With Means For Light Detecting (e.g., Photodetector) (epo) Patents (Class 257/E33.076)
  • Patent number: 7972934
    Abstract: A photodetector array includes a semiconductor substrate having opposing first and second main surfaces, a first layer of a first doping concentration proximate the first main surface, and a second layer of a second doping concentration proximate the second main surface. The photodetector includes at least one conductive via formed in the first main surface and an anode/cathode region proximate the first main surface and the at least one conductive via. The via extends to the second main surface. The conductive via is isolated from the semiconductor substrate by a first dielectric material. The anode/cathode region is a second conductivity opposite to the first conductivity. The photodetector includes a doped isolation region of a third doping concentration formed in the first main surface and extending through the first layer of the semiconductor substrate to at least the second layer of the semiconductor substrate.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: July 5, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 7973377
    Abstract: In accordance with the invention, an improved image sensor comprises an array of germanium photosensitive elements integrated with a silicon substrate and integrated with silicon readout circuits. The silicon transistors are formed first on a silicon substrate, using well known silicon wafer fabrication techniques. The germanium elements are subsequently formed overlying the silicon by epitaxial growth. The germanium elements are advantageously grown within surface openings of a dielectric cladding. Wafer fabrication techniques are applied to the elements to form isolated germanium photodiodes. Since temperatures needed for germanium processing are lower than those for silicon processing, the formation of the germanium devices need not affect the previously formed silicon devices. Insulating and metallic layers are then deposited and patterned to interconnect the silicon devices and to connect the germanium devices to the silicon circuits.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Infrared Newco, Inc.
    Inventors: Clifford A. King, Conor S. Rafferty
  • Patent number: 7956456
    Abstract: An electronic package comprising a semiconductor device, a heat spreader layer, and a thermal interface material layer located between the semiconductor device and the heat spreader layer. The thermal interface material layer includes a resin layer having heat conductive particles suspended therein. A portion of the particles are exposed on at least one non-planar surface of the resin layer such that the portion of exposed particles occupies a majority of a total area of a horizontal plane of the non-planar surface.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 7, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Siva Prakash Gurrum, Paul Joseph Hundt, Vikas Gupta
  • Patent number: 7955924
    Abstract: Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-ho Song, Chan Park, Young-hoon Park, Sang-il Jung, Jong-wook Hong, Keo-sung Park, Eun-soo Kim, Won-je Park, Jin-Hyeong Park, Dae-cheol Seong, Won-jeong Lee, Pu-ra Kim
  • Publication number: 20110109955
    Abstract: Provided is an electro-optic device. Sine the electro-optic device includes a plurality of first conductive type semiconductor layers and a plurality of depletion layers formed by a third semiconductor disposed between the plurality of first conductive type semiconductor layers, an electro-optic device optimized for a high speed and low power consumption can be provided.
    Type: Application
    Filed: April 30, 2010
    Publication date: May 12, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo PARK, Jongbum You, Gyungock Kim
  • Publication number: 20110108714
    Abstract: A small type photo-interrupter and a fabrication method of small type photo-interrupter. The fabrication method of small type photo-interrupter includes removing a portion of the surface of the substrate between the light-emitter and the light-sensor and forming an opaque sealing member on the place where the portion of the substrate is removed.
    Type: Application
    Filed: October 19, 2010
    Publication date: May 12, 2011
    Inventors: Chia-Feng Yang, Chih-Wei Liao, Chun-Chih Liang
  • Publication number: 20110101381
    Abstract: An LED module having an LED semiconductor chip mounted directly or indirectly on a platform. The platform is made from silicon and extends laterally beyond the LED semiconductor chip having an active light emitting layer and a substrate. At least one electronic component that is part of the control circuitry for the LED semiconductor chip is integrated in the silicon platform.
    Type: Application
    Filed: April 25, 2008
    Publication date: May 5, 2011
    Applicant: LEXEDIS LIGHTING GMBH
    Inventors: Stefan Tasch, Nick Shepherd
  • Publication number: 20110089439
    Abstract: A single chip wireless sensor comprises a microcontroller connected by a transmit/receive interface to a wireless antenna. The microcontroller is also connected to an 8 kB RAM, a USB interface, an RS232 interface, 64 kB flash memory, and a 32 kHz crystal. The device senses humidity and temperature, and a humidity sensor is connected by an 18 bit ?? A-to-D converter to the microcontroller and a temperature sensor is connected by a 12 bit SAR A-to-D converter to the microcontroller. The device is an integrated chip manufactured in a single process in which both the electronics and sensor components are manufactured using standard CMOS processing techniques, applied to achieve both electronic and sensing components in an integrated process.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Inventor: Timothy Cummins
  • Publication number: 20110068697
    Abstract: A light source having first and second LEDs and a phosphor layer that converts light generated by the first LED is disclosed. The first LED emits light at a first wavelength. The layer of phosphor is illuminated by the first LED, the phosphor being excited by light of the first wavelength to convert light of the first wavelength to a band of wavelengths having wavelengths between the first wavelength and a second wavelength. The second LED emits light at a third wavelength that is greater than the first wavelength. The phosphor is not substantially excited by light of the third wavelength. The combined light from the phosphor, and first and second LEDs is perceived as being white by a human observer.
    Type: Application
    Filed: April 19, 2010
    Publication date: March 24, 2011
    Inventor: David Hum
  • Patent number: 7911017
    Abstract: An optical module includes an image sensor having an active area and a window mounted directly to the image sensor above the active area. The optical module further includes a mount mounted to the window, the mount supporting a barrel having a lens assembly. By mounting the window directly to the image sensor and the mount directly to the window, the substrate surface area of the optical module is minimized.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Arsenio de Guzman, Robert F. Darveaux, Young Ho Kim
  • Publication number: 20110057203
    Abstract: A package carrier suitable for carrying at least one light emitting device and at least one light receiving device includes a carrier substrate and a metal sheet. The carrier substrate includes a first carrying area and a second carrying area. The light emitting device is disposed in the first carrying area and the light receiving device is disposed in the second carrying area. The metal sheet is disposed in the carrier substrate and located between the first carrying area and the second carrier area, for blocking optical signal transmission between the light emitting device and the light receiving device.
    Type: Application
    Filed: October 12, 2009
    Publication date: March 10, 2011
    Applicant: ELITE ADVANCED LASER CORPORATION
    Inventors: Chu-Liang Cheng, Chi-Hua Wang
  • Publication number: 20110057129
    Abstract: Various embodiments of a package-on-package optical sensor comprising three distinct different packages are disclosed. The three different packages are combined to form the optical proximity sensor, where the first package is a light emitter package, the second package is a light detector package, and the third package is an integrated circuit package. First and second infrared light pass components are molded or casted atop the light emitter package and the light detector package after they have been mounted atop the integrated circuit package. An infrared light cut component is then molded or casted between and over portions of the light emitter package and the light detector package.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Applicant: Avago Technologies ECBU (Singapore) Pte. Ltd.
    Inventors: Yufeng Yao, Chi Boon Ong
  • Publication number: 20110051222
    Abstract: An electro-optic device is provided. The electro-optic device includes a junction layer disposed between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer to which a reverse vias voltage is applied. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer have an about 2 to 4-time doping concentration difference therebetween, thus making it possible to provide the electro-optic device optimized for high speed, low power consumption and high integration.
    Type: Application
    Filed: January 5, 2010
    Publication date: March 3, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo Park, Jongbum You, Gyungock Kim
  • Patent number: 7884437
    Abstract: A semiconductor device includes: a semiconductor substrate having an imaging region in which a plurality of photoreceptors are arranged, and a peripheral circuit region arranged around the imaging region; a plurality of microlenses formed on the imaging region; a low-refractive-index film formed on the semiconductor substrate to cover the plurality of microlenses and part of the peripheral circuit region; and a transparent substrate formed on part of the low-refractive-index film above the imaging region. A through hole is formed in part of the low-refractive-index film above an amplifier circuit arranged in the peripheral circuit region.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 8, 2011
    Assignee: Panasonic Corporation
    Inventors: Masanori Minamio, Tetsushi Nishio
  • Patent number: 7880178
    Abstract: The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: February 1, 2011
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Patent number: 7872288
    Abstract: An organic light-emitting display device includes a substrate, a first buffer layer and a second buffer layer on the substrate, a thin film transistor on the second buffer layer, an organic light-emitting diode electrically connected with the thin film transistor, and a photo sensor with an intrinsic region on the second buffer layer, wherein the photo sensor is capable of absorbing red light from the organic light-emitting diode and of exhibiting quantum efficiency of from about 50% to about 90%.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 18, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Sun A Yang, Youn Chul Oh, Eun Jung Lee, Won Seok Kang
  • Patent number: 7873092
    Abstract: The present invention provides a laser diode realizing improved light detection precision. The laser diode includes a stack structure in which a first semiconductor layer of a first conduction type, an active layer, and a second semiconductor layer of a second conduction type are included in this order; a photodetection layer; and a plurality of light absorption layers provided on the corresponding position of antinodes or nodes of standing waves of light output from the active layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 18, 2011
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Norihiko Yamaguchi, Rintaro Koda, Tomoyuki Oki
  • Patent number: 7868367
    Abstract: A system and method for sensing image on CMOS. According to an embodiment, the present invention provide a CMOS image sensing pixel. The pixel includes an n-type substrate, which includes a first width and a first thickness. The pixel also includes a p-type epitaxy layer overlying the n-type substrate. The p-type epitaxy layer includes a second width and a second thickness. The second width is associated with one or more characteristics of a colored light. The pixel additionally includes an n-type layer overlying the p-type epitaxy layer. The n-type layer is associated with a third width and a third thickness. Additionally, the pixel includes an pn junction formed between the p-type epitaxy layer and the n-type layer. Moreover, the pixel includes a control circuit being coupled to the CMOS image sensing pixel.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhu Hong, Jim Yang
  • Publication number: 20100330713
    Abstract: A liquid crystal display device comprises a liquid crystal panel including first and second substrates bonded to each other with a liquid crystal layer positioned therebetween, and the photosensor, formed on the second substrate, for sensing an external light from the surroundings, wherein the photosensor includes a semiconductor layer formed on the second substrate and provided with n+-type ion implantation region, ion non-implantation region and lightly doped region; an insulation film, formed on the second substrate, for covering the semiconductor layer; a passivation film, formed on the second substrate, for covering the insulation film; a first contact hole passing through the insulation film and the passivation film, to expose source and drain regions of the semiconductor layer; source and drain electrodes connected with the source and drain regions of the semiconductor layer through the first contact hole; an ion implanting prevention film formed on the insulation film and overlapped with the ion non-i
    Type: Application
    Filed: July 8, 2010
    Publication date: December 30, 2010
    Applicant: LG Display Co., Ltd.
    Inventors: Kyung Eon LEE, Myoung Kee Baek, Han Wook Hwang
  • Publication number: 20100327753
    Abstract: A stacked body comprising a light emitting layer and a light detecting element which detects light emitted by the light emitting layer. The light detecting element has a light detecting region which overlaps a light emitting surface of the light emitting layer as viewed in the thickness direction of the light emitting layer.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 30, 2010
    Applicant: Casio Computer Co., Ltd.
    Inventors: Isao EBISAWA, Yoshiyuki MATSUOKA, Kenji KOBAYASHI
  • Publication number: 20100314544
    Abstract: The device for detection and/or emission of radiation has an encapsulation micropackage in a vacuum or under reduced pressure that comprises a cap and a substrate delineating a sealed housing. The housing encapsulates at least one uncooled thermal detector and/or emitter having a membrane sensitive to electromagnetic radiation suspended above the substrate, a reflector and at least one getter. The getter is arranged on at least a part of a second main surface of the reflector to form a reflector/getter assembly. A free space, releasing an accessible surface of the getter and in communication with the housing, is also formed between the reflector/getter assembly and the front surface of the substrate.
    Type: Application
    Filed: May 10, 2010
    Publication date: December 16, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Jean-Louis OUVRIER-BUFFET
  • Patent number: 7851809
    Abstract: Disclosed are embodiments of a multi-chip assembly including optically coupled die. The multi-chip assembly may include two opposing substrates, and a number of die are mounted on each of the substrates. At least one die on one of the substrates is in optical communication with at least one opposing die on the other substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Qing A. Zhou, Daoqiang Lu, Jiangqi He, Wei Shi, Xiang Yin Zeng
  • Publication number: 20100301352
    Abstract: Method and apparatus are provided for a silicon substrate optical system for use in an interferometric fiber optic gyroscope (IFOG). A silicon substrate of the silicon substrate optical system is etched to receive optical components, including an input optical fiber, a pump source, a wavelength division multiplier, an isolator, a polarizing isolator, a beam splitting device, a PM tap coupler, a relative intensity noise (RIN) photodiode, a system photodiode, and an output optical fiber. The optical components are mounted on a silicon substrate to reduce the size and cost of the IFOG and increase reliability.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Lee Strandjord, Jenni Strabley, James F. Detry
  • Patent number: 7834383
    Abstract: A pixel including a substrate of a first conductivity type and having a surface, a photodetector of a second conductivity type that is opposite the first conductivity type, a floating diffusion region of the second conductivity type, a transfer region between the photodetector and the floating diffusion, a gate positioned above the transfer region and partially overlapping the photodetector, and a pinning layer of the first conductivity type extending at least across the photodetector from the gate.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 16, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Chintamani P. Palsule, Changhoon Choi, Fredrick P. LaMaster, John H. Stanback, Thomas E. Dungan, Thomas Joy, Homayoon Haddad
  • Publication number: 20100264333
    Abstract: The present invention relates to a gas sensing device comprising a nanoparticle layer (1) and a quantum dot layer (3) separated from each other by a gas absorption layer (2) which has a thickness which changes upon absorption of a gas. The nanoparticle layer (1) is provided for generating a surface plasmon resonance within a plasmon resonance frequency range upon illumination with light within a light frequency range; the quantum dot layer (3) has an absorption spectrum overlapping with said plasmon resonance frequency range of said nanoparticle layer (1) and shows photoluminescence in a photoluminescence emission frequency range upon absorption of energy within its absorption spectrum. The present invention further relates to a method for fabricating such a gas sensing device and to a method of using such a gas sensing device.
    Type: Application
    Filed: December 17, 2008
    Publication date: October 21, 2010
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: Peter Offermans, Mercedes Crego Calama
  • Patent number: 7816684
    Abstract: A light emitting display device includes a light emitting diode and a thin film transistor on a substrate, the light emitting diode and thin film transistor being electrically coupled to each other, and a photo diode on the substrate, the photo diode including an intrinsic region and a P-type doping region coupled to each other.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: October 19, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Byoung-Deog Choi
  • Patent number: 7816755
    Abstract: A pixel space is narrowed without increasing PN junction capacitance. A photoelectric conversion device includes a plurality of pixels arranged therein, each including a first impurity region of a first conductivity type forming a photoelectric conversion region, a second impurity region of a second conductivity type forming a signal acquisition region arranged in the first impurity region, a third impurity region of the first conductivity type and a fourth impurity region of the first conductivity type are arranged in a periphery of each pixel for isolating the each pixel, the fourth impurity region is disposed between adjacent pixels, and an impurity concentration of the fourth impurity region is smaller than an impurity concentration of the third impurity region.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: October 19, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuo Yamazaki, Tetsunobu Kochi
  • Publication number: 20100258710
    Abstract: An optical sensor device, according to an embodiment of the present invention, includes a light source and a light detector. The light source includes one or more light emitting elements, and the light detector includes one or more light detecting elements. A first opaque light barrier portion, between the light source and the light detector, is configured to block light from being transmitted directly from the light source to the light detector. A second opaque light barrier portion, extending from the first opaque light barrier portion in a direction towards the light source, is configured to reduce an amount of specular reflections that would occur if a light transmissive cover plate were placed over the optical sensor device.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 14, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Lynn K. Wiese, Nikhil Kelkar, Viraj Patwardhan
  • Publication number: 20100258712
    Abstract: An optical sensor device comprises a light source, a light detector, and an opaque light barrier including a first portion to block light from being transmitted directly from the source to the detector. A second portion of the light barrier extends from the first portion in a direction towards the light source, such that a portion of the second portion covers at least a portion of light emitting element(s) of the source, to reduce an amount of specular reflections, if a light transmissive cover plate were placed over the sensor. Additionally, a third portion of the barrier can extend from the first portion, in a direction towards to the detector, such that a portion of the third portion covers at least a portion of light detecting element(s) of the detector, to reduce an amount of specular reflections that would be detected by the detecting element(s) of the detector, if a light transmissive cover plate were placed over the sensor. Additionally, an off-centered lens can cover a portion of the light source.
    Type: Application
    Filed: July 8, 2009
    Publication date: October 14, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Lynn K. Wiese, Nikhil Kelkar, Viraj Patwardhan
  • Publication number: 20100258819
    Abstract: A substrate for an LED submount may include a plurality of placement locations on its substrate top side and a plurality of pairs each composed of an electrical anode connection and an electrical cathode connection, wherein the anode connections are arranged on a first side section of the substrate top side and the cathode connections are arranged on a second side section of the substrate top side, having at least one connection dividing conductor track leading from one placement location past at least two other placement locations to an electrical connection, wherein the connection dividing conductor track leads past the at least two other placement locations on the inside.
    Type: Application
    Filed: December 5, 2008
    Publication date: October 14, 2010
    Applicant: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG
    Inventors: Jan Marfeld, Steffen Strauss
  • Patent number: 7807996
    Abstract: The test pattern according to the present invention consists of an opaque metal film pattern formed on a semiconductor substrate, an insulating film formed on the semiconductor substrate and the metal film pattern, a red color filter formed on the insulating film, a planarization layer formed on the insulating film and the red color filter, and a number of micro-lenses formed on the planarization layer.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: October 5, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventors: Eun Sang Cho, Kee Ho Kim
  • Patent number: 7808008
    Abstract: A display device in which not only a variation in a current value due to a threshold voltage but also a variation in a current value due to mobility are prevented from influencing luminance with respect to all the levels of grayscale to be displayed. After applying an initial potential for correction to a gate and a drain of a driving transistor, the gate and the drain of the driving transistor is kept connected in a floating state, and a voltage is held in a capacitor before a voltage between the gate and a source of the driving transistor becomes equal to a threshold voltage. When a voltage obtained by subtracting the voltage held in the capacitor from a voltage of a video signal is applied to the gate and the source of the driving transistor, a current is supplied to a light-emitting element. A value of an initial voltage for correction differs in accordance with the voltage of the video signal.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 5, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hiroyuki Miyake
  • Publication number: 20100247030
    Abstract: An optoelectronic wiring board includes an optical wiring, an electrical wiring, an optical input/output portion, a dummy optical input portion, and a dummy optical waveguide. The optical wiring includes an optical waveguide. The electrical wiring includes an electrically conductive material. The optical input/output portion transmits and detects optical signal with and from the optical waveguide, an optical semiconductor device or an external light guide being disposed on the optoelectronic wiring board. The dummy optical input portion provided adjacent to the optical input/output portion. The dummy optical waveguide is connected to the dummy optical input portion and has an optical end portion which is provided at an end opposite to the dummy optical input portion and absorbs or scatters light which is incident on the dummy optical input portion.
    Type: Application
    Filed: February 4, 2010
    Publication date: September 30, 2010
    Inventor: Hideto FURUYAMA
  • Publication number: 20100244033
    Abstract: An optical sensor, method of making the same, and a display panel having an optical sensor. The optical sensor includes a first electrode, a second electrode, a photosensitive silicon-rich dielectric layer, and a first interfacial silicon-rich dielectric layer. The photosensitive silicon-rich dielectric layer is disposed between the first and second electrodes. The first interfacial silicon-rich dielectric layer is disposed between the first electrode and the photosensitive silicon-rich dielectric layer.
    Type: Application
    Filed: August 3, 2009
    Publication date: September 30, 2010
    Inventors: Shin-Shueh Chen, Wan-Yi Liu, Chia-Tien Peng
  • Patent number: 7791084
    Abstract: A die package is disclosed. The die package includes a substrate, a first device attached to the substrate, and a leadframe structure attached to the substrate. The leadframe structure includes a portion disposed over the first device, and a second device is attached to the first portion of the leadframe structure.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: September 7, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Yong Liu, Yumin Liu
  • Patent number: 7791085
    Abstract: Disclosed herein is a semiconductor light emitting apparatus that includes: a semiconductor light emitting device having a first semiconductor laminate structure including a light emitting region, and a light outgoing window permitting the light emitted from the light emitting region to go out therethrough in the lamination direction; a light transmitting part provided in a region corresponding to the light emitting region; a metal part provided in a region, corresponding to an outer peripheral region of the light emitting region, of the first semiconductor laminate structure; and a semiconductor light detector having a second semiconductor laminate structure including a light absorbing layer for absorbing a part of the light incident from the lamination direction. In the apparatus, the semiconductor light emitting device, a layer including the light transmitting part and the metal part, and the semiconductor light detector are integrally formed in the state of being laminated in this order.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: September 7, 2010
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yoshinori Yamauchi, Norihiko Yamaguchi, Yuji Masui
  • Publication number: 20100220041
    Abstract: A passive matrix display comprising an array of diodes disposed between a plurality of anode lines and a plurality of cathode lines, wherein at least some of the diodes are emissive diodes which are orientated in a forward direction relative to the cathode and anode lines and others of the diodes are sensing diodes orientated in a reverse direction relative to the cathode and anode lines.
    Type: Application
    Filed: September 26, 2008
    Publication date: September 2, 2010
    Applicant: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED
    Inventor: Euan C. Smith
  • Publication number: 20100219422
    Abstract: A photo-coupler is provided. The photo-coupler comprises a light emitting chip, a light-sensing chip, a light-transmissive inner encapsulant package and an outer package. Both the light emitting chip and the light-sensing chip face the same direction, while the light-sensing chip receives a light beam emitted by the light emitting chip. The light-transmissive inner encapsulant package encloses the light emitting chip and the light-sensing chip, while the outer package encloses the light-transmissive inner encapsulant package. An interface is formed between the light-transmissive inner encapsulant package and the outer package for reflecting the light beam. A reflective curve surface adjacent to the light emitting chip is formed on the interface of the light-transmissive inner encapsulant package for reflecting and converging the first portion of the light beam to the light-sensing chip.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 2, 2010
    Applicant: EVERLIGHT ELECTRONICS CO., LTD.
    Inventors: Chao-Hsuan SU, Lu-Ming LAI, Ying-Zhong CHEN
  • Patent number: 7786519
    Abstract: This document discloses an organic light emitting device comprising a first electrode and a wire comprising a contact part formed on a substrate, an insulating layer formed on the first electrode and a portion of the wire, the insulating layer comprising an opening which exposes a portion of the first electrode and a contact hole which exposes an entire upper surface of the contact part, an emission layer formed in the opening, a second electrode formed on the emission layer and the upper surface of the contact part though the contact hole.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 31, 2010
    Assignee: LG Electronics Inc.
    Inventor: Chun Tak Lee
  • Publication number: 20100213471
    Abstract: A light-emitting device reliably supplying electric power to a light-emitting element on a supporting base and securing heat dissipation, and a method of manufacturing the light-emitting device are provided. A light-emitting device includes: a light-emitting element arranged on a first supporting base; a package covering the first supporting base and the light-emitting element therewith, and supporting the first supporting base; and a thermal conductive member having ends which are bonded to the light-emitting element and the package, respectively, so as to also have a wiring function.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 26, 2010
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Fukasawa, Hiroshi Nishida
  • Patent number: 7782921
    Abstract: An electrical-optical coupling and detecting device. An apparatus according to an embodiment of the present invention includes a reflective surface defined on semiconductor material. The reflective surface is to reflect an incident optical beam towards an optical destination. An optical detector is monolithically integrated in the reflective surface of the semiconductor material. The optical detector arranged in the reflective surface of the semiconductor material is to detect the incident optical beam.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: August 24, 2010
    Assignee: Intel Corporation
    Inventors: Andrew C. Alduino, Mario J. Paniccia, Rami Cohen, Assia Barkai, Ansheng Liu
  • Patent number: 7776640
    Abstract: An image sensing device and a packaging method thereof is disclosed. The packaging method includes the steps of providing an adhesive layer; placing a substrate, having an opening, on the adhesive layer; disposing an image sensor within the opening on the adhesive layer; adding a filler between the image sensor and the substrate; connecting the image sensor and the substrate via a plurality of bonding wires; and removing the adhesive layer.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 17, 2010
    Assignee: Tong Hsing Electronic Industries Ltd.
    Inventors: Cheng-Lung Chuang, Chi-Cheng Lin
  • Publication number: 20100200760
    Abstract: The invention relates to a radiation detector and a method for producing such a detector, wherein the detector comprises a stack of the scintillator elements and photodiode arrays. The PDAs extend with electrical leads into a rigid body filling a border volume lateral of the scintillator elements, wherein said leads end in a contact surface of the border volume. Moreover, a redistribution layer is disposed on the contact surface, wherein electrical lines of the redistribution layer contact the leads of the PDAs.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 12, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian BAEUMER, Oliver MUELHENS, Roger STEADMAN BOOKER, Christoph HERRMANN
  • Publication number: 20100193804
    Abstract: Provided are a photodetector capable of suppressing variations in the output characteristics among photodiodes, and a display device provided with the photodetector. A display device in use has an active matrix substrate (20) including a transparency base substrate (2), a plurality of active elements and a photodetector. The photodetector includes a light-shielding layer (3) provided on one main surface of the base substrate (2), a photodiode (1) arranged on an upper layer of the light-shielding layer (3), and an electrode (12) arranged in the vicinity of the photodiode (1) on the upper layer of the light-shielding layer (3). The photodiode (1) includes a silicon layer (11), and the silicon layer (11) is insulated electrically from the light-shielding layer (3). The electrode (12) is insulated electrically from the light-shielding layer (3) and the silicon layer (11).
    Type: Application
    Filed: June 12, 2008
    Publication date: August 5, 2010
    Inventors: Christopher Brown, Hiromi Katoh
  • Patent number: 7759685
    Abstract: A multisurfaced microdevice system array is produced from a wafer formed of semiconductor substrate material. Sensing, controlling and actuating microdevices are fabricated at specific location on both sides of the wafer, and the wafer is diced. Each die thus created is then formed into a multisurfaced, multifaced structure having outer and inner faces. The multifaced structure and the microdevices form a standardized microdevice system, and cooperatively combined microdevice systems form a microdevice system array. Communication of energy and data to and between microdevices on each and other microdevice systems of the microdevice system array is provided by energy transferring devices including electric conductors for transferring electric energy, ultrasound emitters and receivers for transferring acoustic energy, and electromagnetic energy emitters and receivers for transferring electromagnetic energy.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: July 20, 2010
    Inventors: John D. G. Rather, Gregory W. Auner
  • Publication number: 20100176278
    Abstract: An input layer outputs light having a relatively narrow emission angle distribution to a middle layer as an output signal if the signal level of input signal is relatively high and outputs light having a relatively broad emission angle distribution to the middle layer as the output signal if the signal level of input signal is relatively low. The middle layer outputs light having a relatively narrow emission angle distribution as an output signal to an output layer if the signal level of the output signal from input layer is relatively high and outputs light having a relatively broad emission angle distribution to the output layer as an output signal if the signal level of the output signal from the input layer is relatively low.
    Type: Application
    Filed: May 2, 2008
    Publication date: July 15, 2010
    Inventor: Shin Yokoyama
  • Publication number: 20100171127
    Abstract: An optically coupled device includes a light emitting element and a light receiving element which are electrically isolated from each other, and an optical waveguide allowing therethrough transmission of light from the light emitting element to the light receiving element, wherein the optical waveguide is covered with an encapsulation resin containing a light reflective inorganic particle which is typically composed of titanium oxide, the light emitting element and the light receiving element are respectively provided on a base (for example, package terminals), and the entire portion of the outer surface of the optical waveguide, brought into contact with none of the light emitting element, the light receiving element and the base, is covered with the encapsulation resin.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 8, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Mitsuhito KANATAKE
  • Publication number: 20100171120
    Abstract: In the case of forming switching elements and light sensor elements over the same substrate, an increase in the film thickness of active layers in an attempt to enhance the sensitivity of the light sensor elements would adversely affect the characteristics of the switching elements (TFTs). In a configuration of a display in which a channel layer 25 for constituting thin film transistors to form the switching elements for pixels and a photoelectric conversion layer 35 for constituting the light sensor elements are provided over a gate insulating film 24 on a glass substrate 5 to be provided with a plurality of pixels arranged in a matrix pattern, the photoelectric conversion layer 35 is formed to be thicker than the channel layer 25, and/or the photoelectric conversion layer 35 is formed of a material different from the material for the channel layer 25, whereby the light absorption coefficient of the photoelectric conversion layer 35 is made to be higher than that of the channel layer 25.
    Type: Application
    Filed: September 18, 2008
    Publication date: July 8, 2010
    Applicant: SONY CORPORATION
    Inventors: Dharam Pal Gosain, Tsutomu Tanaka, Makoto Takatoku
  • Patent number: 7745895
    Abstract: The present invention provides a semiconductor light emitting device capable of easily realizing stable output characteristics within a wide temperature range. The semiconductor light emitting device includes a semiconductor laser element, and a semiconductor photodiode having an absorption layer disposed on a semiconductor substrate, a second conductivity type region formed in a cap layer and the absorption layer, and a transmissive reflection film disposed on the back side of the semiconductor substrate. The semiconductor photodiode is mounted with the epitaxial layer side down, and the transmissive reflection film is irradiated with a laser beam emitted from the semiconductor laser element so that light reflected from the transmissive reflection film is used as output light, and transmitted light is received by the semiconductor photodiode and used for controlling the output of the semiconductor laser element.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 29, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Youichi Nagai, Yasuhiro Iguchi, Hiroshi Inada
  • Publication number: 20100155731
    Abstract: The present invention relates to a touching-type electronic paper and method for manufacturing the same. The touching-type electronic paper includes a TFT substrate and a transparent electrode substrate which are disposed as a cell. The transparent electrode substrate includes a common electrode, microcapsule electronic ink and light guiding poles as light transmitting passages, all of which are formed on a first substrate. The TFT substrate comprises displaying electrodes, first TFTs for driving the displaying electrodes, second TFTs for detecting lights transmitting through the light guiding poles and for producing level signals, and third TFTs for reading the level signals and sending the level signals to a back-end processing system, all of which are formed on a second substrate. The light guiding poles are opposite to the second TFTs respectively.
    Type: Application
    Filed: September 10, 2009
    Publication date: June 24, 2010
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: ZENGHUI SUN, Wenjie Hu, Zhuo Zhang, Gang Wang, Xibin Shao