With Means For Light Detecting (e.g., Photodetector) (epo) Patents (Class 257/E33.076)
  • Patent number: 9929530
    Abstract: An optical semiconductor device has a semiconductor laser which emits front-end-surface-side emergent light on the front end surface side and emits rear-end-surface-side emergent light on the rear end surface side, and a mount substrate having the semiconductor laser provided on its front surface. The rear-end-surface-side emergent light is emitted while having an emergence optical axis that extends away from the mount substrate with increase in distance from the rear end surface.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: March 27, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yosuke Suzuki, Yuichiro Okunuki, Go Sakaino, Naoki Nakamura, Ryoko Suzuki
  • Patent number: 9800014
    Abstract: A light emission module includes a base, a laser diode driver, a laser diode, a monitor photodiode and a reflecting mirror. The laser diode driver, the laser diode and the monitor photodiode are disposed on the base. The monitor photodiode and the laser diode are located close to a front end of the laser diode driver. A rear side of the laser diode faces the laser diode driver. The reflecting mirror is disposed between the rear side of the laser diode and the monitor photodiode for reflecting a light emitted from the rear side of the laser diode to a light receiving surface of the monitor photodiode.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: October 24, 2017
    Assignee: Global Technology Inc.
    Inventors: Jian-Hong Luo, Chao-Hung Tsai, Qiu-ning Zhao, Hua Liu
  • Patent number: 9721837
    Abstract: A method for wafer level fabricating a plurality of optoelectronic devices, starting with a wafer that includes a plurality of light detector sensor regions, includes attaching each of a plurality of light source dies to one of a plurality of bond pads on a top surface of the wafer that includes the plurality of light detector sensor regions. The method also includes attaching, to the wafer, a preformed opaque structure made off-wafer from an opaque material, wherein the preformed opaque structure includes opaque vertical optical barriers. Additionally, solder balls or other electrical connectors are attached to the bottom of the wafer. The wafer is diced to separate the wafer into a plurality of optoelectronic devices, each of which includes at least one of the light detector sensor regions, at least one of the light source dies and at least two of the solder balls or other electrical connectors.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 1, 2017
    Assignee: INTERSIL AMERICAS LLC
    Inventor: Sri Ganesh A Tharumalingam
  • Patent number: 9341776
    Abstract: An optical interconnection device includes a light-emitting element, a light-receiving element, and an optical waveguide. Both the light-emitting element and the light-receiving element have a layered structure and are formed on a silicon substrate. At least a portion of the light-emitting element is embedded in an insulator. At least a portion of the light-receiving element is embedded in the insulator. The optical waveguide is formed over the insulator, and is optically coupled to the light-emitting element and the light-receiving element by distributed coupling.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 17, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Iizuka, Kazuya Ohira, Haruhiko Yoshida, Mizunori Ezaki, Hideto Furuyama, Kentaro Kobayashi, Hiroshi Uemura
  • Patent number: 9041135
    Abstract: Under one aspect of the present invention, a monolithic sun sensor includes a photosensor; a spacer material disposed over the photosensor; and a patterned mask disposed over the spacer material and defining an aperture over the photosensor. The spacer material has a thickness selected such that the patterned mask casts a shadow onto the photosensor that varies as a function of the monolithic sun sensor's angle relative to the sun. The sun sensor may further include a substrate in which the photosensor is embedded or on which the photosensor is disposed. The spacer material may be transparent, and may include a layer of inorganic oxide, or a plurality of layers of inorganic oxide. The patterned mask may include a conductive material, such as a metal. The aperture may be lithographically defined, and may be square. The sun sensor may further include a transparent overlayer disposed over the patterned mask.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 26, 2015
    Assignee: The Aerospace Corporation
    Inventor: Siegfried W. Janson
  • Patent number: 9035337
    Abstract: An object is to provide a light-emitting module in which a light-emitting element suffering a short-circuit failure does not cause wasteful electric power consumption. Another object is to provide a light-emitting panel in which a light-emitting element suffering a short-circuit failure does not allow the reliability of an adjacent light-emitting element to lower. Focusing on heat generated by a light-emitting element suffering a short-circuit failure, provided is a structure in which electric power is supplied to a light-emitting element through a positive temperature coefficient thermistor (PTC thermistor) thermally coupled with the light-emitting element.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: May 19, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaaki Hiroki, Satoshi Seo, Yasuo Nakamura
  • Patent number: 9012924
    Abstract: Provided is a spectrum detector capable of being miniaturized and which does not require complicated optical axis alignment. The spectrum detector of the present invention comprises: a substrate; a photodetector formed on the substrate and including a semiconductor having a plurality of convex portions; and a wavelength detection circuit for detecting a wavelength of light transmitted through the plurality of convex portions, from light incident on the photodetector. According to the present invention, a small-sized spectrum detector can be provided which can easily detect a peak wavelength distribution included in light of an unknown wavelength, without the use of optical equipment such as a grating or prism, thus dispensing with the need for the optical axis alignment of a complex optical system.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: April 21, 2015
    Assignees: Seoul Viosys Co., Ltd.
    Inventors: Shiro Sakai, Won Chul Seo, Dae Won Kim
  • Patent number: 8981517
    Abstract: A solid-state image pickup element 1 is structured so as to include: a semiconductor layer 2 having a photodiode formed therein, photoelectric conversion being carried out in the photodiode; a first film 21 having negative fixed charges and formed on the semiconductor layer 2 in a region in which at least the photodiode is formed; and a second film 22 having the negative fixed charges, made of a material different from that of the first film 21 having the negative fixed charges, and formed on the first film 21 having the negative fixed charges.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventors: Itaru Oshiyama, Susumu Hiyama
  • Patent number: 8963274
    Abstract: A low noise infrared photo detector with a vertically integrated field effect transistor (FET) structure is formed without thermal diffusion. The FET structure includes a high sensitivity photo detector layer, a charge well layer, a transfer well layer, a charge transfer gate, and a drain electrode. In an embodiment, the photo detector layer and charge well are InGaAs and the other layers are InP layers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Sensors Unlimited, Inc.
    Inventor: Peter Dixon
  • Patent number: 8928029
    Abstract: Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: David Z. Ting, Sarath D. Gunapala, Alexander Soibel, Jean Nguyen, Arezou Khoshakhlagh
  • Patent number: 8928054
    Abstract: A touch substrate includes a base substrate, a sensing element and a switching element. The sensing element is disposed over the base substrate, senses infrared light, and includes a sensing semiconductor pattern. The switching element is electrically connected to the sensing element, includes a material substantially the same as a material of the sensing semiconductor pattern, and includes a switching semiconductor pattern having a thickness different from a thickness of the sensing semiconductor pattern.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sang-Youn Han, Mi-Seon Seo, Sung-Hoon Yang
  • Patent number: 8890271
    Abstract: Various embodiments for etching of silicon nitride (SixNy) lightpipes, waveguides and pillars, fabricating photodiode elements, and integration of the silicon nitride elements with photodiode elements are described. The results show that the quantum efficiency of the photodetectors (PDs) can be increased using vertical silicon nitride vertical waveguides.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 18, 2014
    Assignees: Zena Technologies, Inc., President and Fellows of Harvard College
    Inventors: Turgut Tut, Peter Duane, Young-June Yu, Winnie N. Ye, Munib Wober, Kenneth B. Crozier
  • Patent number: 8829557
    Abstract: Disclosed herein is a semiconductor light emitting device module comprising: a heat transfer member having a cavity; first conductive layer and second conductive layer contacting the heat transfer member via an insulating layer, the first conductive layer and the second conductive layer being electrically separated from each other in accordance with exposure of the insulating layer or exposure of the heat transfer member; and at least one semiconductor light emitting device electrically connected to the first conductive layer and the second conductive layer, the at least one semiconductor light emitting device is thermally contacted an exposed portion of the heat transfer member, wherein the insulating layer has an exposed portion disposed outside the cavity.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 9, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Gun Kyo Lee, Nam Seok Oh, Young Hun Ryu
  • Patent number: 8809877
    Abstract: A semiconductor voltage transformation structure is provided. The semiconductor voltage transformation structure includes: a first electrode layer ; an electricity-to-light conversion layer formed on the first electrode layer; a second electrode layer formed on the electricity-to-light conversion layer; a first isolation layer formed on the second electrode layer; a third electrode layer formed on the first isolation layer; a light-to-electricity conversion layer formed on the third electrode layer; and a fourth electrode layer formed on the light-to-electricity conversion layer, in which the first isolation layer, the second electrode layer and the third electrode layer are transparent to a working light emitted by the electricity-to-light conversion layer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 19, 2014
    Inventor: Lei Guo
  • Patent number: 8785994
    Abstract: An X-ray detector including: a substrate that is divided into a light detection area and a non-detection area and includes a plurality of pixels; a photodiode disposed on the light detection area; a thin film transistor that is disposed on the non-detection area and is electrically connected to a lower portion of the photodiode; a plurality of wires that are electrically connected to the thin film transistor and are positioned on the non-detection area; at least one insulating layer disposed so as to cover at least the thin film transistor and the plurality of wires; a scintillator layer disposed on the at least one insulating layer over an entire surface of the substrate; and a shielding part disposed between the at least one insulating layer and the scintillator layer to shield the non-detection area.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Dong-Hyuk Kim
  • Patent number: 8766272
    Abstract: “An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may include a readout circuit which may include a reset transistor, charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light to the substrate. Light of different wavelengths can be detected using the imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 1, 2014
    Assignee: Zena Technologies, Inc.
    Inventors: Young-June Yu, Munib Wober
  • Patent number: 8749008
    Abstract: A solid-state imaging device in which a pixel circuit formed on the first surface side of a semiconductor substrate is shared by a plurality of light reception regions and second surface side of the semiconductor substrate is the light incident side of the light reception regions. The second surface side regions of the light reception regions are arranged at approximately even intervals and the first surface side regions of the light reception regions e are arranged at uneven intervals. Respective second surface side regions and first surface side regions are joined in the semiconductor substrate so that the light reception regions extend from the second surface side to the first surface side of the semiconductor substrate.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: June 10, 2014
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 8716722
    Abstract: A photosensor chip package structure comprises a substrate, a light-emitting chip and a photosensor chip including an ambient light sensing unit and a proximity sensing unit. The substrate has a first basin, a second basin and a light-guiding channel. The openings of the first and second basins respectively face different directions. One opening of the light-guiding channel and the opening of the first basin face the same direction. The other opening of the light-guiding channel interconnects with the second basin. The light-emitting chip is arranged in the first basin. The photosensor chip is arranged in the second basin. The light-guiding channel conducts the light generated by the light-emitting chip and the ambient light to the photosensor chip. The photosensor chip operates as soon as it receives the light generated by the light-emitting chip and/or the ambient light.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: May 6, 2014
    Assignee: TXC Corporation
    Inventor: Yin-Ming Peng
  • Publication number: 20140117383
    Abstract: An optocoupler having optical lens layer is disclosed. The optocoupler may comprise an optical emitter, an optical receiver, an isolation layer, a lens layer and a substantially transparent encapsulant. The lens layer may be integrally formed within the optical receiver. Alternatively, the lens layer may be formed integrally with the isolation layer, or the lens layer may be an optical film attached on the optical receiver. The substantially transparent encapsulant may encapsulate at least partially the optical emitter, the optical receiver and the isolation layer. The isolation layer may be inserted to the substantially transparent encapsulant, making the substantially transparent encapsulant into two compartments. In another embodiment, an electronic system having optocoupler is disclosed.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Thiam Siew Tay, Premkumar Jeromerajan
  • Patent number: 8680641
    Abstract: An article of manufacture and a method of defining a photodetector element are provided. The article of manufacture includes a photodector element comprising a junction formed by a first III-V semiconductor layer having a first charge type and a second III-V semiconductor layer comprising a second dopant having a second charge type. The second III-V semiconductor layer is disposed between the first III-V semiconductor layer and a wafer. Patterned dopant regions having a third charge type, the third charge type being the same as the first charge type, are disposed in the first III-V semiconductor layer.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 25, 2014
    Assignee: University of Iowa Research Foundation
    Inventors: John P. Prineas, Jonathan T. Olesberg, Chris Coretsopoulos
  • Patent number: 8680540
    Abstract: The optical semiconductor apparatus includes, on an n-GaAs substrate, a surface-emitting semiconductor laser device and a photodiode integrated on the periphery of the laser device with an isolation region interposed there between. The laser device is composed of an n-DBR mirror, an active region, and a p-DBR mirror and includes a columnar layered structure with its sidewall covered with an insulating film. The photodiode is formed on the substrate and has a circular layered structure wherein an i-GaAs layer and a p-GaAs layer surrounds the laser device with an isolating region interposed between the i-GaAs and p-GaAs layers and the laser device. The diameter of the photodiode is smaller than the diameter of the optical fiber core optically coupled with the optical semiconductor apparatus. Since the laser device and the photodiode are monolithically integrated, the devices do not require optical alignment, and thus, facilitate optical coupling with an optical fiber.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: March 25, 2014
    Assignee: Sony Corporation
    Inventors: Hironobu Narui, Tomonori Hino, Nobukata Okano, Jugo Mitomo
  • Patent number: 8669631
    Abstract: A solid state imaging device according to one embodiment of the present invention includes a substrate with a solid state imaging element, a first impurity layer, a plurality of external electrodes, and a translucent substrate. The first impurity layer is formed on a back surface side of the substrate, and forms a pn junction with the substrate. The plurality of external electrodes is formed on the back surface of the substrate and is electrically connected to the solid state imaging element. The translucent substrate is fixed to the substrate.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiteru Koseki
  • Patent number: 8664739
    Abstract: In accordance with the invention, an improved image sensor includes an array of germanium photosensitive elements integrated with a silicon substrate and integrated with silicon readout circuits. The silicon transistors are formed first on a silicon substrate, using well known silicon wafer fabrication techniques. The germanium elements are subsequently formed overlying the silicon by epitaxial growth. The germanium elements are advantageously grown within surface openings of a dielectric cladding. Wafer fabrication techniques are applied to the elements to form isolated germanium photodiodes. Since temperatures needed for germanium processing are lower than those for silicon processing, the formation of the germanium devices need not affect the previously formed silicon devices. Insulating and metallic layers are then deposited and patterned to interconnect the silicon devices and to connect the germanium devices to the silicon circuits.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 4, 2014
    Assignee: Infrared Newco, Inc.
    Inventors: Clifford A. King, Conor S. Rafferty
  • Patent number: 8653618
    Abstract: A unit pixel of an image sensor and a photo detector are disclosed. The photo detector of the present invention can include: a light-absorbing part configured to absorb light by being formed in a floated structure; an oxide film having one surface thereof being in contact with the light-absorbing part; a source being in contact with one side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; a drain facing the source so as to be in contact with the other side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; and a channel formed between the source and the drain and configured to form flow of an electric current between the source and drain.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: February 18, 2014
    Inventor: Hoon Kim
  • Patent number: 8643028
    Abstract: The present invention provides a lighting device, including: a second OLED layer formed on a window; a solar cell formed on the second OLED layer; and a first OLED layer formed on the solar cell.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 4, 2014
    Assignee: Kumho Electric Co., Ltd.
    Inventors: Tae Hyun Ban, Kwang Bok Kim
  • Patent number: 8618622
    Abstract: Backlit detector for the detection of electromagnetic radiation around a predetermined wavelength, including a semiconductor absorption layer, formed above a transparent medium, capable of transmitting at least some of said radiation, and a mirror above the semiconductor layer, and placed between the mirror and the semiconductor layer, a periodic grating of metallic patterns, the mirror and the grating being included in a layer of material transparent to said radiation and formed on the semiconductor layer.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 31, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Roch Espiau De Lamaestre, Salim Boutami, Olivier Gravrand, Jérôme Le Perchec
  • Patent number: 8610234
    Abstract: A unit pixel of an image sensor and a photo detector are disclosed. The photo detector can include: a substrate in which a V-shaped groove having a predetermined angle is formed; a light-absorbing part formed in a floated structure above the V-shaped groove and to which light is incident; an oxide film formed between the light-absorbing part and the V-shaped groove and in which tunneling occurs; a source formed adjacent to the oxide film on a slope of one side of the V-shaped groove and separated from the light-absorbing part by the oxide film; a drain formed adjacent to the oxide film on a slope of the other side of the V-shaped groove and separated from the light-absorbing part by the oxide film; and a channel interposed between the source and the drain along the V-shaped groove to form flow of an electric current between the source and the drain.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 17, 2013
    Inventor: Hoon Kim
  • Publication number: 20130299841
    Abstract: An optocoupler includes a GaN-based photosensor disposed on a substrate and a GaN-based light source disposed on the same substrate as the GaN-based photosensor. A transparent material is interposed between the GaN-based photosensor and the GaN-based light source. The transparent material provides galvanic isolation and forms an optical channel between the GaN-based photosensor and the GaN-based light source.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Jan Ranglack, Gianmauro Pozzovivo
  • Patent number: 8569771
    Abstract: An LED module having an LED semiconductor chip mounted directly or indirectly on a platform. The platform is made from silicon and extends laterally beyond the LED semiconductor chip having an active light emitting layer and a substrate. At least one electronic component that is part of the control circuitry for the LED semiconductor chip is integrated in the silicon platform.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: October 29, 2013
    Assignee: Lexedis Lighting GmbH
    Inventors: Stefan Tasch, Nick Shepherd
  • Patent number: 8558335
    Abstract: A solid-state imaging device includes a photoelectric conversion unit that is formed on a semiconductor substrate, a reading unit that reads signal charges of the photoelectric conversion unit, a gate insulating film and an electrode disposed thereon that constitute the reading unit, a light shielding film that covers the electrode, and an antireflection film that is formed on the photoelectric conversion unit and is constituted by films of four or more layers. The film of the lower layer of the antireflection film is also used as a stopper film during patterning, and a gap between the end of the light shielding film and the semiconductor substrate which is defined by interposing a plurality of films of the lower layer of the antireflection film is set so as to be smaller than the thickness of the gate insulating film.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 15, 2013
    Assignee: Sony Corporation
    Inventor: Mitsuhiro Nagano
  • Patent number: 8546828
    Abstract: The device includes a first ceramic layer; a second ceramic layer on the first ceramic layer and having a light emitting element mounting area; a reflective layer so formed on a surface of the second ceramic layer that the reflective layer covers at least the mounting area; a protective layer which covers the reflective layer; a semiconductor light emitting element mounted on the protective layer positioned above the element mounting area; and at least one heat dissipation via passing through the first ceramic layer. The heat dissipation via is disposed in a position that does not overlap with the element mounting area in a direction in which the ceramic layers are stacked.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroyuki Takayama, Maiko Tanabe, Kaori Namioka
  • Patent number: 8546901
    Abstract: A high sensitivity image sensor including a pixel, the pixel including a single electron field effect transistor (SEFET), the SEFET including a first conductive type well in a second conductive type substrate, second conductive type source and drain regions in the well and a first conductive type gate region in the well between the source and the drain regions.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eric R. Fossum, Dae-Kil Cha, Young-Gu Jin, Yoon-Dong Park, Soo-Jung Hwang
  • Patent number: 8541811
    Abstract: There are provided a TFT, a TFT substrate using the TFT, a method of fabricating the TFT substrate, and an LCD. The TFT includes a source region, a drain region, and a gate electrode having an opening. The opening of the gate electrode is to enhance the light sensing ability of the TFT when it is used as a light sensor, since light is incident into a region where the opening is formed. The TFT including the gate having the opening can be used in a substrate of a flat display or an LCD using such a substrate. The above TFT can sense light incident from outside the display to adjust the brightness of the screen according to the external illumination.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: September 24, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kwan-Wook Jung, Ung-Sik Kim, Pil-Mo Choi, Seock-Cheon Song, Ho-Suk Maeng, Sang-Hoon Lee, Keun-Woo Park
  • Patent number: 8525191
    Abstract: An optoelectronic device assembly can include: a coated element and an optoelectronic device on the coated element. The coated element can include a thermoplastic substrate and a protective weathering layer. The thermoplastic substrate can include a bisphenol-A polycarbonate homopolymer and a polycarbonate copolymer, and wherein the polycarbonate copolymer is selected from a copolymer of tetrabromobisphenol A carbonate and BPA carbonate; a copolymer of 2-phenyl-3,3-bis(4-hydroxyphenyl)phthalimidine carbonate and BPA carbonate; a copolymer of 4,4?-(1-phenylethylidene) biphenol carbonate and BPA carbonate; a copolymer of 4,4?-(1-methylethylidene) bis[2,6-dimethyl-phenol]carbonate and BPA carbonate; and combinations comprising at least one of the foregoing. The protective weathering layer can include resorcinol polyarylate and polycarbonate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: September 3, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Jian Zhou, James Edward Pickett, Shreyas Chakravarti
  • Patent number: 8519423
    Abstract: A chip includes: a chip body; and a metal layer formed on the chip body, and including a metal interconnect region electrically connected to the chip body, a light trapping region, and a light reflective region that adjoins the light trapping region and that is able to reflect light. The light trapping region is formed with a plurality of gaps and has a plurality of metal members. Adjacent ones of the metal members are separated by the gaps. Each of the gaps is configured with a width in such a manner that most light irradiating the light trapping region will pass through the gaps and be trapped in the chip body so as to form brightness contrast between the light trapping region and the light reflective region.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: August 27, 2013
    Assignee: ILI Technology Corporation
    Inventors: Chou-Ho Shyu, Yu-Ju Yang
  • Patent number: 8482012
    Abstract: A chip module package structure applied to an optical input device includes a cover body, a first chip module, and a second chip module. The first chip module and the second chip module are respectively combined with the cover body, the first chip module has an optical source, and the second chip module has an optical sensor. Further, the optical source and the optical sensor form a preset relative spatial position relation, such that a part of light emitted by the optical source is received by the optical sensor after at least one reflection.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: July 9, 2013
    Assignee: Pixart Imaging Inc.
    Inventors: Kuo-Hsiung Li, Hung-Ching Lai
  • Patent number: 8471313
    Abstract: A solid-state imaging device includes a substrate, a plurality of photodiodes arranged in the substrate in a depth direction of the substrate, a vertical readout gate electrode for reading signal charges in the photodiodes, the vertical readout gate electrode being embedded in the substrate such that the readout gate electrode extends in the depth direction of the substrate, a dark-current suppressing area which covers a bottom portion and a side surface of the readout gate electrode, the dark-current suppressing area including a first-conductivity-type semiconductor area having a uniform thickness on the side surface of the readout gate electrode, and a reading channel area disposed between the first-conductivity-type semiconductor area and the photodiodes, the reading channel area including a second-conductivity-type semiconductor area.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: June 25, 2013
    Assignee: Sony Corporation
    Inventor: Hiroshi Takahashi
  • Patent number: 8466534
    Abstract: The construction of this invention includes an active matrix substrate, an amorphous selenium layer, a high resistance layer, a gold electrode layer, an insulating layer and an auxiliary plate laminated in this order. In one aspect of the present invention, the insulating layer has an inorganic anion exchanger added thereto in order to provide a radiation detector which prevents void formation and pinhole formation in the amorphous semiconductor layer and carrier selective high resistance film, without accumulating electric charges on the auxiliary plate. The inorganic anion exchanger adsorbs chloride ions in the insulating layer, thereby preventing destruction of X-ray detector due to the chloride ions drawn to the gold electrode layer.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 18, 2013
    Assignee: Shimadzu Corporation
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Patent number: 8450752
    Abstract: The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 28, 2013
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Patent number: 8399889
    Abstract: This disclosure relates to an organic solar cell and an organic light emitting diode stack. The stack comprises a solar cell portion having a substrate, an electrode, an active layer, and a second electrode. The stack also comprises a light emitting diode portion having a substrate, an electrode, an active layer, and a second electrode. The solar cell portion is laminated to the light emitting diode portion to form a stack. In a variation, the stack comprises a solar cell portion that includes a substrate, an electrode and an active layer. In this variation, there is a connection portion that includes a second substrate, having, a second electrode on one side and a third electrode on the other side of the second substrate. Also in this variation, there is also a light emitting diode portion, which includes a third substrate, an electrode on the third substrate and a second active layer.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 19, 2013
    Assignee: Solarmer Energy, Inc.
    Inventors: Yue Wu, Travis Currier, Yuyi Li, Szu-Ting Tsai
  • Patent number: 8383444
    Abstract: A method is provided for determining a color using a CMOS image sensor. The CMOS image sensor includes an n-type substrate and a p-type epitaxy layer overlying the n-type substrate. The method includes applying a first voltage on the n-type substrate and obtaining a first output, which is associated with the first voltage. The method further includes applying a second voltage on the n-type substrate and obtaining a second output, which is associated with the second voltage. The method additionally includes applying a third voltage on the n-type substrate and obtaining a third output, which is associated with the third voltage. The method also includes providing a plurality of weighting factors and determining the color based on the plurality of weighting factors, the first output, the second output, and the third output.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 26, 2013
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hong Zhu, Jim Yang
  • Publication number: 20130039615
    Abstract: Three dimensionally integrated semiconductor systems include a photoactive device operationally coupled with a current/voltage converter on a semiconductor-on-insulator (SeOI) substrate. An optical interconnect is operatively coupled to the photoactive device. A semiconductor device is bonded over the SeOI substrate, and an electrical pathway extends between the current/voltage converter and the semiconductor device bonded over the SeOI substrate. Methods of forming such systems include forming a photoactive device on an SeOI substrate, and operatively coupling an waveguide with the photoactive device. A current/voltage converter may be formed over the SeOI substrate, and the photoactive device and the current/voltage converter may be operatively coupled with one another. A semiconductor device may be bonded over the SeOI substrate and operatively coupled with the current/voltage converter.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES
    Inventors: Bich-Yen Nguyen, Mariam Sadaka
  • Patent number: 8373153
    Abstract: Implementations of quantum well photodetectors are provided. In one embodiment, a quantum structure includes a first barrier layer, a well layer located on the first barrier layer, and a second barrier layer located on the well layer. A metal layer is located adjacent to the quantum structure.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 12, 2013
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Patent number: 8368122
    Abstract: A multiple-junction photoelectric device includes a substrate with a first conducting layer thereon, at least two elementary photoelectric devices of p-i-n or p-n configuration, with a second conducting layer thereon, and at least one intermediate layer between two adjacent elementary photoelectric devices. The intermediate layer has, on the incoming light side, opposite top and bottom faces, the top and bottom faces having respectively a surface morphology including inclined elementary surfaces so ?90bottom is smaller than ?90top by at least 3°, preferably 6°, more preferably 10°, and even more preferably 15°; where ?90top is the angle for which 90% of the elementary surfaces of the top face of the intermediate layer have an inclination equal to or less than this angle, and ?90bottom is the angle for which 90% of the elementary surfaces of the bottom face of the intermediate layer have an inclination equal to or less than this angle.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 5, 2013
    Assignee: Universite de Neuchatel
    Inventors: Didier Domine, Peter Cuony, Julien Bailat
  • Patent number: 8357960
    Abstract: This invention relates to photodetector and its array in the form of a image sensor having multispectral detection capability covering the wavelengths from ultra-violet (UV) or near UV to shortwave infrared (over 1700 nm), ultra-violet (UV) or near UV to mid infrared (3500 nm), or ultra-violet (UV) or near UV to 5500 nm. More particularly, this invention is related to the multicolor detector, which can detect the light wavelengths ranges from as low as UV to the wavelengths over 1700 nm covering the most of the communication wavelength, and also from UV to as high as 5500 nm using of the single monolithic detector fabricated on the single wafer. This invention is also related to the multispectral photodetector arrays for multicolor imaging, sensing, and advanced communication.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: January 22, 2013
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8330171
    Abstract: A single optical receiver having a photo-detector with a wide optical bandwidth and high efficiency within the wide optical bandwidth, the photo-detector comprising: a first diode region of first doping type for receiving light; a second diode region of second doping type and of second thickness; an active region for converting the received light to an electronic signal, the active region having a third thickness and configured to reside between the first diode region and the second diode region; and a reflector coupled to the second diode region and having a silicon layer with a fourth thickness, the silicon layer residing between silicon oxide layers of fifth thicknesses, wherein the active region is configured to absorb the light of wavelengths of less than 900 nm, and wherein the reflector is configured to reflect the light of wavelengths from a range of 1260 nm to 1380 nm.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Intel Corporation
    Inventors: Olufemi I. Dosunmu, Ansheng Liu
  • Publication number: 20120290255
    Abstract: A method for optical isolation in a clear mold package is provided. The method comprises forming a substrate and mounting a first component on the substrate. The method also comprises depositing a clear layer over the first component and the substrate and fabricating a trench in the clear layer near the first component, wherein the trench extends from a top surface of the substrate to the top surface of the clear layer. Further, the method comprises depositing an opaque material within the trench.
    Type: Application
    Filed: September 20, 2011
    Publication date: November 15, 2012
    Applicant: Intersil Americas Inc.
    Inventors: Nikhil Vishwanath Kelkar, Viraj Ajit Patwardhan, Santhiran Nadarajah, Matt Preston
  • Patent number: 8304897
    Abstract: An electronic package 100 comprising a semiconductor device 105, a heat spreader layer 110, and a thermal interface material layer 115 located between the semiconductor device and the heat spreader layer. The thermal interface material layer includes a resin layer 120 having heat conductive particles 125 suspended therein. A portion of the particles are exposed on at least one non-planar surface 135 of the resin layer such that the portion of exposed particles 130 occupies a majority of a total area of a horizontal plane 140 of the non-planar surface.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Siva Prakash Gurrum, Paul J Hundt, Vikas Gupta
  • Patent number: 8299484
    Abstract: An optoelectronic semiconductor chip including a radiation passage area, where a contact metallization is applied to the radiation passage area, and a first reflective layer sequence is applied to that surface of the contact metallization which is remote from the radiation passage area, and an optoelectronic component that includes such a chip.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 30, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Stefan Grötsch, Norbert Linder
  • Patent number: 8299472
    Abstract: An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may also include a readout circuit which may include a reset transistor, a charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive the light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light beam to the bulk substrate. In the embodiments herein, with the presence of the nanowire photogate and a substrate photogate, light of different wavelengths can be detected.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 30, 2012
    Inventors: Young-June Yu, Munib Wober