Disc Patents (Class 310/268)
  • Patent number: 8866358
    Abstract: An incorporated electric motor-generator (IEMG), including: a plurality of disk surfaces each having a main longitudinal axis, at least one peripheral motor section and at least one central generator section; a plurality of stationary support structures, each of which sustains an array of electromagnetic coils; and a rotating shaft affixed to the disk surfaces.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 21, 2014
    Inventor: Uri Rapoport
  • Patent number: 8860282
    Abstract: The invention concerns a polyphase motor comprising M phases, M being equal to 2 or 3, the motor consisting of a stator part (1) excited by electric coils and by a magnetized rotor (2). The invention is characterized in that the rotor (2) has a disc-shaped magnetized part with R pairs of alternately poles magnetized in alternating directions in the thickness, R being equal to n*(M+1) or 5*n, and said stator part (1) has S poles, some of which excited at least by an electric coil, S being equal to 8*n, for even M, and 9*n for odd M, n being an integer not less than 1.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: October 14, 2014
    Assignee: Moving Magnet Technologies
    Inventors: Pierre Gandel, Daniel Prudham
  • Patent number: 8827663
    Abstract: A rotary pump including an impeller rotatable within a housing. A load is imposed on the impeller as it rotates, in a direction that is substantially parallel to the axis of rotation and wherein the load stabilises the motion of the impeller. The load may be achieved by magnetically biasing the impeller.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Thoratec Corporation
    Inventor: Martin Christopher Cook
  • Patent number: 8823238
    Abstract: A design for and method of winding an electric motor, generator or other electrical machine using multiple strands of wire preformed into a wave shape with a plurality of legs connected by shaped end turns. This results in efficient packing and improved machine performance in terms of both efficiency and power density without the need for flux concentrators. The conductors or windings may be preformed so as to be a self supporting structure, aiding assembly and eliminating the need for an iron core.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: September 2, 2014
    Assignee: Hybridauto Pty Ltd
    Inventors: Matthew Greaves, Ben Guymer, Bernie Walsh
  • Patent number: 8823241
    Abstract: An axial rotary energy device including a segmented stator assembly having a plurality of segments arranged in an annular array. Each stator segment is constructed by stacking a plurality of PCB power conductor layers and a plurality of PCB series layers. Each layer having radial conductors extending from an inner via to an outer via. The vias electrically connect selected radial conductors of the series conductor layer and power conductor layer. Each power conductor layer includes a pair of positive and negative terminal vias for one phase of the electric current connected to selected outer vias. A daughter PCB layer electrically connects two adjacent segments together by having a first portion electrically connected to a negative terminal via located in one segment and a second portion electrically connected to a positive terminal via located in an adjacent segment together with a current conductor electrically connecting the two terminal vias together.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: September 2, 2014
    Assignee: Boulder Wind Power, Inc.
    Inventors: Matthew B. Jore, James David Duford, Michael Kvam, Lincoln M. Jore, David Samsel, James D. Jore
  • Patent number: 8823242
    Abstract: A disc motor includes an output shaft, a coil disc, an electric current supplying section, and a magnet. The coil disc is disc-shaped. The coil disc includes an at least two-layer structure having a first layer and a second layer. The coil disc includes a coil having a plurality of partial coil sections each extending outward in a radial direction of the output shaft and connecting sections each connecting together two partial coil sections. The electric current supplying section supplies an electric current to the coil. The magnet is disposed in opposition to the plurality of partial coil sections. The plurality of partial coil sections includes first partial coil sections formed on the first layer and second partial coil sections formed on the second layer. The first partial coil sections provide a total number different from that of the second partial coil sections.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 2, 2014
    Assignee: Hatachi Koki Co., Ltd.
    Inventor: Hideyuki Tanimoto
  • Patent number: 8800108
    Abstract: A dust collector comprises a tank having an intake opening; a head unit mounted on the tank; a motor provided on the head unit and having a rotor, a stator and an output shaft; a fan provided on the head unit and rotating under power from the motor, for sucking air or liquids into the tank from the intake opening; and a filter housed in the tank, that separates dust from the air or liquid sucked into the tank. The rotor has a coil disc having multiple roughly annular coils arranged in a circumferential direction centered on the output shaft in the direction of the axial line of the output shaft. The stator has a magnetic flux generation mechanism that generates magnetic flux that passes through the coil disc in the direction of the axial line of the output shaft.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 12, 2014
    Assignee: Hitachi Koki Co., Ltd.
    Inventors: Hideyuki Tanimoto, Takuya Konnai, Kouji Sagawa
  • Patent number: 8791619
    Abstract: A disc motor includes an output shaft, a coil disc, an electric current supplying section, and a magnet. The coil disc is disc-shaped. The coil disc includes a first coil and a second coil. The first coil has a plurality of first partial coil sections radiating outward in a radial direction of the output shaft and first connecting sections each connecting two first partial coil sections. The second coil has a plurality of second partial coil sections radiating outward in the radial direction and second connecting sections each connecting two second partial coil sections. The total number of the first partial coil sections is different from that of the second partial coil sections. The electric current supplying section is configured to supply electric current to the coil disc. The magnet is disposed in opposition to the first and second partial coil sections.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 29, 2014
    Assignee: Hitachi Koki Co., Ltd.
    Inventor: Hideyuki Tanimoto
  • Patent number: 8786155
    Abstract: When an axial gap rotating electrical machine is assembled, stator cores are accurately positioned and a manufacturing process therefor is simplified. The axial gap rotating electrical machine comprises: a housing frame body having a first space in the cylindrical central part thereof and multiple second spaces located in the circumferential direction which have the same distances from the center; a shaft rotatably provided in the first space in the housing frame body; a core placed in each of the second spaces in the housing frame body and a coil arranged around the core; a rotor yoke fixed on the shaft, extended in the direction of the circumference thereof, and having multiple magnets arranged in circumferential positions confronting the cores; and a case having a hole for the shaft and housing the housing frame body and the rotor yoke.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 22, 2014
    Assignees: Hitachi Appliances, Inc., Hitachi Metals, Ltd., Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Zhuonan Wang, Yuji Enomoto, Motoya Ito, Ryoso Masaki, Hiromitsu Itabashi, Baiying Huang
  • Patent number: 8760250
    Abstract: A magnetic system and related method for generating energy is described. Multiple embodiments are described having different shapes, alternative designs to receive different driving forces, varied magnetic structures, and so forth. In an example implementation, a magnetic structure may include on a single side multiple magnetic sources having different magnetic polarities. Other description herein may be directed to magnetizer printing, adaptable/adjustable correlated magnet devices, entertainment devices having correlated magnet technology, and so forth. Furthermore, description of additional magnet-related technology and example implementations thereof is included herein.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 24, 2014
    Assignee: Correlated Magnetics Rsearch, LLC.
    Inventors: Larry W. Fullerton, Mark D. Roberts, James L. Richards
  • Patent number: 8729994
    Abstract: The invention refers to a Rotary Solenoid comprising a stator and rotor that can rotate around a rotational axis. The rotor has a rotor shaft on which a rotor disc is arranged. The rotor disc is, seen in the direction of the circumference, polarized alternating magnetically. The stator carries at least one coil. On the coil windings of electrically conducting wire are provided. For guiding the magnetic flow of the magnetic field generated by the coil a pole face consisting of several partial pole faces is provided.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: May 20, 2014
    Assignee: SVM Schultz Verwaltungs-GmbH & Co. KG
    Inventors: Winfried Willburger, Daniel Kreuzer
  • Patent number: 8660417
    Abstract: A drive motor includes: an output shaft provided as an axis of rotation; a first attachment plate having a first fixing hole; a second attachment plate having a second fixing hole and located in a position separate from the first attachment plate in an axial direction of the output shaft; a magnet attached to one surface of the first attachment plate; a coil attached to one surface of the second attachment plate and facing the magnet; a first shaft holding member that is inserted into the first fixing hole and fixed to the first attachment plate and holds the output shaft; and a second shaft holding member that is inserted into the second fixing hole and fixed to the second attachment plate and holds the output shaft.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 25, 2014
    Assignee: Sony Corporation
    Inventors: Tatsuyuki Nakayama, Keishi Kobayashi, Takumi Fukuda, Kazuhiro Hattori
  • Patent number: 8648512
    Abstract: An improved generator for using waterpower, wave-power or wind-power, comprising; a set of magnet plates and coil plates for mounting on a rotating shaft in parallel, the magnets installed on the magnet plates and the generating coils installed on the coil plates with constant-intervals in radial direction, a plurality of blades obliquely installed on circumference of the magnet plates and coil plates with mutually opposite direction, an inner annular cylinder and outer annular cylinder mounted on the coil plates to form annular container for inserting the magnets. A plurality of induction coils installed on the inner annular cylinder, a plurality of electromotive coils installed on the outer annular cylinder for proximately contact with ends of the magnets. The magnet plates and coil plates rotate in mutually opposite direction to enhance the quality of generation and repulsive force.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 11, 2014
    Inventor: Suk Ho Jang
  • Patent number: 8643245
    Abstract: A rotational kinetic energy output device includes a housing component, a rotational component and a magnetism generating component. The rotational component includes a rotational body pivotally connected to the housing component, and the rotational body has at least one magnetic element. The magnetism generating component includes a plurality of magnetizers and coils wound on the magnetizers, the magnetizers are disposed in the housing component and surround the rotational body. Each of the magnetizers has a first magnetic arm and a second magnetic arm extended respectively toward the rotational body, and the rotational body is disposed between the first magnetic arm and the second magnetic arm. Thereby, the rotational kinetic energy output device allows a force to be balancedly exerted on the rotational body and a thin shape is also achieved.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Yang Peng, Jung-Kang Peng, Chau-Shin Jang
  • Patent number: 8624456
    Abstract: A rotor (300) for an axial-flux electrical machine is disclosed. The rotor has a plurality of permanent magnets (350) fixed thereto, with each of the plurality of magnets extending at least partly through an aperture in the rotor. The arrangement is such that material of the rotor (200) abuts each magnet (350) so as to locate the magnet substantially circumferentially with respect to the axis of rotation of the rotor and substantially axially in at least one axial direction. The magnets (350) may slide radially onto the rotor (300) and be constrained axially and circumferentially by a tongue-and-groove arrangement (325, 355), with reinforced tape (340) being wound around the radially outer edge thereof to provide radial constraint.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: January 7, 2014
    Assignee: EVO Electric Limited
    Inventors: Michael Ulrich Lamperth, Malte Jaensch
  • Patent number: 8624463
    Abstract: The invention relates to a transverse flux motor comprising at least one stator and at least one rotor. Magnetically active elements of the stator are formed in an annular manner and with a U-shaped inner contour on the stator and the rotor is in the form of a disk or a ring. The rotor comprises magnetically active sections consisting of a soft-magnetic or permanent-magnetic material, that are radially oriented in an annular manner towards at least one front surface of the rotor. The invention also relates to a drive method according to the transverse flux principle, whereby magnetically active sections of at least one disk-type or annular rotor, that are radially oriented in an annular manner towards at least one front surface of the rotor, interact with magnetically active elements having a U-shaped inner contour in an annular manner on at least one stator, in order to rotate the rotor.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 7, 2014
    Assignee: Leantec Motor GmbH & Co. KG
    Inventor: Michael Schmidt
  • Patent number: 8624458
    Abstract: An electrical, rotary machine may include a first stator core section being substantially circular and including a plurality of teeth, a second stator core section being substantially circular and including a plurality of teeth, a coil arranged between the first and second circular stator core sections, and a rotor including a plurality of permanent magnets. The first stator core section, the second stator core section, the coil and the rotor are encircling a common geometric axis, and the plurality of teeth of the first stator core section and the second stator core section are arranged to protrude towards the rotor. Additionally the teeth of the second stator core section are circumferentially displaced in relation to the teeth of the first stator core section, and the permanent magnets in the rotor are separated in the circumferential direction from each other by axially extending pole sections made from soft magnetic material.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: January 7, 2014
    Assignee: Hoganas AB (Publ)
    Inventors: Alan Jack, Edwin Pinguey, Goran Nord
  • Patent number: 8604739
    Abstract: A controller for an axial gap-type motor (3) comprises a rotor (11) having a permanent magnet and a first stator (12a) and a second stator (12b) opposed to each other with the rotor (11) interposed therebetween in the axial direction of revolution of the rotor (11). The controller further includes an electrification control portion which supplies a torque current (Iq) for generating a magnetic field to revolve the rotor (11) to an armature winding (13a) of the first stator (12a) and supplies a field current (+Id) for reinforcing the magnetic flux by the permanent magnet of the rotor (11) or a field current (?Id) for weakening the magnetic flux to an armature winding (13b) of the second stator (12b). Consequently, the controllable range of the motor is increased and the axial gap-type motor can be operated at higher velocity and higher torque.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: December 10, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hirofumi Atarashi
  • Patent number: 8598761
    Abstract: A device for positioning a planar array of magnets within a permanent magnet electrical machine of the type having a rotor and stator with an air gap there between. The device includes a body made of non-ferrous material and having a first side which is attachable to the rotor and a second side which, in an assembled machine, faces the air gap. The first side of the body has a plurality of recesses therein for receiving a corresponding plurality of magnets. The recesses are shaped and arranged to separate the magnets from each other and maintain a consistent spacing between them. When the device is attached to the rotor the magnets are held in a fixed position against the rotor. The electrical machine may be a motor or a generator.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: December 3, 2013
    Assignee: In Motion Technologies Pty., Ltd.
    Inventors: Charles Richard Langford, Steven Peter Camilleri, Dean James Patterson
  • Patent number: 8593023
    Abstract: There is provided a compact stator coil assembly that has heat radiation increased and a cooling performance improved. A stator coil assembly includes a first coil piece, a second coil piece, and an insulating member provided with a retaining portion that catches the first coil piece and the second coil piece so that those coil pieces form a predetermined coil pattern. A coil loop is formed by the first coil piece and the second coil piece. The stator coil assembly further includes a heat-transfer member having a heat-transfer portion insulated from the first coil piece and the second coil piece and embedded in the insulating member, and a slit formed in the heat-transfer member so as to cut off the pathway of an induced current that is to flow through the heat-transfer member.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tomotaka Iki, Masaru Ozawa
  • Patent number: 8581465
    Abstract: A generator comprises: a stator plate having a first fixed permanent magnet including a plurality of magnets on one side and a second fixed permanent magnet including a plurality of magnets on the other side; a first armature having a first switching winding, a first output winding, and a first back-electromotive force prevention winding on a fixed first ring core; a second armature having a second switching winding, a second output winding, and a second back-electromotive force prevention winding on a fixed second ring core; a first rotor plate having a first rotary permanent magnet; and a second rotor plate having a second rotary permanent magnet. The first and second rotor plates are coupled to each other by a driving shaft.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: November 12, 2013
    Assignee: Koueidenshi Corporation
    Inventor: Tetsuo Okamoto
  • Patent number: 8575806
    Abstract: A power generating structure comprises a front magnetic disc, a rear magnetic disc, and a coil disc disposed between the front and the rear magnetic discs. The coil disc is provided with a plurality of coil units radially arranged. Each coil unit includes a plurality of coils each with different turns of insulated wire. The front and the rear magnetic discs are respectively provided with a plurality of magnetic elements radially arranged. The coil disc is fixed to a shaft at a center thereof. The shaft extends outwardly from the rear magnetic disc. A plurality of blades can be attached to a periphery of the front or the rear magnetic disc. Therefore, the blades can be driven to rotate the front and the rear magnetic discs to have the coils of coil units continuously induced different voltages by the magnetic elements to supply various equipment.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 5, 2013
    Inventors: Chung-Yi Kuo, Shyh-Shiaw Lee
  • Patent number: 8575803
    Abstract: A reduced-size magnetic coupling device includes a first magnet group having a plurality of first magnets arranged on an interaction surface at equal intervals in the direction of the circumference about the rotation axis; a second magnet group having a plurality of second magnets arranged on an interaction surface at equal intervals in the direction of the circumference about the rotation axis and in positions in the vicinity of the rotation axis; and a third magnet group having a plurality of third magnets that are arranged at equal intervals in the circumferential direction about the rotation axis and in positions outward with respect to the second magnets. The third magnets have an area approximately equal to that of the second magnets. Each third magnet has a magnetic pole different from that of the second magnet that is positioned between the third magnet and the rotation axis.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: November 5, 2013
    Assignee: DENSO CORPORATION
    Inventors: Kingo Kuritani, Motohiko Ueda
  • Patent number: 8558425
    Abstract: An electric motor features liquid cooling capability. A rotor and a secondary rotor are coupled to a shaft for rotation therewith. The rotor comprises a first annular member and magnets secured to the first annular member. The secondary rotor comprises a second annular member and secondary magnets secured to the second annular member. A stator is spaced axially apart from the rotor and the secondary rotor. The stator comprises a plurality of generally planar windings secured to a magnetic core and a secondary planar windings secured to a secondary magnetic core. The magnetic core has at least one cooling channel.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: October 15, 2013
    Assignee: Deere & Company
    Inventors: Ronnie Dean Stahlhut, Jim Milton Shoemaker
  • Patent number: 8536759
    Abstract: AC generators are disclosed. Example generators may include a tubular air core, with high magnetic permeability and with a first and second end, the air core having a plurality of eddy current reducing slits passing from a radially outer surface of the air core to a radially inner surface of the air core; and a continuous coil made of conducting wire having a plurality of loops wrapped around the air core, the coil positioned between the first end and the second end of the air core.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 17, 2013
    Assignee: G+ Powertee Ltd.
    Inventor: Te-Pei Pan
  • Patent number: 8536970
    Abstract: A multilayered miniature coil component, comprising a plurality of coil layers and insulating layers, the plurality of coil layers and insulating layers being alternately overlapped on each other. Each of the plurality of coil layers includes a plurality of coils and wires, each of the coils has a first and a second end, and a plurality of first conductive portions is disposed on each of the coil layers, at least one second conductive portion is disposed on at least one of the coil layers, and each of the plurality of insulating layers has a plurality of conductive through holes disposed correspondingly to the first conductive portions and the second conductive portions, thus through the plurality of wires, the first and the second conductive portions and the conductive through holes, the plurality of coils in each of the coil layers are composed as a circuit loop.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Yi Liang, Chien-Chang Wang, Chung-Chun Huang
  • Patent number: 8536751
    Abstract: An electromagnetic device has a stator and a rotor rotating between facing surfaces of the stator and bearing a plurality of magnets distributed at regular intervals along its periphery. The magnets are so arranged that they form a sequence of alternately opposite poles on the surfaces of the rotor directed towards the stator, and the stator comprises two sets of independently supported magnetic yokes located at both sides of the rotor in front of the magnets. The magnetic yokes have two axially oriented arms, the end surfaces of which, in static conditions of the rotor, at least partly face a pair of successive magnets on a same surface of the rotor.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: September 17, 2013
    Assignee: AVIO S.p.A.
    Inventor: Marco Cipriani
  • Patent number: 8536747
    Abstract: A three phase brushless direct current multi-stage motor, that is of the pancake type. The direct current multi-stage motor comprises a continuous and additive magnetic flux field loop with a plurality of flux paths that flow across the vertically wound stators sandwiched between the rotors. The rotors are embedded with a plurality of permanent magnets which are alternately spaced near the outer radius.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 17, 2013
    Inventor: Thomas E. Baggett
  • Patent number: 8513849
    Abstract: A Halbach array is radially disposed in an environment optimized for efficiency and controlled for efficient generation and use of power in order to generate, establish, and maintain a desired level of rotational energy with enhanced efficiency and in order to make the most efficient use of electromotive forces and magnetic fields which are either intentionally created for the operation of the apparatus or which result from the operation of the apparatus.
    Type: Grant
    Filed: November 13, 2011
    Date of Patent: August 20, 2013
    Inventors: Martin Epstein, Jon Eric Harms
  • Patent number: 8502426
    Abstract: A single phase electromagnetic servo-actuator that includes a rotary actuator which moves a mobile member along a limited travel including a 2N ferromagnetic pole stator structure and at least one excitation coil, the stator structure being made of a material with high magnetic permeability and a rotor having ferromagnetic yoke and a thin magnetized portion of 2N pairs of axially magnetized poles, in alternate directions, and a rotor angular position sensor, the thin magnetized portion being a separate element from the ferromagnetic yoke.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 6, 2013
    Assignee: SONCEBOZ SA
    Inventors: Guillaume Loussert, Pierre Gandel
  • Patent number: 8489021
    Abstract: An apparatus is disclosed. The apparatus comprises a communication interface unit configured to receive reference biosignal data, and a wireless interface unit configured to receive a plurality of candidate biosignal transmissions from candidate biosignal transmitters. A comparison unit of the apparatus is configured to compare the reference biosignal data with the candidate biosignal transmissions, thus resulting in comparison data. The wireless interface unit is configured to execute a pairing protocol with a candidate biosignal transmitter of a candidate biosignal transmission by utilizing the comparison data.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Polar Electro Oy
    Inventors: Niclas Granqvist, Juhani Kemppainen, Jukka Jaatinen, Pertti Puolakanaho
  • Patent number: 8487470
    Abstract: A vertical wind turbine is provided that includes a support base defined about an axis, a bearing assembly, a drive shaft having a proximal end and an opposing distal end, and a multistage axial flux generator. The bearing assembly includes a fixed ring and a rotating ring, wherein the fixed ring is coupled to the support base. The drive shaft is coupled to the rotating ring of the bearing assembly, and a plurality of sails are coupled to the drive shaft. The multistage axial flux generator includes a rotor assembly coupled to the drive shaft and a stator assembly coupled to the support base. The rotor assembly includes a plurality of permanent magnets, and the stator assembly includes a plurality of coils defining at least two voltage output stages. The permanent magnets on the rotor assembly are close-coupled to the coils on the stator assembly.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: July 16, 2013
    Inventor: Derek Grassman
  • Patent number: 8453313
    Abstract: A method for assembling rotors which is applicable to a large axial gap type permanent magnet rotating machine is provided. A permanent magnet rotating machine comprising: a rotating shaft; at least two rotors comprising a table-like structure and permanent magnets attached thereto, the table-like structures being connected to the rotating shaft and being disposed in an axial direction of the rotating shaft; and a stator comprising a table-like structure and stator coils around which a copper wire is wound, said stator being disposed in a gap formed by the rotors so that the stator being separated from the rotating shaft, is manufactured by the following steps of assembling the two rotors such that a predetermined gap is formed therebetween; and mounting the magnets on the table-like structures by inserting the magnet from the radially outer side of the table-like structures towards the center of the rotation with the assembled state being maintained.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Hideki Kobayashi, Takehisa Minowa, Minori Miyata, Atsushi Miyata
  • Patent number: 8436507
    Abstract: An adjustable axial-flux disc motor, that is used in a flat space formed at a side or at the center of a wheel center for driving the wheel to rotate. The motor is activated to perform a rotation movement by the interactions of an electromagnetic field formed from the passing of an electric current through the armatures of its stator and a magnetic field resulting from the permanent magnet of its rotator. Moreover, there is a circular air gap sandwiched between the stator base and the rotator base, and the permanent magnet is further surrounded by coils. By adjusting the excitation current of the coils, the magnetic flux intensity can be modulated accordingly, and as the air gap magnetic flux is varied with the relative positioning of the stator and the rotator, the output characteristic of the motor will be varied accordingly.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: May 7, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Hsiang Chien, Yee-Pien Yang, Shih-Hsin Hsu
  • Patent number: 8432081
    Abstract: The invention discloses a direct rotation-inducing generator, which comprises an iron core bracket, and a rotating shaft is arranged on the iron core bracket. A first rotary disc and a second rotary disc are respectively arranged on both ends of the rotating shaft. A first iron core is arranged on the iron core bracket and a first coil is arranged on the periphery of the iron core bracket. A first sealing plate is arranged on the first rotating disc, a first magnet is arranged on the first rotary disc or the first sealing plate, and the surface of the first magnet and the first sealing plate share a same surface. A fourth magnet is arranged on the second rotary disc, the first magnet and the fourth magnet correspond with the two ends of the first iron core, and the first magnet faces the fourth magnet by the opposite poles.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: April 30, 2013
    Inventor: Yuanchang Wang
  • Patent number: 8426991
    Abstract: A power generator has a magnet rotor rotating upon receiving rotating force from a driving source and a stator coil arranged to face magnetic poles of the magnet rotor. The magnet rotor includes a rotary shaft supported by a housing and a permanent magnet. The stator coil includes coreless winding wires arranged to face the magnetic poles and a three-phase output terminal. The coreless winding wires are formed of effective output winding wires and connected with the three-phase output terminal through a switching device. The switching device is connected to a controlling device. The magnet rotor has a discoid shape including the rotary shaft at the center. The coreless winding wires form a pair of coil bodies arranged to sandwich the magnetic poles. The switching device changes the inductance value to a small value or a large value by connecting the winding wires to the three-phase output terminal.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 23, 2013
    Assignee: Nisca Corporation
    Inventor: Yukihiko Hayakawa
  • Patent number: 8424189
    Abstract: A method for assembling rotors which is applicable to a large axial gap type permanent magnet rotating machine. A permanent magnet rotating machine comprising: a rotating shaft; at least two rotors comprising a table-like structure and permanent magnets attached thereto, the table-like structures being connected to the rotating shaft and being disposed in an axial direction of the rotating shaft; and a stator comprising a table-like structure and stator coils around which a copper wire is wound, said stator being disposed in a gap formed by the rotors so that the stator being separated from the rotating shaft, is manufactured by the following steps of assembling the two rotors such that a predetermined gap is formed therebetween; and mounting the magnets on the table-like structures by inserting the magnet from the radially outer side of the table-like structures towards the center of the rotation.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 23, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Hideki Kobayashi, Takehisa Minowa, Minori Miyata, Atsushi Miyata
  • Patent number: 8421303
    Abstract: The present invention relates to an alternating-current-synchronous-servomotor having a disk-shaped rotor (55, 56) which is located between two stator halves. The rotor comprises an even number of flat permanent magnets pieces (56) having magnet field lines extending parallel to the shaft of the rotor. The permanent magnet pieces (56) form an annular like series including interstices extending around a hub (55) supported on the shaft. The magnet pieces are made of a magnetically non-conductive material and have flat sides acting as magnetic pole surfaces (N, S) which extend in parallel planes to which the axis of the shaft extend perpendicularly. The permanent magnet pieces (56) have limiting surfaces located radially inwards, which are supported each on one of peripheral planes of the hub (55). Said peripheral planes and said limiting surfaces comprise cooperating means (57, 58, 59, 60) for fixing said magnet pieces (54) on said hub (55).
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 16, 2013
    Assignee: Infranor Holding S.A.
    Inventors: Francesc Cruellas Alvarez, Ivan Flotats Giralt
  • Patent number: 8419385
    Abstract: A heat-dissipating fan includes a shaft seat. A coil base is coupled to the shaft seat. The coil base includes a base portion and a coil unit coupled to the base portion. The base portion includes a connection port electrically connected to the coil unit. The connection port is connected to a drive circuit. An impeller includes a hub and a permanent magnet. A shaft is coupled to the hub and rotatably coupled to the shaft seat about an axis. The permanent magnet is coupled to the hub and aligned with the coil unit. Since the coil base does not include electronic elements of the drive circuit, the axial height of the heat-dissipating fan is reduced, and the structure of the heat-dissipating fan is simplified.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: April 16, 2013
    Assignee: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventor: Alex Horng
  • Patent number: 8415857
    Abstract: An insert member is placed on one end surface of an armature on one axial side. A rotatable shaft member is integrally molded into one piece from a resin material and includes a shaft portion, a flange portion and a boss portion. The shaft portion axially extends through the armature and the insert member. The flange portion supports the other end surface of the armature on the other axial side. The armature and the insert member are fitted to the boss portion. The urging member is axially placed between a bottom portion of a motor housing and the insert member and axially urges the armature against the flange portion.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Asmo Co., Ltd.
    Inventor: Tomohisa Okamoto
  • Patent number: 8400044
    Abstract: An electromotive machine (200, 900) comprises a rotor (230; 800; 920) and a stator (210, 220; 500; 600; 700; 910, 920). The stator (210, 220; 500; 600; 700; 910, 920) comprises a first group of primary windings (260a, 240b, 240d; 520; 640a, 640b, 650a, 650b, 660a, 660b; 930a, 930b, 933a, 933b, 937a, 937b), which are concentrated windings, arranged on a first side of the rotor (230; 800; 920) and a second group of primary windings (240a, 250a, 240c; 530; 740a, 740b, 750a, 750b, 760a, 760b; 941a, 941b, 943a, 943b, 947a, 947b) that are concentrated windings arranged on a second, opposite, side of the rotor (230; 800; 920). The primary windings of each group comprise a plurality of coils that, in use, are supplied with current and produce a magnetic field.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 19, 2013
    Assignee: Force Engineering Limited
    Inventor: John Frederick Eastham
  • Patent number: 8400036
    Abstract: A specific force capacity thrust bearing and a method for producing such a design for a particular application are disclosed. The magnetic flux density in the stator material is maximized by varying cross-sectional area normal to the flux path. After a set of initial parameters are chosen, the design can be improved upon by changing the design variables and then verifying the force capacity using a finite element program. By linking the finite element program to a model of the geometry and using some basic algorithms, it is possible to automatically iterate until an optimal design is reached. The resulting design has a much higher force capacity than designs typical of the prior art.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Mainstream Engineering Corporation
    Inventors: Thomas M. Lasko, Daniel K. Mason
  • Patent number: 8395295
    Abstract: Apparatuses, systems, and methods provide for high density laminated sheet windings in axial and radial flux configurations. According to embodiments described herein, motor components such as a rotor or stator include a number of stacked sheets of conductive material. The stacked sheets are electrically connected in series to create a winding. Each motor component includes a number of conductors spaced apart with apertures between. The motor components are stacked and configured with the conductors of one rotor or stator positioned within the apertures of the other rotor or stator to create a thin, high density conductor. A magnemotive force is created when the magnetic flux is positioned over the conductors.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 12, 2013
    Assignee: The Boeing Company
    Inventor: Mark A. Cleveland
  • Patent number: 8390157
    Abstract: A stator has a mechanism for effectively dissipating internally generated heat, and is for use in a high power axial gap type rotating machine. The stator comprises a coil holding member and a coil secured to the coil holding member, in which the coil holding member comprises a material having a thermal conductivity of not less than 5 W/mK that is measured compliant with the ASTM E1530 and having an electrical conductivity of not more than 1×105 S/m that is measured compliant with the ASTM E345. This stator preferably comprises a radiation fin, having a thermal conductivity of not less than 150 W/mK, and having a bumpy surface so as to increase the surface area thereof threefold or more, at the circumference of the coil holding member.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: March 5, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Watanabe, Minori Miyata, Atsushi Miyata
  • Patent number: 8373319
    Abstract: According to an example embodiment, a modular pancake-type electrical generator includes a rotor and a modular stator, along with a support for the modular stator. The rotor includes a plurality of spaced-apart magnets around its perimeter, while the modular stator comprises a plurality of coil modules. The support is configured for receiving and retaining the plurality of coil modules and it comprises a plurality of support sections. The support sections form a circular array, for surrounding the rotor. Each support section comprises an interior receptacle formed in a generator housing, and includes a set of coil module mounting points and electrical contacts that are molded into or otherwise anchored within the interior receptacle. The receptacles and coil modules may be keyed, e.g., according to electrical phase, such that a coil module is installable only in receptacles having the correct complementary keying.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: February 12, 2013
    Inventor: Jerry Barnes
  • Patent number: 8360747
    Abstract: A miniature fan includes a housing having a mounting portion with a shaft seat. A base is mounted to the mounting portion of the housing. The base includes first and second faces spaced along an axis. An outer layer is provided on the first face of the base. A bottom layer is provided on the second face of the base. The base further includes a coil unit intermediate the outer layer and the bottom layer. The coil unit is electrically connected to a drive circuit. An impeller includes a shaft and a permanent magnet. The shaft is coupled to the shaft seat of the housing and rotatable about the axis. The permanent magnet is aligned with the coil unit. The axial height of the miniature fan is reduced, and the structure of the miniature fan is simplified.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: January 29, 2013
    Assignee: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventors: Alex Horng, Tso-Kuo Yin, Tsung-Hsin Cheng
  • Patent number: 8358046
    Abstract: An apparatus is disclosed for a hybrid electric power system for use in a multi-wheeled hybrid electric vehicle, and particularly for use in hybrid electric vehicles designed for operation in hostile environments where reliability and survivability of the propulsion system of the vehicle are important. The hybrid electric power system advantageously comprises at least one segmented electrical machine having multiple pairs of parallel stator segments with a magnetic rotor segment between each pair, for generating power from a thermodynamic engine, or for providing power to a driven wheel of the hybrid electric vehicle. A hybrid electric power system is also provided which comprises at least one distributed segmented electrical machine which comprises a distributed electrical energy storage system.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 22, 2013
    Inventor: Mihai C. Platon
  • Patent number: 8353687
    Abstract: A rotary pump (1), which can be operated by an electronically commutated DC motor (56) with an axial gap, with a dry space (54), in which a wound stator (55) is accommodated, and a fluid-fillable pump space (13), in which a permanent magnetic pump impeller (5) is accommodated to rotate, the pump impeller (5) being separated by a split plate (18) from stator (55), which is connected to a return ring (27), to which several poles (15) are connected, and a circuit board (17), and is in heat-conducting contact with it, and includes a heat conducting element (10) from a good heat conducting light metal. The heat conducting element (10) consists essentially of a disk (40) aligned at right angles to the motor shaft or an annular disk with a coaxial tube (39) extending in the direction of the pump impeller in one piece with it, open or closed toward the motor shaft, and that the circuit board (17) is connected to the heat-conducting element (15) on the side facing away from the pump impeller (5).
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 15, 2013
    Assignee: Dohler Motor GmbH
    Inventors: Michael John Werson, Colin Richard French
  • Patent number: 8353686
    Abstract: A rotary pump including an impeller rotatable within a housing. A load is imposed on the impeller as it rotates, in a direction that is substantially parallel to the axis of rotation and wherein the load stabilizes the motion of the impeller. The load may be achieved by magnetically biasing the impeller.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: January 15, 2013
    Assignee: Thoratec Corporation
    Inventor: Martin Christopher Cook
  • Patent number: 8344571
    Abstract: The present invention relates to a high-efficiency permanent magnet motor driven by a direct current (DC) without alternation, with the motor generating a high-efficiency kinetic energy synthesized from active energy of a stator and passive energy of a rotator, comprising: a stator comprising a coil distributively wound radially around a circular planar PCB, creating a magnetic field on both sides of the stator located at the center of two rotators; and a rotor comprising two circular planar permanent magnets with a corresponding size to the magnetic field of the stator, with the magnet having both faces magnetized arranged such that the magnetized faces of the magnets and the magnetic fields on both sides of the stator facing each other have the same polarity. Constant power is provided when DC power is applied to the coil of the stator, the rotor rotates, in the absence of an AC.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 1, 2013
    Inventor: I-Soo Lee