Having Plural Heating Steps Patents (Class 264/620)
  • Publication number: 20150147677
    Abstract: Methods and compositions for a low temperature operating solid oxide fuel cell (SOFC) are provided. The SOFC includes a Sr0.8La0.2TiO3 (SLT) support layer, a (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-? (LSGM) electrolyte layer and?a cathode layer disposed on top of said electrolyte layer.
    Type: Application
    Filed: November 28, 2014
    Publication date: May 28, 2015
    Inventors: Scott A. Barnett, Zhan Gao, Elizabeth C. Miller
  • Publication number: 20150122642
    Abstract: A sputtering target which is made of an alumina sintered body having a purity of not less than 99.99% by mass %, a relative density of not less than 98%, and an average grain size of less than 5 ?m or is made of an alumina sintered body having a purity of not less than 99.999% by mass % and a relative density of not less than 98%. A sputtered film having an excellent insulation resistance and an excellent homogeneity can be obtained by using the sputtering target.
    Type: Application
    Filed: April 10, 2012
    Publication date: May 7, 2015
    Applicant: Ferrotec Ceramics Corporation
    Inventors: Ken Okamoto, Tadahisa Arahori, Akishige Sato, Sachio Miyashita, Eiji Kusano, Muneaki Sakamoto
  • Publication number: 20150069308
    Abstract: Provided is a method for producing a lead-free, perovskite semiconductor ceramic composition which is capable of suppressing the temperature coefficient of resistance ? from becoming small, and obtaining stable characteristics. The method for producing a lead-free semiconductor ceramic composition in which a portion of Ba in a BaTiO3-based oxide is substituted by Bi and A (in which A is at least one kind of Na, Li and K), the method including: calcining a raw material for forming the semiconductor ceramic composition at 700° C. to 1,300° C.; adding an oxide containing Ba and Ti, which becomes a liquid phase at 1,300° C. to 1,450° C., to the calcined raw material; forming the same; and then sintering at a temperature of 1,300° C. to 1,450° C.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 12, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Takeshi Shimada, Itaru Ueda, Kentaro Ino
  • Publication number: 20150056520
    Abstract: An impregnated solid state composite cathode is provided. The cathode contains a sintered porous active material, in which pores of the porous material are impregnated with an inorganic ionically conductive amorphous solid electrolyte. A method for producing the impregnated solid state composite cathode involves forming a pellet containing an active intercalation cathode material; sintering the pellet to form a sintered porous cathode pellet; impregnating pores of the sintered porous cathode pellet with a liquid precursor of an inorganic amorphous ionically conductive solid electrolyte; and curing the impregnated pellet to yield the composite cathode.
    Type: Application
    Filed: March 1, 2013
    Publication date: February 26, 2015
    Inventors: Joykumar S. Thokchom, Davorin Babic, Lonnie G. Johnson, Lazbourne Alanzo Allie, David Ketema Johnson, William Rauch
  • Patent number: 8961840
    Abstract: Methods, processes, and systems for producing bulk ceramics from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets, without using sponge materials to form gas pathways in the polymer bodies. Ceramics can be formed in hours. Resin droplets can be produced with a sprayer where liquid polymer precursors, mixed with a curing agent, are sprayed forming droplets which are partially cured, collected, and compressed into shapes. Ceramic porosity can be varied, droplet particle sizes can be controlled by adjusting liquid and gas pressure, orifice size, during spraying. Partially cured droplets can be formed via an emulsion process and size controlled by emulsion liquid and surfactant selection parameters.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Publication number: 20140377665
    Abstract: A ceramic material that can exhibit sufficient compactness and lithium (Li) conductivity to enable the use thereof as a solid electrolyte material for a lithium secondary battery and the like is provided. The ceramic material contains aluminum (Al) and has a garnet-type crystal structure or a garnet-like crystal structure containing lithium (Li), lanthanum (La), zirconium (Zr) and oxygen (O).
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventors: Toshihiro YOSHIDA, Akihiko HONDA, Yosuke SATO
  • Publication number: 20140285070
    Abstract: The invention relates to a ceramic material, comprising lead zirconate titanate, which additionally contains K and optionally Cu. The ceramic material can be used in an electroceramic component, for example a piezoelectric actuator. The invention also relates to methods for producing the ceramic material and the electronic component.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 25, 2014
    Applicant: EPCOS AG
    Inventors: Alexander Glazunov, Adalbert Feltz
  • Publication number: 20140285062
    Abstract: The present disclosure provides a piezoelectricity ceramic material. The piezoelectricity ceramic material includes main components that are represented by a general chemical formula of PbZraTib(Nb2/3Ni1/3)1-a-bpl O3+c%BaW0.5Cu0.5O3 d%SiO2 and satisfy the following condition: 0.1?a?0.4, 0.2?b?0.5, 0.1?c?3, and 0.05?d?1. The low-temperature sintering adopted by the present disclosure reduces energy consumption and reduces the volatilization of PbO, which avoids the fluctuation and deviation of the ceramic components, reduces the pollution to then environment caused by volatilization, and reduces the corrosion to the sintering machine as well. Furthermore, the present disclosure provides a piezoelectricity ceramic sinter and a method for processing the same, as well as a piezoelectricity ceramic device. In a multi-layer device, the device cost is greatly reduced.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 25, 2014
    Applicants: AAC Acoustic Technologies (Suzhou) Co., Ltd., AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventor: Shaohua Su
  • Publication number: 20140234717
    Abstract: Positive electrode for lithium-ion electrochemical cells are provided that have capacity retentions of greater than about 95% after 50 charge-discharge cycles when comparing the capacity after cycle 52 with the capacity after cycle 2 when cycled between 2.5 V and 4.7 V vs. Li/Li+ at 30° C. Compositions useful in the provided positive electrodes can have the formula, Li1+x(NiaMnbCoc)1?x O2, wherein 0.05?x?0.10, a+b+c=1, 0.6?b/a?1.1, c/(a+b)<0.25, and a, b, and c are all greater than zero. The process of making these positive electrodes includes firing the compositions at 850° C. to 925° C.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 21, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Leif Christensen, Jerome E. Scanlan, Anthony P. Lindert
  • Publication number: 20140197358
    Abstract: The invention provides a positive electrode active material for sodium batteries which has a high working potential and can be charged and discharged at a high potential. The invention also provides a method of producing such a positive electrode active material, with this positive electrode active material for sodium batteries being represented by general formula (1) below: NaxMy(AO4)z(P2O7)w??(1) (wherein M is at least one selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper and zinc; A is at least one selected from the group consisting of aluminum, silicon, phosphorus, sulfur, titanium, vanadium and tungsten; x satisfies the condition 4?x?2; y satisfies the condition 4?y?1, z satisfies the condition 4?z?0; w satisfies the condition 1?w?0; and one or both of z and w is 1 or more).
    Type: Application
    Filed: June 13, 2012
    Publication date: July 17, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masafumi Nose
  • Publication number: 20140077119
    Abstract: An alkali niobate-based piezoelectric material having the general formula {(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol % BanTiO3+y mol % CuO, where 0?a?0.9, 0?b?0.3, 0<c?0.5, 0?d?0.1, 0.5?x?10.0, 0.1?y?8.0, and 0.9?n?1.2.
    Type: Application
    Filed: February 14, 2012
    Publication date: March 20, 2014
    Applicant: FDK CORPORATION
    Inventors: Ryosuke Kobayashi, Akihiro Mitani, Yoshinari Oba
  • Publication number: 20130323597
    Abstract: A fused product including lithium-manganese spinel, which is optionally doped, having a spinel structure AB2O4, where the site A is occupied by lithium and the site B is occupied by manganese, it being possible for the site B to be doped with an element B? and it being possible for the site A to exert a substoichiometry or a superstoichiometry with respect to the site B, so that the product observes the formula Li(1+x)Mn(2?y)B?yO4, with ?0.20?x?0.4 and 0?y?1, the element B? being chosen from aluminum, cobalt, nickel, chromium, iron, magnesium, titanium, vanadium, copper, zinc, gallium, calcium, niobium, yttrium, barium, silicon, boron, zirconium and their mixtures.
    Type: Application
    Filed: December 22, 2011
    Publication date: December 5, 2013
    Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Caroline Levy, Samuel Marlin, Yves Boussant-Roux
  • Publication number: 20130295489
    Abstract: An anode support for a solid oxide fuel cell, the anode support having a bimodal pore distribution comprising a first pore having an average pore size of about 3 micrometers to about 10 micrometers, and a second pore having an average pore size of about 0.1 micrometer to about 1 micrometer.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 7, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Ju-sik KIM, Kyoung-seok MOON, Chan KWAK, Hee-jung PARK, Doh-won JUNG
  • Patent number: 8529825
    Abstract: A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 10, 2013
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Sang-Hyon Chu, Sang H. Choi, Jae-Woo Kim, Yeonjoon Park, James R. Elliott, Glen C. King, Diane M. Stoakley
  • Publication number: 20130214462
    Abstract: A process for producing a lithium vanadium phosphate-carbon composite includes a first step that includes mixing a lithium source, a tetravalent or pentavalent vanadium compound, a phosphorus source, and a conductive carbon material source that produces carbon through pyrolysis, in an aqueous solvent to prepare a raw material mixture, a second step that includes heating the raw material mixture to effect a precipitation reaction to obtain a reaction mixture that includes a precipitate, a third step that includes subjecting the reaction mixture that includes the precipitate to wet grinding using a media mill to obtain a slurry that includes ground particles, a fourth step that includes spray-drying the slurry that includes the ground particles to obtain a reaction precursor, and a fifth step that includes calcining the reaction precursor at 600 to 1300° C. in an inert gas atmosphere or a reducing atmosphere.
    Type: Application
    Filed: September 22, 2011
    Publication date: August 22, 2013
    Applicants: FUJI JUKOGYO KABUSHIKI KAISHA, NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Tsutomu Kikuchi, Kazuki Takimoto, Hideo Yanagita
  • Publication number: 20130188292
    Abstract: [Problems] To provide a ceramic composition that retains a high insulation resistance after being fired in a reductive atmosphere to form a laminated body. [Means for Solving the Problem] A novel ceramic composition according to an embodiment of the invention include: (NaxK1-x)(NbyTa1-y)O3 (0?x?1.0, 0.3<y?1.0) as main ingredient and Li and F in an amount ranging from 0.1 to 10.0 mol, calculated on lithium fluoride basis, relative to 100 mol of the main ingredient.
    Type: Application
    Filed: July 25, 2012
    Publication date: July 25, 2013
    Inventors: KEISUKE KOBAYASHI, Clive A. Randall, Keiichi Hatano, Yutaka Doshida, Yoichi Mizuno, Minoru Ryu
  • Publication number: 20130157171
    Abstract: A conductive sheet comprises an aromatic polyamide pulp, a fluoroplastic fused to the aromatic polyamide pulp, and a carbon-based conductive material; wherein the conductive sheet has a static contact angle of water on a first surface that is greater than the static contact angle of water on a second surface that in the opposite surface to the first surface, and the difference between the static contact angle of water on the first surface and the static contact angle of water on the second surface is 20°-180°; or wherein the injection pressure of water on the first surface of the conductive sheet is less than the injection pressure of water on the second surface that is the opposite surface to the first surface, and the difference between the injection pressure of water on the first surface and the injection pressure of water on the second surface is 20-50 kPa.
    Type: Application
    Filed: August 24, 2011
    Publication date: June 20, 2013
    Applicant: TOHO TENAX CO., LTD.
    Inventors: Kazuma Kurokawa, Tetsuya Akamatsu
  • Patent number: 8214983
    Abstract: An improved process for producing a piezoelectric ceramic device is disclosed, wherein the process includes the following steps: securing a metal plate in a mold cavity body by maintaining a binding area on a top surface of the metal plate, and that the top surface other than the binding area is enveloped, confined and secured; coating a metal paste on the binding area; placing a piezoelectric ceramic powder on the metal paste; pressing a pressing pillar on the piezoelectric ceramic powder; securing the pressing pillar in position; heating the mold cavity body so as to sinter the piezoelectric ceramic powder as a sintered body, and heating the mold cavity body so as to treat the sintered body to become a not-yet polarized piezoelectric ceramic sheet. Therefore, the same mold is employed for the piezoelectric ceramic powder sintering, the heat treatment, and the positioning and binding to the metal plate.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: July 10, 2012
    Assignee: Tatung Company
    Inventor: Chen-Ming Chang
  • Patent number: 8083986
    Abstract: A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 27, 2011
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Adminstration of NASA
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Sang-Hyon Chu, James R. Elliott, Glen C. King, Jae-Woo Kim, Peter T. Lillehei, Diane M. Stoakley
  • Patent number: 7815843
    Abstract: This invention describes the process for fabrication of a high conductivity and low resistance solid oxide fuel cell. An anode substrate is mainly prepared via tape casting technique and modified by abrasion and polish process. Electrolyte is fabricated onto the polished side by thin film technologies and can attach well in the cross section. Grinding surface of anode side about 10-30 ?um after finish of MEA combination can get a high conductivity and low resistance unit cell and enhance cell performance effectively.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 19, 2010
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chun-Hsiu Wang, Maw-Chwain Lee, Wei-Xin Kao, Tai-Nan Lin, Yang-Chuang Chang, Li-Fu Lin
  • Publication number: 20100159355
    Abstract: This invention provides an electrolyte sheet for solid oxide fuel cells, characterized in: being formed by a doctor blade method or an extrusion molding method; being a scandia partially stabilized zirconia sheet, wherein 4 mol % to 6 mol % scandia is doped in a solid zirconia; a crystal structure thereof has a polycrystalline structure having a main body of tetragonal and including monoclinic phase, wherein a ratio of monoclinic phase (M), calculated by below described formula (1) from a diffraction peak intensity using X-ray diffraction, is 1% to 80%; and a Weibull modulus (m) thereof is not less than 10: a ratio of monoclinic phase(M:%)=[{monoclinic(1,1,1)+monoclinic(?1,1,1)}/{tetragonal and cubic(1,1,1)+monoclinic(1,1,1)+monoclinic(?1,1,1)}]×100??(1).
    Type: Application
    Filed: February 8, 2006
    Publication date: June 24, 2010
    Inventors: Kazuo Hata, Yasunobu Mizutani, Kouji Hisada, Kenji Ukai, Misuzu Yokoyama
  • Patent number: 7727425
    Abstract: Method for manufacturing a high-energy, low-voltage ignition plug comprising a ceramic material between its electrodes: there is mixed, in a container containing a liquid, from 50 to 75% of a compound which is intended to form a conductive phase and from 25 to 50% of one or more materials which allow the formation of phases of yttrium garnet after thermal processing; operations are carried out for pulverizing, drying and sieving the admixture; the admixture is pressed or injected into a mould; sintering is carried out so as to obtain a ceramic material having porosity of between 0 and 30%; the ceramic material is used in order to constitute the material located between the electrodes of a high-energy, low-voltage ignition plug. Ignition plug manufactured in that manner.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: June 1, 2010
    Assignee: Vibro Meter France
    Inventors: Aurélien Jankowiak, François Collardey, Philippe Blanchart
  • Patent number: 7722797
    Abstract: A method is disclosed for producing a ceramic substrate made of base that includes a stack of layers. Each layer in the stack includes a non-sintered ceramic material and a binder. The method includes debinding the layers in a temperature interval of TE1-TE3, where TE1 is a minimum debinding temperature and TE3>TE1, and sintering the layers at a temperature TS, where TS?TE3. Debinding and sintering are performed in a same furnace, and a temperature T of the base does not fall below TE1 during debinding and sintering.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: May 25, 2010
    Assignee: EPCOS AG
    Inventors: Anke Althoff, Holger Grabner
  • Publication number: 20100012368
    Abstract: A method for manufacturing a ceramic substrate having a via hole(s) and a surface wiring pattern electrically connected to the via hole(s). The method includes: preparing a sintered ceramic substrate having a via hole(s); forming over the sintered ceramic substrate a sintered ceramic layer having a hole(s) or opening(s) whose bottom is configured to be at least a part of an exposed end surface of the via hole(s) by post-firing method; forming inside the hole(s) or opening(s) a conductive portion which electrically connects the surface of the sintered ceramic layer and the via hole(s); and forming over the surface of the sintered ceramic layer a surface wiring pattern electrically connected to the conductive portion.
    Type: Application
    Filed: September 5, 2007
    Publication date: January 21, 2010
    Inventors: Yasuyuki Yamamoto, Ken Sugawara, Masakatsu Maeda
  • Patent number: 7413699
    Abstract: A ceramic electronic element having improved the continuity of inner electrode layers while suppressing the decrease in adhesion between its dielectric layers and inner electrode layers and the deterioration in functions of the inner electrode layers, and a method of making the same are provided. In the method of making a ceramic capacitor (10) in accordance with the present invention, an electrode paste (22) is applied to a surface (20a) of a green sheet (20) and fired, so as to form a dielectric layer (12) laminated with an electrode layer (14). Since the electrode paste (22) is doped with a BaTiO3 powder, the adhesion between the dielectric layer (22) and inner electrode layer (14) after firing is significantly restrained from lowering, and the sintering start temperature of the electrode paste (22) is close to that of the green sheet (20).
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: August 19, 2008
    Assignee: TDK Corporation
    Inventors: Shuichi Miura, Tetsuji Maruno, Kazuhiko Oda, Akira Sasaki, Kouji Tanaka
  • Patent number: 7294598
    Abstract: A material made of a dielectric oxide of type Ca0.25Cu0.75TiO3 having a dielectric constant greater than 3,000.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 13, 2007
    Assignee: STMicroelectronics SA
    Inventors: Virginie Brize, Monique Gervais
  • Patent number: 7220377
    Abstract: A spacer assembly has first and second spacers that are set up integrally on first and second surfaces, respectively, of a substrate. Each spacer is tapered toward its extended end. In forming the spacer assembly, first and second molding dies having through holes coated with a parting agent that contains an organic component are prepared, and these molding dies are located on the first and second surfaces of the substrate so as to be intimately in contact with them, individually. Thereafter, a spacer forming material is filled into the through holes of the molding dies and cured, whereupon the first and second spacers are formed integrally on the substrate surfaces.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: May 22, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Nikaido, Satoshi Ishikawa, Kentarou Shimayama
  • Patent number: 6984355
    Abstract: A BaTiO3-type semiconducting ceramic material which has undergone firing in a reducing atmosphere and re-oxidation, wherein the relative density of the ceramic material after sintering is about 85–90%. A process for producing the semiconducting ceramic material of the present invention and a thermistor containing the semiconducting ceramic material are also disclosed.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: January 10, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hideaki Niimi, Akira Ando, Mitsutoshi Kawamoto, Masahiro Kodama
  • Patent number: 6964718
    Abstract: Co-fired multilayer piezoelectric ceramic materials with base metal electrodes based on copper, copper alloy, are found as an effective approach to manufacture low cost multilayer piezoelectrics. The method of the invention is performed at low firing temperature and without the oxidation of base metal or reduction of ceramic components. A variety of ceramic materials may be used and copper is the preferred base metal in the multi-layer piezoelectric devices of the invention. This copper has additional protection against oxidation with a small inorganic coating on the surface. With such protection, the binder and other organics can also be efficiently removed and produce superior performance in the piezoelectric structured devices.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: November 15, 2005
    Assignee: The Penn State Research Foundation
    Inventors: Clive A. Randall, Amanda L. Baker, Yi Fang, Thomas Shrout, Alfons Kelnberger
  • Patent number: 6960554
    Abstract: A method of making an oxide superconductor article includes converting an oxide superconducting precursor into an oxide superconductor by thermo-mechanical processing using intermediate rolling deformation and heat treatment (including liquid-phase sintering and low temperature baking) and applying an additional heat treatment after the material is fully processed (including optional liquid-phase sintering and low temperature baking) to decompose any secondary phase remaining at the grain boundaries and to promote diffusion of the secondary phase into the oxide grain, where they form 2223 phase. The material has a better superconducting grain connectivity and improved superconducting transport property.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 1, 2005
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Gilbert N. Riley, Jr., Noe DeMedeiros
  • Patent number: 6841343
    Abstract: Organic solvent-based photothermographic materials comprise one or more mercaptotriazoles represented by the following Structure I as toner(s): wherein R1 and R2 independently represent hydrogen, or an alkyl, aryl, aralkyl, alkenyl, cycloalkyl, or aromatic or non-aromatic heterocyclyl group, M is hydrogen or a cation, or R1 and R2 taken together can form a saturated or unsaturated heterocyclic ring, or still again, R1 and R2 taken together can represent a divalent linking group, provided that R1 and R2 are not simultaneously hydrogen or an unsubstituted phenyl group, and further provided that when R2 is hydrogen, R1 is not a methyl or phenyl group having a solubilizing substituent.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: January 11, 2005
    Assignee: Eastman Kodak Company
    Inventors: Doreen C. Lynch, Stacy M. Ulrich, Chaofeng Zou
  • Patent number: 6746835
    Abstract: Disclosed is a thermally processed image recording material containing, on one side of a support having an image-forming layer, a silver salt of an organic acid, a reducing agent and at least one kind of a compound represented by the following formula (1): wherein X and Y represent an electron-withdrawing group and M represents a counter cation, and the conjugate acid of the enolate anion in the formula (1) has a pKa value of 3.0-6.0. This thermally processed image recording material shows low fog, high Dmax, ultrahigh contrast and good storage stability.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: June 8, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Katsuyuki Watanabe, Masaru Takasaki, Toshihide Ezoe, Kohzaburoh Yamada, Yasuhiro Kawanishi, Masahiko Taniguchi
  • Patent number: 6733740
    Abstract: The invention provides a method for producing barium titanate-based particulate compositions. The method includes a heat treatment step, separate from a sintering step, that involves treating a barium titanate-based particulate composition at a temperature between about 700° C. and about 1150° C. to increase average particle size. The increased average particle size can improve the electrical properties (i.e., dielectric constant and dissipation factor) of the heat-treated composition as compared to the composition prior to heat treating. The heat-treated composition may be further processed, for example, by producing a dispersion which may be cast and sintered to form a dielectric layer in electronic components including MLCCs.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 11, 2004
    Assignee: Cabot Corporation
    Inventors: Stephen A. Costantino, Sridhar Venigalla, Jeffrey A. Kerchner
  • Patent number: 6676887
    Abstract: An oxidation resistant carbon composite material comprises nanocrystalline silicon carbide regions distributed throughout a carbon matrix. The composite is prepared by intermixing in a solvent a silicon carbide precursor and a carbon precursor and forming a solution that is free of solids. After removing the solvent from the mixture, the remaining material is pyrolyzed and forms the characteristic nanocrystalline silicon carbide in a carbon matrix. A composite made by the subject method and a part made from the composite are also provided.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: January 13, 2004
    Assignee: Board of Trustees of Southern Illinois University
    Inventor: Khalid Lafdi
  • Patent number: 6641775
    Abstract: Methods for lowering processing and raw material costs are disclosed. Specifically, the use of nanostructured powders is disclosed for faster and lower sintering temperatures whereby electrodes currently employing platinum can be substituted with lower melting point metals and alloys.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: November 4, 2003
    Assignee: NanoProducts Corporation
    Inventors: Anthony Vigliotti, Tapesh Yadav, Clayton Kostelecky, Carrie Wyse
  • Publication number: 20030116891
    Abstract: A dielectric ceramic is made of a sintered body of a complex oxide including at least one element selected from the group consisting of Zr, Ti and Mn, at least one element selected from the group consisting of Mg, Zn and Co, and at least one element selected from the group consisting of Nb and Ta, wherein, the complex oxide is represented by a formula xZrO2-yTiO2-zA(1+w)/3B(2−w)/3O2 where ‘A’ in the formula denotes at least one element selected from the group (A) consisting of Mg, Zn and Co, ‘B’ denotes at one element selected from the group (B) consisting of Nb and Ta; x, y, z and w denote values in the respective ranges of 0.20≦x≦0.55, 0.40≦y≦0.55, 0.05≦z≦0.25, and 0≦w≦0.30, and x, y and z have a relationship represented as x+y+z=1; MnO is present in a range of 0.1 mol % to 1.
    Type: Application
    Filed: September 19, 2002
    Publication date: June 26, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kojiro Okuyama, Junichi Kato, Hiroshi Kagata, Kenji Iijima
  • Patent number: 6543107
    Abstract: A method for producing the piezoelectric thin film is based on a sol-gel process and comprises the steps of: coating a substrate with a sol composition comprising a sol, of a metal component for constituting a piezoelectric film, and a polymer compound and then drying the coating to form a film; pre-sintering the film to form a porous thin film of gel comprising an amorphous metal oxide; pre-annealing the porous thin film of gel to convert the film to a film of a crystalline metal oxide; repeating the steps at least once to form laminated films of a crystalline metal oxide; and annealing the films thus prepared to grow crystal grains of perovskite type in the film into a larger size.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 8, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Satoru Miyashita, Masakazu Shinozuka, Tetsushi Takahashi
  • Patent number: 6514453
    Abstract: This invention describes a method of rapidly monitoring the temperature of a medium and a method of preparing a quantum confined device that can enable such measurements. The monitoring principle uses changes in impedance of nanostructured devices, i.e. devices in which one or more materials have the domain size precision engineered to less than 500 nanometers, preferably to dimensions less than the domain sizes where quantum confinement effects become significant and modify the electrical or thermal properties of the materials. The invention can be used to monitor absolute values of and changes in temperature of gases, inorganic and organic liquids, solids, suspensions, and mixtures of one or more of the said phases. The invention can be used to monitor radiation, power, heat and mass flow, charge and momentum flow, and phase transformation.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: February 4, 2003
    Assignee: NanoProducts Corporation
    Inventors: Anthony Vigliotti, Tapesh Yadav, Clayton Kostelecky, Carrie Wyse
  • Patent number: 6309589
    Abstract: A method is proposed for manufacturing a pin heater that has a substantially internal insulating layer and an external conductive layer, the two layers composed of a ceramic composite structure, wherein before the pin heater is sintered, its shaping is accomplished by way of the ceramic injection molding technique or by cold combined axial/isostatic pressing.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: October 30, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Guenter Knoll, Gert Lindemann, Wilfried Aichele, Friederike Lindner, Harry Schlachta
  • Patent number: 6284080
    Abstract: The present invention relates to multi-layer ceramic packaging of hybrid micro-electronic devices, including those for implantable medical devices. The invention permits size reduction and design simplification in such packaging by eliminating the need for electrolytic or electroless plating, and by eliminating or substantially eliminating the shrinkage variation typically associated with surface metallization techniques.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: September 4, 2001
    Assignee: Medtronic, Inc.
    Inventors: Samuel F. Haq, Patrick F. Malone, Donald P. Varner
  • Publication number: 20010009314
    Abstract: This invention describes a method of rapidly monitoring the temperature of a medium and a method of preparing a quantum confined device that can enable such measurements. The monitoring principle uses changes in impedance of nanostructured devices, i.e. devices in which one or more materials have the domain size precision engineered to less than 500 nanometers, preferably to dimensions less than the domain sizes where quantum confinement effects become significant and modify the electrical or thermal properties of the materials. The invention can be used to monitor absolute values of and changes in temperature of gases, inorganic and organic liquids, solids, suspensions, and mixtures of one or more of the said phases. The invention can be used to monitor radiation, power, heat and mass flow, charge and momentum flow, and phase transformation.
    Type: Application
    Filed: February 17, 1998
    Publication date: July 26, 2001
    Inventors: ANTHONY VIGLIOTTI, TAPESH YADAV, CLAYTON KOSTELECKY, CARRIE WYSE
  • Patent number: 6156175
    Abstract: A method for producing a NOx sensor comprises the steps of forming electrodes on ceramic green sheets, and stacking and integrating the ceramic green sheets into one unit followed by sintering to prepare a substrate, wherein an oxygen concentration is controlled to be not more than 0.5% in a sintering atmosphere after removal of a binder in the step of sintering the substrate. Specifically, the sintering is performed in an atmospheric atmosphere in Interval 1 in which the temperature in a furnace is changed from room temperature to about 1000.degree. C., and the sintering is performed in a nitrogen atmosphere (oxygen concentration in the atmosphere in the furnace is controlled to be about 400 ppm) in Interval 2 in which the temperature is changed from 1000.degree. C. to a maximum temperature followed by spontaneous radiational cooling.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: December 5, 2000
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuhide Kato, Kunihiko Nakagaki
  • Patent number: 6156259
    Abstract: In a method of manufacturing piezoelectric ceramics by molding pre-fired or calcined powders of ingredients of a piezoelectric ceramic material and sintering the powder mold at a high pressure, the powder mold is pre-sintered at an atmospheric pressure before sintering at high pressure (HIP). Preferably, after the sintering HIP step, a thermal treatment is performed at a temperature of from 500 to 1000.degree. C. under an oxidizing atmosphere. For a Pb(Zn.sub.1/3 Nb.sub.2/3)O.sub.3 --PbTiO.sub.3 based piezoelectric ceramic, the composition is preferably set to (Pb.sub.1-x Ba.sub.x)[(Zn.sub.1/3 Nb.sub.2/3).sub.1-y Ti.sub.y ]O.sub.3, where 0.001<x<0.055 and 0.05<y<0.20.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: December 5, 2000
    Assignee: Fujitsu Limited
    Inventors: Motoyuki Nishizawa, Mineharu Tsukada, Kaoru Hashimoto, Nobuo Kamehara
  • Patent number: 6129886
    Abstract: The object of the present invention is to realize the piezoelectric ceramics which, even when used as high frequency elements utilizing third harmonics wave of thickness longitudinal vibration, are small in temperature coefficient of resonant frequency and high in mechanical Q value and easy to correspond to the trend toward miniaturization and low voltage driving. When the piezoelectric ceramics with lead titanate as its main component are manufactured in order to achieve this object, it was decided that the piezoelectric ceramics be manufactured by the manufacturing method, wherein a heat treatment is performed between a firing process and a polarization process in the atmosphere of oxygen partial pressure less than the oxygen partial pressure of the atmospheric pressure at temperatures more than 500.degree. C. and not more than the firing temperatures.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: October 10, 2000
    Assignee: TDK Corporation
    Inventors: Kazushi Tachimoto, Mahoko Takada, Kenji Horino, Kazuo Miyabe, Hitoshi Oka
  • Patent number: 6076244
    Abstract: A method of manufacturing an actuator including an ink pump section made by forming a spacer plate with a plurality of window portions formed therein, a closure plate stacked on one side of the spacer plate for covering the window portions and a connection plate stacked on the other side of the spacer plate for covering the above window portions. These plates are formed as laminated ceramic green sheets that are later fired to form an integrated body. A piezoelectric/electrostrictive operating section composed of electrodes and a piezoelectric/electrostrictive layer is then formed on the outer surface of the closure plate. Thereafter, the actuator is pasted to a holding adhesive film and the holding adhesive film is stripped from the actuator after subjecting the actuator to a given inspection, if necessary, or to cutting into a given shape, if necessary. Subsequently, the actuator is heat-treated. Then, onto this actuator, an ink nozzle member with a plurality of nozzle holes is stacked and joined.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: June 20, 2000
    Assignees: Seiko Epson Corporation, NGK Insulators, Ltd.
    Inventors: Motonori Okumura, Takaichi Wada, Tadao Furuta, Shinsuke Yano, Tomohiro Yamada, Nobuo Takahashi
  • Patent number: 6051171
    Abstract: A method of controlling the amount of firing shrinkage of a ceramic green body prepared by molding a ceramic powder (A) to a desired value A.sub.1 by heat treating the powder at a temperature T.sub.1 that provides the firing shrinkage A.sub.1 at a predetermined firing temperature. The temperature T.sub.1 is determined based on an established correlation between an amount of firing shrinkage at the predetermined firing temperature and a heat-treatment temperature of a powder (B) having a composition similar to that of the powder (A) in such an extent that a total amount of a greatest common content of an individual component common between the powders (A) and (B) in terms of percent is 90% by weight or more, and satisfying such a relation that the spherical diameter of powder (A) is within a range of .+-.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: April 18, 2000
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukihisa Takeuchi, Tsutomu Nanataki, Hisanori Yamamoto, Katsuyuki Takeuchi
  • Patent number: 6045747
    Abstract: A method is provided of producing an LC-circuit in form of a single component, in which the inductor and capacitor elements are arranged atop one another, and where the inductor elements are formed by ferromagnetic zones made of layers (6,8) of ferrite of a high permeability, and between which electrode layers (7) are provided, and where the capacitor elements are formed by dielectric zones made of layers (9) of dielectric with electrode layers (4,5) on both sides, said inductor and capacitor elements being produced by way of tape- or thick-film technology. According to the invention, the capacitor elements are initially provided and being subjected to a sintering at a relatively high temperature, whereafter the inductor elements (6,7,8) are applied and a sintering is performed at a considerably low temperature. In this manner undesired reactions are avoided between the two zones.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: April 4, 2000
    Assignee: The Whitaker Corporation
    Inventor: Jens Peter Holm
  • Patent number: 6001777
    Abstract: A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: December 14, 1999
    Assignee: American Superconductor Corp.
    Inventors: Kenneth L. DeMoranville, Qi Li, Peter D. Antaya, Craig J. Christopherson, Gilbert N. Riley, Jr., Jeffrey M. Seuntjens
  • Patent number: 5948193
    Abstract: Greensheets having enhanced flexibility and strength are prepared from a greensheet casting composition comprising alumina or other ceramic having a mean particle size of less than about 1 micron and being substantially unimodal, a binder resin, a solvent system and a plasticizer. The greensheets may be formed having a thickness of about 50 microns using conventional greensheet fabricating devices. The greensheets are particularly suitable as dielectric layers for internal layer capacitors in a multilayer ceramic substrate. A preferred co-sintering heating profile to avoid blistering of the MLC package is also provided to form the capacitor containing MLC.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: September 7, 1999
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Cohn, Jon A. Casey, Christopher N. Collins, Robert A. Rita, Robert J. Sullivan, Adrienne M. Tirch, Leslie J. Wiands, Ryan W. Wuthrich
  • Patent number: 5919325
    Abstract: A process for producing a ceramic multilayer substrate, particularly an LTCC substrate, in which printed circuit traces and plated contactings are produced in a printing process on a plurality of green ceramic foils using a conductive paste which contains a wax as a printing carrier and is free of highly volatile solvents, and the green ceramic foils subsequently being arranged in a stack one upon the other and fired. The otherwise customary, time-consuming drying of the green ceramic foils for the vaporization of the utilized solvent is eliminated. The foils can be stacked and fired immediately after the printing of the printed circuit traces and plated contactings. Furthermore, shrinkage of the printed circuit traces and the green ceramic foils before the firing is avoided, thereby decisively improving the precision of the produced ceramic multilayer substrates.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: July 6, 1999
    Assignee: Robert Bosch GmbH
    Inventors: Ulrich Goebel, Walter Roethlingshoefer