Metal-insulator-semiconductor (e.g., Mos Capacitor) (epo) Patents (Class 257/E29.345)
  • Publication number: 20120293202
    Abstract: An object is to provide a programmable logic device which can hold configuration data even when a power supply potential is not supplied, has short start-up time of a logic block after the power is supplied, and can operate with low power. A transistor in a memory portion of a programmable switch includes a material which allows a sufficient reduction in off-state current of the transistor, such as an oxide semiconductor material which is a wide bandgap semiconductor. When the semiconductor material which allows a sufficient reduction in off-state current of the transistor is used, configuration data can be held even when a power supply potential is not supplied.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 22, 2012
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuji NISHIJIMA, Seiichi YONEDA
  • Publication number: 20120286341
    Abstract: A tap cell includes a well region and a well pickup region on the well region; a VDD power rail; and a VSS power rail. A MOS capacitor includes a gate electrode line acting as a first capacitor plate, and the well pickup region acting as a part of a second capacitor plate. A first one of the first and second capacitor plates is coupled to the VDD power rail, and a second one of the first and second capacitor plates is coupled to the VSS power rail.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ji Chen, Li-Chun Tien
  • Publication number: 20120273858
    Abstract: An object is to provide a semiconductor memory device that enables low power consumption of a memory cell of a CAM including a nonvolatile memory device. Another object is to provide a semiconductor memory device without degradation due to repeated data writing. Still another object is to provide a nonvolatile memory device that enables high density of memory cells. A semiconductor memory device is provided which includes a memory circuit including a first transistor including an oxide semiconductor in a semiconductor layer, and a capacitor in which a potential corresponding to written data can be retained by turning off the first transistor; and a reference circuit for referring the written potential. The semiconductor memory device enables a high-speed search function by obtaining the address of data generated by detecting the conducting state of a second transistor in the reference circuit.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 1, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yasuyuki Takahashi
  • Publication number: 20120273861
    Abstract: The present invention relates to a method of depositing a gate dielectric, a method of preparing a MIS capacitor and the MIS capacitor. In the method of depositing the gate dielectric, a semiconductor substrate surface is preprocessed with oxygen plasma and nitrogen-containing plasma to form a nitrogen-containing oxide layer thereon. Then, a high-k gate dielectric layer is grown on the nitrogen-containing oxide layer surface by a plasma-enhanced atomic layer deposition process, and the oxide layer converts during the gate dielectric layer growth process into a buffer layer of a dielectric constant higher than SiO2. Then, a metal electrode is formed on both an upper layer and a lower layer of the thus-formed semiconductor construction, so that a MIS capacitor is prepared.
    Type: Application
    Filed: June 8, 2011
    Publication date: November 1, 2012
    Applicant: SHANGHAN INSTITUTE OF MICROSYSTEM AND IMFORMATION TECHNOLOGY,CHINESE ACADEM
    Inventors: Xinhong Cheng, Dawei Xu, Zhongjian Wang, Chao Xia, Dawei He, Zhaorui Song, Yuehui Yu
  • Patent number: 8294267
    Abstract: The present invention provides novel nanostructure composed of at least one elongated structure element, an elongated structure element of said nanostructure bearing a different zone made of metal, metal alloy, conductive polymer or semiconductor and selectively grown onto at least one of the end portions of the elongated structure element. The present invention further provides a selective method for forming in a liquid medium, such nanostructures.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: October 23, 2012
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Uri Banin, Taleb Mokari
  • Publication number: 20120248518
    Abstract: An isolation structure is described, including a doped semiconductor layer disposed in a trench in a semiconductor substrate and having the same conductivity type as the substrate, gate dielectric between the doped semiconductor layer and the substrate, and a diffusion region in the substrate formed by dopant diffusion through the gate dielectric from the doped semiconductor layer. A device structure is also described, including the isolation structure and a vertical transistor in the substrate beside the isolation structure. The vertical transistor includes a first S/D region beside the diffusion region and a second S/D region over the first S/D region both having a conductivity type different from that of the doped semiconductor layer.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chung-Ren Li, Shing-Hwa Renn, Yu-Teh Chiang
  • Patent number: 8273616
    Abstract: Various embodiments of the invention provide a varactor structure that, depends on configurations, can provide a C-V characteristic based on one or a combination of a reverse bias junction capacitor, a channel capacitor, and an oxide capacitor. The junction capacitor is formed by reverse biasing the P+ source region and the N-well. The channel capacitance is formed between the P+ source region and the N+ drain region, and the oxide capacitor is formed in the gate oxide area. Depending on biasing one or a combination of the gate voltage VG, the source voltage VS, and the drain voltage VD, embodiments can utilize one or a combination of the above capacitors. Other embodiments using the varactors in a Voltage-Controlled Oscillator (VCO) are also disclosed.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: September 25, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Chin-Wei Kuo, Sally Liu
  • Patent number: 8273622
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 25, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8268184
    Abstract: A method for selectively etching a substrate is described. The method includes disposing a substrate comprising a silicon nitride (SiNy) layer overlying silicon in a plasma etching system, and transferring a pattern to the silicon nitride layer using a plasma etch process, wherein the plasma etch process utilizes a process composition having as incipient ingredients a process gas containing C, H and F, and an additive gas including CO2. The method further includes: selecting an amount of the additive gas in the plasma etch process to achieve: (1) a silicon recess formed in the silicon having a depth less than 10 nanometers (nm), and (2) a sidewall profile in the pattern having an angular deviation from 90 degrees less than 2 degrees.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 18, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Akiteru Ko, Christopher Cole
  • Publication number: 20120211812
    Abstract: High-speed high-power semiconductor devices are disclosed. In an exemplary design, a high-speed high-power semiconductor device includes a source, a drain to provide an output signal, and an active gate to receive an input signal. The semiconductor device further includes at least one field gate located between the active gate and the drain, at least one shallow trench isolation (STI) strip formed transverse to the at least one field gate, and at least one drain active strip formed parallel to, and alternating with, the at least one STI strip. The semiconductor device may be modeled by a combination of an active FET and a MOS varactor. The active gate controls the active FET, and the at least one field gate controls the MOS varactor. The semiconductor device has a low on resistance and can handle a high voltage.
    Type: Application
    Filed: May 9, 2011
    Publication date: August 23, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Yang Du, Vladimir Aparin, Robert P. Gilmore
  • Publication number: 20120211814
    Abstract: Disclosed are embodiments of an improved deep trench capacitor structure and memory device that incorporates this deep trench capacitor structure. The deep trench capacitor and memory device embodiments are formed on a semiconductor-on-insulator (SOI) wafer such that the insulator layer remains intact during subsequent deep trench etch processes and, optionally, such that the deep trench of the deep trench capacitor has different shapes and sizes at different depths. By forming the deep trench with different shapes and sizes at different depths the capacitance of the capacitor can be selectively varied and the resistance of the buried conductive strap which connects the capacitor to a transistor in a memory device can be reduced.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 23, 2012
    Applicant: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 8236676
    Abstract: An integrated circuit and method for making an integrated circuit including doping a semiconductor body is disclosed. One embodiment provides defect-correlated donors and/or acceptors. The defects required for this are produced by electron irradiation of the semiconductor body. Form defect-correlated donors and/or acceptors with elements or element compounds are introduced into the semiconductor body.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: August 7, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Hans-Joachim Schulze, Franz-Josef Niedernostheide
  • Publication number: 20120193632
    Abstract: Provided is a silicon structure with a three-dimensionally complex shape. Further provided is a simple and easy method for manufacturing the silicon structure with the use of a phenomenon in which an ordered pattern is formed spontaneously to form a nano-structure. Plasma treatment under hydrogen atmosphere is performed on an amorphous silicon layer and the following processes are performed at the same time: a reaction process for growing microcrystalline silicon on a surface of the silicon layer and a reaction process for etching the amorphous silicon layer which is exposed, so that a nano-structure including an upper structure in a microcrystalline state and a lower structure in an amorphous state, over the silicon layer is formed; accordingly, a silicon structure with a three-dimensionally complex shape can be provided.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 2, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Satoshi TORIUMI
  • Publication number: 20120193758
    Abstract: A semiconductor apparatus includes a first capacitor formed in a normal cell area and including a lower electrode coupled to one end of a cell transistor, and a second capacitor formed in a dummy cell area and including a lower electrode coupled to a power terminal.
    Type: Application
    Filed: August 27, 2011
    Publication date: August 2, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Mi Hyeon Jo, Woong Ju JANG, Ki Myung KYUNG
  • Patent number: 8232189
    Abstract: The present invention provides a manufacturing method of a dielectric film which reduces a leak current value while suppressing the reduction of a relative permittivity, suppresses the reduction of a deposition rate caused by the reduction of a sputtering rate, and also provides excellent planar uniformity. A dielectric film manufacturing method according to an embodiment of the present invention is forms a dielectric film of a metal oxide mainly containing Al, Si, and O on a substrate, and comprises steps of forming the metal oxide having an amorphous structure in which a molar fraction between an Al element and a Si element, Si/(Si+Al), is 0<Si/(Si+Al)?0.1, and subjecting the metal oxide having the amorphous structure to annealing treatment at a temperature of 1000° C. or more to form the metal oxide including a crystalline phase.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: July 31, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Junko Ono, Naomu Kitano, Takashi Nakagawa
  • Patent number: 8227846
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Andrew E. Carlson
  • Patent number: 8217475
    Abstract: Described herein is the sense element assembly for a capacitive pressure sensor and method for creating same that has increased sensitivity despite the parasitic capacitance that is created. The capacitive sensor element assembly, comprises a first semiconductive layer, and a first conductive layer, a first dielectric layer into which a cavity has been formed, the dielectric layer lying between the first semiconductive layer and the first conductive layer, wherein an electrical connection is made to the second conductive layer. A preferred method for fabricating a capacitive sensor assembly of the present invention comprises the steps of forming a dielectric layer on top of a conductive handle wafer; creating at least one cavity in the dielectric layer, bonding a thin semiconductive layer to the dielectric layer and connecting an operational amplifier to the input of the capacitive sensor assembly to overcome the parasitic capacitance formed during fabrication.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: July 10, 2012
    Assignee: Custom Sensors & Technologies, Inc.
    Inventors: Peter Seesink, Omar Abed
  • Publication number: 20120161220
    Abstract: The degree of integration of a semiconductor device is enhanced and the storage capacity per unit area is increased. The semiconductor device includes a first transistor provided in a semiconductor substrate and a second transistor provided over the first transistor. In addition, an upper portion of a semiconductor layer of the second transistor is in contact with a wiring, and a lower portion thereof is in contact with a gate electrode of the first transistor. With such a structure, the wiring and the gate electrode of the first transistor can serve as a source electrode and a drain electrode of the second transistor, respectively. Accordingly, the area occupied by the semiconductor device can be reduced.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei Yamazaki
  • Patent number: 8193568
    Abstract: Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: June 5, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Publication number: 20120132971
    Abstract: A semiconductor device includes a semiconductor substrate having a first gate groove having first and second side walls facing to each other. A first gate insulating film covers the first and second side walls. A first gate electrode is disposed on the first gate insulating film and in a lower portion of the first gate groove. A first burying insulating film buries the first gate groove and covers the first gate electrode. A first diffusion region is adjacent to a first upper portion of the first gate insulating film. The first upper portion is positioned on an upper portion of the first side wall of the first gate groove. A second diffusion region is in contact with an upper portion of the second side wall of the first gate groove.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Applicant: C/O ELPIDA MEMORY, INC.
    Inventor: Noriaki MIKASA
  • Publication number: 20120112282
    Abstract: Germanium field effect transistors and methods of fabricating them are described. In one embodiment, the method includes forming a germanium oxide layer over a substrate and forming a metal oxide layer over the germanium oxide layer. The germanium oxide layer and the metal oxide layer are converted into a first dielectric layer. A first electrode layer is deposited over the first dielectric layer.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jing-Cheng Lin
  • Publication number: 20120087191
    Abstract: Some embodiments relate to a differential memory cell. The memory cell includes a first transistor having a source, a drain, a gate, and a body. A first capacitor has a first plate and a second plate, wherein the first plate is coupled to the gate of the first transistor and extends over the body region. The memory cell also includes a second transistor having a source, a drain, a gate, and a body, wherein the source and body of the second transistor is coupled to the second plate of the first capacitor. A second capacitor has a third plate and a fourth plate, wherein the third plate is coupled to the gate of the second transistor and the fourth plate is coupled to the source and the body of the first transistor.
    Type: Application
    Filed: September 14, 2011
    Publication date: April 12, 2012
    Applicant: Infineon Technologies AG
    Inventor: Dzianis Lukashevich
  • Publication number: 20120068238
    Abstract: Transmission lines employing transmission line units or elements within integrated circuits (ICs) are well-known. Typically, different heights for these transmission line units can vary the characteristics of the cell (and transmission line), and there is typically a tradeoff between impedance and space (layout) specifications. Here, a transmission line is provided, which is generally comprised of elements of the same general width, but having differing or tapered heights that allow for impedance adjustments for high frequency applications (i.e., 160 GHz). For example, a transmission line that is coupled to a balun, with the transmission line units decreasing in height near the balun's center tap to adjust the impedance of the transmission line for the balun, is shown.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Brian P. Ginsburg, Vijay B. Rentala, Srinath M. Ramaswamy, Baher S. Haroun, Eunyoung Seok
  • Publication number: 20120061739
    Abstract: Provided are a method for fabricating a capacitor and a semiconductor device using the same. The semiconductor device includes a MOS transistor capacitor, first and second plate capacitors, and a metal interconnection. The MOS transistor capacitor is arranged between a power supply and a ground. The first and second plate capacitors are arranged between the power supply and the ground. The metal interconnection is configured to connect the first and second plate capacitors.
    Type: Application
    Filed: February 24, 2011
    Publication date: March 15, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Hyun Seok KIM, Jun Ho LEE, Boo Ho JUNG, Sun Ki CHO, Yang Hee KIM, Young Won KIM
  • Publication number: 20120056256
    Abstract: A semiconductor device includes a first semiconductor pillar, a second semiconductor pillar, and a first wiring. The first semiconductor pillar includes a first diffusion region. The second semiconductor pillar is adjacent to the first semiconductor pillar. The first wiring is positioned between the first and second semiconductor pillars. The first wiring has a first metal surface. The first metal surface has an ohmic contact with the first diffusion region.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 8, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Noriaki MIKASA
  • Patent number: 8129772
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Publication number: 20120049261
    Abstract: In a semiconductor device of the invention, a semiconductor pillar configuring a vertical MOS transistor has an upper pillar having a first width and a lower pillar having a second width. A side surface of the upper pillar is covered with a second insulation film and a third insulation film and the lower pillar is covered with a first insulation film, which is a gate insulation film, from a side surface thereof to the second insulation film. A gate electrode is insulated from an upper conductive layer by the second and third insulation films.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 1, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Hiroyuki FUJIMOTO
  • Publication number: 20120049263
    Abstract: A semiconductor device includes a semiconductor substrate having a conductive type, a source metal layer, a gate metal layer, at least one transistor device, a heavily doped region having the conductive type, a capacitor dielectric layer, a conductive layer. The source metal layer and the gate metal layer are disposed on the semiconductor substrate. The transistor device is disposed in the semiconductor substrate under the source metal layer. The heavily doped region, the capacitor dielectric layer and the conductive layer constitute a capacitor structure, disposed under the gate metal layer, and the capacitor structure is electrically connected between a source and a drain of the transistor device.
    Type: Application
    Filed: January 19, 2011
    Publication date: March 1, 2012
    Inventor: Wei-Chieh Lin
  • Publication number: 20120043595
    Abstract: A capacitor device includes a substrate including a first well having a first conductivity type and a first voltage applied thereto and a second well having a second conductivity type and a second voltage applied thereto; and a gate electrode disposed on an upper portion of the first well or an upper portion of the second well in such a way that the gate electrode is insulated from the first well or the second well, wherein capacitances of the capacitor device include a first capacitance between the first well and the second well and a second capacitance between the first well or the second well and the gate electrode.
    Type: Application
    Filed: June 9, 2011
    Publication date: February 23, 2012
    Inventors: Dong-Ryul CHANG, Hwa-Sook Shin
  • Publication number: 20120044028
    Abstract: Semiconductor dies and methods are described, such as those including a first capacitive pathway having a first effective series resistance (ESR) and a second capacitive pathway having an adjustable ESR. One such device provides for optimizing the semiconductor die for different operating conditions such as operating frequency. As a result, semiconductor dies can be manufactured in a single configuration for several different operating frequencies, and each die can be tuned to reduce (e.g. minimize) supply noise, such as by varying the ESR or the capacitance of at least one of the pathways.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Timothy Hollis, Steven Bodily
  • Publication number: 20120037971
    Abstract: A nonvolatile memory device has a first active region and a second active region defined in a substrate by a device isolation layer, a Metal Oxide Silicon Field-Effect Transistor (MOSFET) disposed on the first active region and including a first electrode pattern, and a Metal Oxide Silicon (MOS) capacitor disposed on the second active region and including a second electrode pattern, and in which the first electrode pattern is narrower in the widthwise direction of the channel of the MOSFET than the first active region.
    Type: Application
    Filed: July 13, 2011
    Publication date: February 16, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Oh-Kyum Kwon, Tae-Jung Lee, Kyoung-Eun Uhn, Byung-Sun Kim
  • Publication number: 20120039131
    Abstract: A low-voltage EEPROM array, which has a plurality of parallel bit lines, parallel word lines and parallel common source lines is disclosed. The bit lines include a first bit line. The word lines include a first word line and a second word line. The common source lines include a first common source line and a second common source line. The low-voltage EEPROM array also has a plurality of sub-memory arrays. Each sub-memory array includes a first memory cell and a second memory cell. The first memory cell connects with the first bit line, the first common source line and the first word line. The second memory cell connects with the first bit line, the second common source line and the second word line. The first and second memory cells are symmetrical and arranged between the first and second common source lines.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: YIELD MICROELECTRONICS CORP.
    Inventors: HSIN-CHANG LIN, CHIA-HAO TAI, YANG-SEN YEN, MING-TSANG YANG, YA-TING FAN
  • Publication number: 20120032244
    Abstract: A top-side cooled compact semiconductor package with integrated bypass capacitor is disclosed. The top-side cooled compact semiconductor package includes a circuit substrate with terminal leads, numerous semiconductor dies bonded atop the circuit substrate, numerous elevation-adaptive interconnection plates for bonding and interconnecting top contact areas of the semiconductor dies with the circuit substrate, a first member of the elevation-adaptive interconnection plates has a first flat-top area and a second member of the elevation-adaptive interconnection plates has a second flat-top area in level with the first flat-top area, a bypass capacitor, having two capacitor terminals located at its ends, stacked atop the two interconnection plate members while being bonded thereto via the first flat-top area and the second flat-top area for a reduced interconnection parasitic impedance.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Inventors: François Hébert, Kai Liu
  • Publication number: 20120032279
    Abstract: A barrier layer, hafnium oxide layer, between a III-V semiconductor layer and an lanthanum oxide layer is used to prevent interaction between the III-V semiconductor layer and the lanthanum oxide layer. Meanwhile, the high dielectric constant of the lanthanum oxide can be used to increase the capacitance of the semiconductor device.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 9, 2012
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi CHANG, Yueh-Chin LIN
  • Publication number: 20120032243
    Abstract: According to one embodiment, a semiconductor device includes at least one semiconductor region provided in a semiconductor substrate, and a capacitor group including a plurality of capacitors provided in the semiconductor region, each capacitor including a capacitor insulating film provided on the semiconductor region, a capacitor electrode provided on the capacitor insulating film, and at least one diffusion layer provided in the semiconductor region adjacent to the capacitor electrode.
    Type: Application
    Filed: March 21, 2011
    Publication date: February 9, 2012
    Inventors: Hiroyuki KUTSUKAKE, Yoshiko Kato, Yoshihisa Watanabe, Koichi Fukuda, Kazunori Masuda
  • Patent number: 8110890
    Abstract: A semiconductor device including reentrant isolation structures and a method for making such a device. A preferred embodiment comprises a substrate of semiconductor material forming at least one isolation structure having a reentrant profile and isolating one or more adjacent operational components. The reentrant profile of the at least one isolation structure is formed of substrate material and is created by ion implantation, preferably using oxygen ions applied at a number of different angles and energy levels. In another embodiment the present invention is a method of forming an isolation structure for a semiconductor device performing at least one oxygen ion implantation.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: February 7, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Chu-Yun Fu, Ding-Yuan Chen
  • Publication number: 20120026793
    Abstract: One embodiment relates to a memory device. The memory device includes a capacitor having a first capacitor plate and a second capacitor plate, wherein the first and second capacitor plates are separated by an insulating layer and are formed over a first portion of a semiconductor substrate. The memory device also includes a transistor having a source region, a drain region, and a gate region, where the gate region is coupled to the second capacitor plate. The transistor is formed over a second portion of the semiconductor substrate. A well region is disposed in the first and second portions of the semiconductor substrate and has a doping-type that is opposite a doping-type of the semiconductor substrate. Other embodiments are also disclosed.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Applicant: Infineon Technologies AG
    Inventor: Dzianis Lukashevich
  • Publication number: 20120025282
    Abstract: In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8105912
    Abstract: A method for increasing a voltage tolerance of a MOS device having a first capacitance value associated therewith is provided. The method includes the steps of: connecting at least a first capacitor in series with the MOS device, the first capacitor having a first capacitance value associated therewith, the first capacitor having a first terminal coupled to a gate of the MOS device and a second terminal adapted to receive a first signal; and adjusting a ratio of the first capacitance value and a second capacitance value associated with the MOS device such that a second signal present at the gate of the MOS device will be an attenuated version of the first signal. An amount of attenuation of the first signal is a function of the ratio of the first and second capacitance values.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 31, 2012
    Assignee: Agere Systems Inc.
    Inventor: Edward B. Harris
  • Patent number: 8089123
    Abstract: A method for forming an opening within a semiconductor material comprises forming a neck portion, a rounded portion below the neck portion and, in some embodiments, a protruding portion below the rounded portion. This opening may be filled with a conductor, a dielectric, or both. Embodiments to form a transistor gate, shallow trench isolation, and an isolation material separating a transistor source and drain are disclosed. Device structures formed by the method are also described.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: January 3, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Ananthan Venkatesan
  • Publication number: 20110316060
    Abstract: An electronic device can include a nonvolatile memory cell that includes a capacitor, a tunnel structure, a state transistor, and an access transistor. In an embodiment, the capacitor and tunnel structure can include upper electrodes, wherein the upper electrode of the capacitor has a first conductivity type, and the upper electrode of the tunnel structure includes at least a portion that has a second conductivity type opposite the first conductivity type. In another embodiment, a process of forming the nonvolatile memory is performed using a single poly process. In a further embodiment, charge carriers can tunnel through a gate dielectric layer of the state transistor during programming and tunnel through a tunnel dielectric of the tunnel transistor during erasing.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Inventors: Thierry Coffi Herve Yao, Gregory James Scott
  • Publication number: 20110316062
    Abstract: In terms of achieving a reduction in the cost of an antenna switch, there is provided a technology capable of minimizing harmonic distortion generated in the antenna switch even when the antenna switch is particularly formed of field effect transistors formed over a silicon substrate. Between the source region and the drain region of each of a plurality of MISFETs coupled in series, a distortion compensating capacitance circuit is coupled which has a voltage dependency such that, in either of the cases where a positive voltage is applied to the drain region based on the potential of the source region and where a negative voltage is applied to the drain region based on the potential of the source region, the capacitance decreases to a value smaller than that in a state where the potential of the source region and the potential of the drain region are at the same level.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 29, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Masao KONDO, Masatoshi MORIKAWA, Satoshi GOTO
  • Publication number: 20110309475
    Abstract: A three-dimensional (3D) semiconductor device including a plurality of stacked layers and a through-silicon via (TSV) electrically connecting the plurality of layers, in which in signal transmission among the plurality of layers, the TSV transmits a signal that swings in a range from an offset voltage that is higher than a ground voltage to a power voltage, thereby minimizing an influence of a metal-oxide-semiconductor (MOS) capacitance of TSV.
    Type: Application
    Filed: April 5, 2011
    Publication date: December 22, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jong-joo LEE
  • Publication number: 20110305084
    Abstract: A non-volatile memory device includes; a first well having a first impurity concentration formed in a first region of a semiconductor substrate, a second well having a second impurity concentration different from the first impurity concentration formed in a second region of the semiconductor substrate, an access transistor with floating gate formed on the first region, and a control Metal Oxide Semiconductor (MOS) capacitor with one electrode formed on the second region.
    Type: Application
    Filed: March 17, 2011
    Publication date: December 15, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Myoung-Kyu PARK
  • Patent number: 8076728
    Abstract: A circuit arrangement including a capacitor in an n-type well is disclosed. A specific polarization of the capacitor ensures that a depletion zone arises in the well and the capacitor has a high ESD strength. An optionally present auxiliary doping layer ensures a high area capacitance of the capacitor despite high ESD strength.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: December 13, 2011
    Assignee: Infineon Technologies AG
    Inventors: Kai Esmark, Harald Gossner, Christian Russ, Jens Schneider
  • Patent number: 8076753
    Abstract: In the semiconductor device composing MOS transistor on which impurities are added from the surface of a P-type substrate, the region of immediate below a gate layer is the P-type substrate on which the impurities are not added, and first and second MOS devices, having an N-type diffusion layer are provided on the surface region of the P-type substrate circumscribing the gate layer. The gate layer of the first MOS device, and the N-type diffusion layer of the second MOS device are connected, and the N-type diffusion layer of the first MOS device and the gate layer of the second MOS device are connected, and thereby a first capacitive element is composed.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 13, 2011
    Assignee: Spansion LLC
    Inventor: Koji Shimbayashi
  • Patent number: 8063426
    Abstract: An insulated gate semiconductor device (30) includes a gate (34), a source terminal (36), a drain terminal (38) and a variable input capacitance at the gate. A ratio between the input capacitance (Cfiss) when the device is on and the input capacitance Ciiss when the device is off is less than two and preferably substantially equal to one. This is achieved in one embodiment of the invention by an insulation layer 32 at the gate having an effective thickness dins larger than a minimum thickness.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 22, 2011
    Assignee: North-West University
    Inventors: Barend Visser, Ocker Cornelis De Jager
  • Patent number: 8063425
    Abstract: A semiconductor device capable of reducing a thickness, an electronic product employing the same, and a method of fabricating the same are provided. The method of fabricating a semiconductor device includes preparing a semiconductor substrate having first and second active regions. A first transistor in the first active region includes a first gate pattern and first impurity regions. A second transistor the second active region includes a second gate pattern and second impurity regions. A first conductive pattern is on the first transistor, wherein at least a part of the first conductive pattern is disposed at a same distance from an upper surface of the semiconductor substrate as at least a part of the second gate pattern. The first conductive pattern may be formed on the first transistor while the second transistor is formed.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Yong-Il Kim
  • Patent number: 8053340
    Abstract: A transistor which includes halo regions disposed in a substrate adjacent to opposing sides of the gate. The halo regions have upper and lower regions. The upper region is a crystalline region with excess vacancies and the lower region is an amorphous region. Source/drain diffusion regions are disposed in the halo regions. The source/drain diffusion regions overlap the upper and lower halo regions. This architecture offers the minimal extension resistance as well as minimum lateral diffusion for better CMOS device scaling.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 8, 2011
    Assignees: National University of Singapore, Globalfoundries Singapore Pte. Ltd.
    Inventors: Benjamin Colombeau, Sai Hooi Yeong, Francis Benistant, Bangun Indajang, Lap Chan
  • Publication number: 20110255348
    Abstract: A Non-Volatile Memory (NVM) cell and programming method in which the cell can denote at least two logic levels (e.g., 0 and 1) and includes a read-transistor with a floating gate and a Band-To-Band-Tunneling device (BTBT device) sharing the floating gate with the read transistor. The BTBT device is configured as an injection device for injecting a first charge onto the floating gate when the BTBT device is biased so that it is in accumulation, to set at least one of the logic levels.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 20, 2011
    Applicant: SYNOPSYS, INC.
    Inventor: Andrew E. Horch