Majhi, Kyu S. Min, Wilman Tsai
  • Patent number: 8643082
    Abstract: Methods and devices are disclosed, such as those involving memory cell devices with improved charge retention characteristics. In one or more embodiments, a memory cell is provided having an active area defined by sidewalls of neighboring trenches. A layer of dielectric material is blanket deposited over the memory cell, and etched to form spacers on sidewalls of the active area. Dielectric material is formed over the active area, a charge trapping structure is formed over the dielectric material over the active area, and a control gate is formed over the charge trapping structure. In some embodiments, the charge trapping structure includes nanodots. In some embodiments, the width of the spacers is between about 130% and about 170% of the thickness of the dielectric material separating the charge trapping material and an upper surface of the active area.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ron Weimer, Kyu Min, Tom Graettinger, Nirmal Ramaswamy
  • Publication number: 20140029352
    Abstract: An embodiment of an apparatus includes a substrate, a body semiconductor, a vertical memory access line stack over the body semiconductor, and a body connection to the body semiconductor.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventor: Toru Tanzawa
  • Patent number: 8637916
    Abstract: A semiconductor device with mini silicon-oxide-nitride-oxide-silicon (mini-SONOS) cell is disclosed. The semiconductor device includes: a semiconductor substrate; a shallow trench isolation (STI) embedded in the semiconductor substrate; a logic device partially overlapping the STI; and a SONOS cell formed in the overlapped region of the logic device and the STI.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: January 28, 2014
    Assignee: United Microelectronics Corp.
    Inventor: Ya Ya Sun
  • Patent number: 8637921
    Abstract: A method for forming a tunneling layer of a nonvolatile trapped-charge memory device and the article made thereby. The method includes multiple oxidation and nitridation operations to provide a dielectric constant higher than that of a pure silicon dioxide tunneling layer but with a fewer hydrogen and nitrogen traps than a tunneling layer having nitrogen at the substrate interface. The method provides for an improved memory window in a SONOS-type device. In one embodiment, the method includes an oxidation, a nitridation, a reoxidation and a renitridation. In one implementation, the first oxidation is performed with O2 and the reoxidation is performed with NO.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 28, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick B. Jenne
  • Patent number: 8637917
    Abstract: An insulating pattern is disposed on a surface of a semiconductor substrate and includes a silicon oxynitride film. A conductive pattern is disposed on the insulating pattern. A data storage pattern and a vertical channel pattern are disposed within a channel hole formed to vertically penetrate the insulating pattern and the conductive pattern. The data storage pattern and the vertical channel pattern are conformally stacked along sidewalls of the insulating pattern and the conductive pattern. A concave portion is formed in the semiconductor substrate adjacent to the insulating pattern. The concave portion is recessed relative to a bottom surface of the insulating pattern.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Yul Lee, Han-Mei Choi, Dong-Chul Yoo, Young-Jong Je, Ki-Hyun Hwang
  • Patent number: 8633104
    Abstract: According to example embodiments, a methods includes forming a peripheral structure including peripheral circuits on a peripheral circuits region of a substrate, recessing a cell array region of the substrate to form a concave region having a bottom surface lower than a top surface of the peripheral structure, forming a stacked layer structure conformally covering the concave region, the stacked layer structure including a plurality of layers sequentially stacked and having a lowest top surface in the cell array region and a highest top surface in the peripheral circuits region, forming a planarization stop layer that conformally covers the stacked layer structure, and planarizing the stacked layer structure using the planarization stop layer in the cell array region as a planarization end point to expose top surfaces of the thin layers between the cell array region and the peripheral circuits region simultaneously with a top surface of the peripheral structure.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myungjung Pyo, Hyo-Jung Kim, JongHeun Lim, Kyunghyun Kim, Byoungmoon Yoon, JaHyung Han
  • Patent number: 8633530
    Abstract: In a power feeding region of a memory cell (MC) in which a sidewall-shaped memory gate electrode (MG) of a memory nMIS (Qnm) is provided by self alignment on a side surface of a selection gate electrode (CG) of a selection nMIS (Qnc) via an insulating film, a plug (PM) which supplies a voltage to the memory gate electrode (MG) is embedded in a contact hole (CM) formed in an interlayer insulating film (9) formed on the memory gate electrode (MG) and is electrically connected to the memory gate electrode (MG). Since a cap insulating film (CAP) is formed on an upper surface of the selection gate electrode (CG), the electrical conduction between the plug (PM) and the selection gate electrode (CG) can be prevented.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: January 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kota Funayama, Hiraku Chakihara, Yasushi Ishii
  • Patent number: 8633536
    Abstract: A method of fabricating a semiconductor device having a different gate structure in each of a plurality of device regions is described. The method may include a replacement gate process. The method includes forming a hard mask layer on oxide layers formed on one or more regions of the substrate. A high-k gate dielectric layer is formed on each of the first, second and third device regions. The high-k gate dielectric layer may be formed directly on the hard mask layer in a first and second device regions and directly on an interfacial layer formed in a third device region. A semiconductor device including a plurality of devices (e.g., transistors) having different gate dielectrics formed on the same substrate is also described.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Da-Yuan Lee, Kuang-Yuan Hsu
  • Patent number: 8633537
    Abstract: A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: January 21, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Patent number: 8629025
    Abstract: A method for fabricating a semiconductor device is described. A stacked gate dielectric is formed over a substrate, including a first dielectric layer, a second dielectric layer and a third dielectric layer from bottom to top. A conductive layer is formed on the stacked gate dielectric and then patterned to form a gate conductor. The exposed portion of the third and the second dielectric layers are removed with a selective wet cleaning step. S/D extension regions are formed in the substrate with the gate conductor as a mask. A first spacer is formed on the sidewall of the gate conductor and a portion of the first dielectric layer exposed by the first spacer is removed. S/D regions are formed in the substrate at both sides of the first spacer. A metal silicide layer is formed on the S/D regions.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: January 14, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ko-Chi Chen, Ping-Chia Shih, Chih-Ming Wang, Chi-Cheng Huang, Hsiang-Chen Lee
  • Patent number: 8624316
    Abstract: According to one embodiment, a semiconductor device, including a substrate, a stacked layer body provided above the substrate, the stacked layer body alternately stacking an insulator and an electrode film one on another, silicon pillars contained with fluorine, the silicon pillar penetrating through and provided in the stacked layer body, a tunnel insulator provided on a surface of the silicon pillar facing to the stacked layer body, a charge storage layer provided on a surface of the tunnel insulator facing to the stacked layer body, a block insulator provided on a surface of the charge storage layer facing to the stacked layer body, the block insulator being in contact with the electrode film, and an embedded portion provided in the silicon pillars.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Mizushima, Yoshiaki Fukuzumi, Shinji Mori
  • Publication number: 20140001534
    Abstract: A method and apparatus for continuously rounded charge trapping layer formation in a flash memory device. The memory device includes a semiconductor layer, including a source/drain region. An isolation region is disposed adjacent to the source/drain region. A first insulator is disposed above the source/drain region. A charge trapping layer is disposed within the first insulator, wherein the charge trapping layer comprises a bulk portion and a first tip and a second tip on either side of said bulk portion, wherein said charge trapping layer extends beyond the width of the source/drain region. A second insulator is disposed above the charge trapping layer. A polysilicon gate structure is disposed above the second insulator, wherein a width of said control gate is wider than the width of said source/drain region.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Inventors: Shenqing FANG, Tung-Sheng CHEN, Tim THURGATE, Di LI
  • Patent number: 8614477
    Abstract: In a nonvolatile semiconductor memory device provided with memory cell transistors arranged in a direction and a select transistor to select the memory cell transistors, each of the memory cell transistors of a charge trap type are at least composed of a first insulating layer and a first gate electrode respectively, and the select transistor is at least composed of a second insulating layer and a second gate electrode. The first gate electrode is provided with a first silicide layer of a first width formed on the first insulating layer. The second gate electrode is provided with an impurity-doped silicon layer formed on the second insulating layer and with a second silicide layer of a second width formed on the impurity-doped silicon layer. The second silicide has the same composition as the first silicide. The second width is larger than the first width.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Nobutoshi Aoki
  • Patent number: 8614126
    Abstract: A three dimensional memory device including a substrate and a semiconductor channel. At least one end portion of the semiconductor channel extends substantially perpendicular to a major surface of the substrate. The device also includes at least one charge storage region located adjacent to semiconductor channel and a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The device also includes an etch stop layer located between the substrate and the plurality of control gate electrodes.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 24, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Yao-Sheng Lee, Johann Alsmeier
  • Patent number: 8614124
    Abstract: Scaling a nonvolatile trapped-charge memory device and the article made thereby. In an embodiment, scaling includes multiple oxidation and nitridation operations to provide a tunneling layer with a dielectric constant higher than that of a pure silicon dioxide tunneling layer but with a fewer hydrogen and nitrogen traps than a tunneling layer having nitrogen at the substrate interface. In an embodiment, scaling includes forming a charge trapping layer with a non-homogenous oxynitride stoichiometry. In one embodiment the charge trapping layer includes a silicon-rich, oxygen-rich layer and a silicon-rich, oxygen-lean oxynitride layer on the silicon-rich, oxygen-rich layer. In an embodiment, the method for scaling includes a dilute wet oxidation to density a deposited blocking oxide and to oxidize a portion of the silicon-rich, oxygen-lean oxynitride layer.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 24, 2013
    Assignee: Cypress Semiconductor Corporation
    Inventors: Fredrick B. Jenne, Sagy Charel Levy
  • Publication number: 20130334594
    Abstract: Some embodiments include a memory device and a method of forming the memory device. One such memory device includes a string of stacked memory cells. Each of the memory cells in the string includes a charge storage structure and a recessed control gate. The recessed control gate has a substantially smooth surface separated from the charge storage structure by dielectric material. One such method includes etching heavily boron doped polysilicon selective to oxide to form a recessed control gate having a surface with nubs. A smoothing solution is applied to the surface of the recessed control gate to smoothen the nubs. Additional apparatuses and methods are described.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Inventors: Jerome A. Imonigie, Patrick M. Flynn, Sandra L. Tagg, Prashant Raghu
  • Patent number: 8610199
    Abstract: A device and method employing a polyoxide-based charge trapping component. A charge trapping component is patterned by etching a layered stack that includes a tunneling layer positioned on a substrate, a charge trapping layer positioned on the tunneling layer, and an amorphous silicon layer positioned on the charge trapping layer. An oxidation process grows a gate oxide layer from the substrate and converts the amorphous silicon layer into a polyoxide layer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 17, 2013
    Assignee: Spansion LLC
    Inventor: Masahiko Higashi
  • Patent number: 8604537
    Abstract: There is provided a nonvolatile memory device having a tunnel dielectric layer formed over a substrate, the charge capturing layer formed over the tunnel dielectric layer and including a combination of at least one charge storage layer and at least one charge trap layer, a charge blocking layer formed over the charge capturing layer, and a gate electrode formed over the charge blocking layer.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 10, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki-Hong Lee, Kwon Hong
  • Patent number: 8598649
    Abstract: A nonvolatile semiconductor memory device according to embodiment includes: a semiconductor substrate having an upper portion being partitioned into a plurality of semiconductor portions extending in a first direction; a charge storage film provided on the semiconductor portion; a word-line electrode provided on the semiconductor substrate and extending in a second direction intersecting with the first direction; and a pair of selection gate electrodes provided on both sides of the word-line electrode in the first direction on the semiconductor substrate and extending in the second direction, a shortest distance between a corner portion of each of the semiconductor portions and each of the selection gate electrodes being longer than a shortest distance between the corner portion of the semiconductor portion and the word-line electrode in a cross section parallel to the second direction.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Okamura, Noboru Ooike, Wataru Sakamoto, Takashi Izumida
  • Patent number: 8599616
    Abstract: A three-dimensional (3D) non-volatile memory (NVM) array including spaced-apart horizontally-disposed bitline structures arranged in vertical stacks, each bitline structures including a mono-crystalline silicon beam and a charge storage layer entirely surrounding the beam. Vertically-oriented wordline structures are disposed next to the stacks such that each wordline structure contacts corresponding portions of the charge storage layers. NVM memory cells are formed at each bitline/wordline intersection, with corresponding portions of each bitline structure forming each cell's channel region. The bitline structures are separated by air gaps, and each charge storage layer includes a high-quality thermal oxide layer that entirely covers (i.e., is formed on the upper, lower and opposing side surfaces of) each of the mono-crystalline silicon beams.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Publication number: 20130313627
    Abstract: A method of making multi-level contacts. The method includes providing an in-process multilevel device including at least one device region and at least one contact region. The contact region includes a plurality of electrically conductive layers configured in a step pattern. The method also includes forming a conformal etch stop layer over the plurality of electrically conductive layers, forming a first electrically insulating layer over the etch stop layer, forming a conformal sacrificial layer over the first electrically insulating layer and forming a second electrically insulating layer over the sacrificial layer. The method also includes etching a plurality of contact openings through the etch stop layer, the first electrically insulating layer, the sacrificial layer and the second electrically insulating layer in the contact region to the plurality of electrically conductive layers.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: SanDisk Technologies, Inc.
    Inventors: Yao-Sheng Lee, Zhen Chen, Syo Fukata
  • Patent number: 8592890
    Abstract: According to one embodiment, a semiconductor memory device includes a stacked body, a contact, a semiconductor member, a charge storage layer, and a penetration member. The stacked body includes an electrode film stacked alternately with an insulating film. A configuration of an end portion of the stacked body is a stairstep configuration having a step provided every electrode film. The contact is connected to the electrode film from above the end portion. The semiconductor member is provided in a portion of the stacked body other than the end portion to pierce the stacked body in a stacking direction. The charge storage layer is provided between the electrode film and the semiconductor member. The penetration member pierces the end portion in the stacking direction. The penetration member does not include the same kind of material as the charge storage layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobutaka Watanabe, Kazuyuki Higashi, Gaku Sudo
  • Patent number: 8592891
    Abstract: A semiconductor device and method of fabricating the same are provided. In one embodiment, the semiconductor device includes a memory transistor with an oxide-nitride-nitride-oxide (ONNO) stack disposed above a channel region. The ONNO stack comprises a tunnel dielectric layer disposed above the channel region, a multi-layer charge-trapping region disposed above the tunnel dielectric layer, and a blocking dielectric layer disposed above the multi-layer charge-trapping region. The multi-layer charge-trapping region includes a substantially trap-free layer comprising an oxygen-rich nitride and a trap-dense layer disposed above the trap-free layer. The semiconductor device further includes a strain inducing structure including a strain inducing layer disposed proximal to the ONNO stack to increase charge retention of the multi-layer charge-trapping region. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: November 26, 2013
    Assignee: Cypress Semiconductor Corp.
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar, Jeong Byun
  • Patent number: 8592892
    Abstract: A nonvolatile semiconductor memory device includes: a memory element, the memory element including: a semiconductor substrate; a first insulating film formed on a region in the semiconductor substrate located between a source region and a drain region, and having a stack structure formed with a first insulating layer, a second insulating layer, and a third insulating layer in this order, the first insulating layer including an electron trapping site, the second insulating layer not including the electron trapping site, and the third insulating layer including the electron trapping site, and the electron trapping site being located in a position lower than conduction band minimum of the first through third insulating layers while being located in a position higher than conduction band minimum of a material forming the semiconductor substrate; a charge storage film formed on the first insulating film; a second insulating film formed on the charge storage film; and a control gate electrode formed on the second i
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Mitani, Masahiro Koike, Yasushi Nakasaki, Daisuke Matsushita
  • Publication number: 20130306975
    Abstract: Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Sagy LEVY, Fredrick JENNE, Krishnaswamy RAMKUMAR
  • Publication number: 20130307052
    Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Fredrick JENNE, Sagy LEVY, Krishnaswamy RAMKUMAR
  • Publication number: 20130307053
    Abstract: A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Igor POLISHCHUK, Sagy LEVY, Krishnaswamy RAMKUMAR
  • Patent number: 8587050
    Abstract: In one embodiment, there is provided a semiconductor memory that includes: a semiconductor substrate having a channel region; a first tunnel insulating film on the channel region; a first fine particle layer on the first tunnel insulating film, the first fine particle layer including first conductive fine particles; a second tunnel insulating film on the first fine particle layer; a second fine particle layer on the second tunnel insulating film, the second fine particle layer including second conductive fine particles; a third tunnel insulating film on the second fine particle layer; a third fine particle layer on the third tunnel insulating film, the third fine particle layer including third conductive fine particles. A mean particle diameter of the second conductive fine particles is larger than that of the first conductive fine particles and that of the third conductive fine particles.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryuji Ohba
  • Patent number: 8581321
    Abstract: A nonvolatile memory device and a method of forming the same, the device including a semiconductor substrate; a plurality of gate patterns stacked on the semiconductor substrate; inter-gate dielectric patterns between the gate patterns; active pillars sequentially penetrating the gate patterns and the inter-gate dielectric patterns to contact the semiconductor substrate; and a gate insulating layer between the active pillars and the gate patterns, wherein corners of the gate patterns adjacent to the active pillars are rounded.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoungkeun Son, Changhyun Lee, Jaegoo Lee, Kwang Soo Seol, Byungkwan You
  • Patent number: 8581328
    Abstract: In a semiconductor memory device having split-gate MONOS memory cells, disturb resistance during writing by a SSI method is improved. In addition, with an improvement in the disturb resistance of a non-selected memory cell, a reduction in the area occupied by a memory module can be achieved. Over a side surface of a memory gate electrode, a first insulating film is formed between a charge storage film and a second insulating film so that the total thickness of the first and second insulating films over the side surface of the memory gate electrode is larger than the thickness of the second insulating film under the memory gate electrode.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yutaka Okuyama
  • Patent number: 8581329
    Abstract: According to one embodiment, a semiconductor device includes a substrate, a first stacked body, a memory film, a first channel body, a second stacked body, a gate insulating film and a second channel body. A step part is formed between a side face of the select gate and the second insulating layer. A film thickness of a portion covering the step part of the second channel body is thicker than a film thickness of a portion provided between the second insulating layers of the second channel body.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Megumi Ishiduki, Ryota Katsumata, Tomo Ohsawa, Mitsuru Sato, Masaru Kidoh, Hiroyasu Tanaka
  • Publication number: 20130292756
    Abstract: An approach for utilizing electrical capacitance between a plurality of contacts and sidewalls to provide voltage coupling between a floating gate (FG) and a control gate (CG) is disclosed. Embodiments include providing an FG and a CG laterally separated from each other; coupling a plurality of parallel polysilicon lines to the FG; providing a plurality of contacts between the plurality of the parallel polysilicon lines and coupling the contacts to the CG; and forming an electrical capacitance between the plurality of contacts and sidewalls of the plurality of parallel polysilicon lines to provide voltage coupling between the CG and the FG.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Yan Zhe Tang, Elgin Quek
  • Patent number: 8575681
    Abstract: A semiconductor memory device includes a substrate, a conductive layer provided on a major surface of the substrate, a stacked body, a memory film, and a channel body. The stacked body includes multiple insulating layers alternately stacked with multiple electrode layers on the conductive layer. The memory film includes a charge storage film provided on side walls of holes made to pierce the stacked body. The channel body includes a pair of columnar portions and a linking portion. The pair of columnar portions is provided on an inner side of the memory film inside the holes. The linking portion is provided inside the conductive layer to link lower ends of the pair of columnar portions. The electrode layers are tilted with respect to the major surface of the substrate. The columnar portions of the channel body and the memory film pierce the tilted portion of the electrode layers.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toru Matsuda, Tomoya Osaki, Masaru Kito
  • Patent number: 8569824
    Abstract: The semiconductor device includes: a plurality of bit lines formed in stripes in a semiconductor substrate of a first conductivity type, each of the bit lines being a diffusion layer of an impurity of a second conductivity type; a plurality of gate insulation films formed on regions of the semiconductor substrate between the bit lines; a plurality of word lines formed on the semiconductor substrate via the gate insulating films, the word lines extending in a direction intersecting with the bit lines; and a plurality of bit line isolation diffusion layers formed in regions of the semiconductor substrate between the word lines, each of the bit line isolation diffusion layers being a diffusion layer of an impurity of the first conductivity type. The bit line isolation diffusion layer includes a diffusion suppressor for suppressing diffusion of an impurity.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Nobuyoshi Takahashi, Ichirou Matsuo
  • Patent number: 8569826
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structure, a select gate electrode, a semiconductor pillar, a memory layer, and a select gate insulating film. The stacked structure includes a plurality of electrode films stacked in a first direction and an interelectrode insulating film provided between the electrode films. The select gate electrode is stacked with the stacked structure along the first direction and includes a plurality of select gate conductive films stacked in the first direction and an inter-select gate conductive film insulating film provided between the select gate conductive films. The semiconductor pillar pierces the stacked structure and the select gate electrode in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The select gate insulating film is provided between the select gate conductive films and the semiconductor pillar.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Yoshiaki Fukuzumi