Pressing Means Detail Patents (Class 310/323.09)
  • Patent number: 7439653
    Abstract: This invention provides a vibration wave driving apparatus which makes it possible to reduce the localized abrasion of a contact member, and reduce the deterioration of performance due to long-term driving. This vibration wave driving apparatus has a contact member which is provided with fixed portions fixed to the lengthwise opposite end portions of the vibration expanding portion of the vibration member, and a connecting portion integrally connecting the two fixed portions together and having opposite ends fixed beam structure divided into a plurality.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: October 21, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kosuke Fujimoto
  • Publication number: 20080174206
    Abstract: Contact pressures between a driven member and an ultrasonic vibrator are balanced, making the driving characteristics in the forward and reverse directions uniform, and the driven member is driven with high driving efficiency. The invention provides a pressing mechanism of an ultrasonic vibrator for pressing sliding members against a driven member, the sliding members being provided at two or more positions corresponding to antinodes of a standing wave vibration of the ultrasonic vibrator. The pressing mechanism includes a pressing member configured to make contact with the ultrasonic vibrator at two or more positions corresponding to nodes of the standing wave vibration of the ultrasonic vibrator; and pressing-force adjusting units configured to adjustably apply pressing forces, which press the sliding members against the driven member, to the pressing member at two or more separate positions in the direction of a gap between the two or more nodes of the standing wave.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 24, 2008
    Applicant: OLYMPUS CORPORATION
    Inventor: Tetsuyuki SAKAMOTO
  • Publication number: 20080150394
    Abstract: An ultrasonic motor includes a stator that includes a comb body with a plurality of circumferentially-arranged comb-like projections and a piezoelectric body integrally mounted on the comb body, a rotor rotatable with respect to the stator, the rotor establishing pressure contact with the stator, a resin film formed on at least one of pressure contact surfaces of the stator and rotor, and a pressure contact force controlling portion that includes, an elastic member configured to generate a pressure contact force between the stator and rotor with an elastic force thereof, and a compressing portion configured to compress and shorten the elastic member. The pressure contact force controlling portion controls the pressure contact force between the stator and rotor by varying the elastic force of the elastic member depending on temperature of the motor.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 26, 2008
    Applicant: PENTAX CORPORATION
    Inventor: Yuichi KUROSAWA
  • Patent number: 7368853
    Abstract: The invention relates to a piezoelectric motor comprising a piezoelectric component that is connected to a resonator and a two-dimensional resonator that interacts with a movable. element, the resonator having principal surfaces that are parallel to each other and that are also identical in shape and size. The invention further relates to methods for producing such piezoelectric motors, wherein the resonators are manufactured by cutting a profiled, extruded bar into lengths or by cutting, preferably by punching, from sheet metal having constant thickness. Finally, this invention relates to a method for exciting such a piezoelectric motor, wherein the excitation frequency or frequencies is/are generated by the control electronics as a function of time in response to the respective peak current and/or in response to the respective phase minimum between current and voltage and/or in response to the change in phase.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 6, 2008
    Assignee: Elliptec Resonant Actuator Aktiengesellschaft
    Inventors: Bjoern B. Magnussen, Peter C. Varadi, Kai Wolf, Benjamin Hagemann, Dieter A. Schuler, Erick M. Davidson
  • Patent number: 7365475
    Abstract: An ultrasonic motor includes a circular stator having a piezoelectric element and a comb-tooth body having a plurality of comb teeth which are circumferentially arranged thereon, and a circular rotor having a rotation shaft, the circular rotor being in press-contact with the comb teeth of the circular stator. The circular rotor is provided with a projection which is in the press-contact with the comb teeth, wherein a width of the projection is smaller than a radial width of the comb teeth, and wherein a radial position of the projection varies along a circumferential direction of the circular rotor.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: April 29, 2008
    Assignee: PENTAX Corporation
    Inventor: Yuichi Kurosawa
  • Patent number: 7265480
    Abstract: A vibration wave linear motor is a vibration wave linear motor that can drive a plurality of driving targets with a simple and small configuration. In the linear motor, two guide members sandwich two vibrators, which are individually and electrically connected to a driving circuit by a flexible board and an electrode connecting part, and individually driven with an independent operation. Two lens frames are individually driven by the two vibrators via a pin member, a board spring, and an engagement protruding part. For example, in a lens apparatus, one of the two lens frames holds a lens unit in the third group, which is involved in focus achievement, whereas the other lens frame holds a lens unit in the second group, which is involved in zooming.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 4, 2007
    Assignee: Olympus Corporation
    Inventor: Yasuo Sasaki
  • Patent number: 7245061
    Abstract: A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: July 17, 2007
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventor: Charles Mentesana
  • Patent number: 7196454
    Abstract: An apparatus including a base configured to slidably engage a driven element, a piezoelectric element interposing the base and the driven element and attached to the base proximate a first piezoelectric element end, and a friction element attached proximate a second piezoelectric element end and configured to selectively engage the driven element.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 27, 2007
    Assignee: Zyvex Corporation
    Inventors: Christof Baur, Kenneth L. Bray
  • Patent number: 7187103
    Abstract: A piezoelectric drive that is used to create a relative movement between a first and a second body on a plane of movement. The drive includes a flat metal sheet (1) that forms, or is secured to, the first body and that is arranged parallel to the plane of movement. The metal sheet (1) has a rest region (3) and at least one resonator area (4). An elastic spring area (5), which is parallel to the plane of the metal sheet, is disposed between the rest region (3) and the resonator area (4). A flat, rectangular piezoelement (6), which can be excited in a 3,1 mode, is coupled to a longitudinal axis (A) such that the longitudinal axis of the piezoelement (6) lies essentially on a longitudinal axis of the resonator area (4). The resonator area (4) protrudes above the piezoelement (6) in the direction of the longitudinal axes (A), and forms a tapered horn shape (7).
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: March 6, 2007
    Assignee: Miniswys SA
    Inventor: Bonny Witteveen
  • Patent number: 7129620
    Abstract: The present invention comprises a first vibrator comprising a piezoelectric unit and at least one driving contacting part which vibrates by applying a predetermined voltage thereto, a second vibrator which comprises a piezoelectric unit and a plurality of driving contacting parts which vibrate by applying a predetermined voltage thereto, a pressing component which relatively presses the opposing parts of both the first vibrator and the second vibrator, and a driven component which is sandwiched between the first and second vibrators, in contact with the driving contacting part of the first and second vibrators which are pressed by the pressing component, and supported to enable movement with respect to the first and second vibrators in the long-side direction perpendicular to the direction relative to the opposing part.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: October 31, 2006
    Assignee: Olympus Corporation
    Inventors: Hiromichi Sakano, Yasuo Sasaki
  • Patent number: 7129621
    Abstract: The vibration wave linear motor of the present invention is structured comprising a driven component, a first vibrator having two or more driving contacting parts for driving the driven component in a certain predetermined direction, a second vibrator having one or more driving contacting parts for driving the driven component in the same direction as the drive by the first vibrator, a first supporting part for fixing and holding either one of the first or second vibrators, a second supporting part for holding the other of either the first or second vibrator such that swinging is possible, and a pressing component for pressing the first or second vibrator which is held by the second supporting part, such as to enable swinging, to the driven component.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: October 31, 2006
    Assignee: Olympus Corporation
    Inventors: Hiromichi Sakano, Yasuo Sasaki
  • Patent number: 7119477
    Abstract: A piezoelectric motor comprising: a piezoelectric vibrator (50) having a surface comprising a localized non-planar shaped first surface region thereon which first surface region has a shape different from the shape of the surface on which it is located; and a friction nub (52) formed with a second surface region that is substantially a negative relief of the first surface region, which first and second regions are bonded together. Preferably the friction nub (52) is detachably mounted to the vibrator (50) via a boss (54) waving a protuberance (56) of conical shape. Alternatively the friction nub (52) has a protuberance (76) which is form-fitted to a recess (72) in the vibrator (50) or boss (70), respectively. First and second surface regions can also be threading surfaces.
    Type: Grant
    Filed: October 31, 1999
    Date of Patent: October 10, 2006
    Assignee: Nanomotion Ltd.
    Inventors: Ze'ev Ganor, Nir Karasikov, Hanna Dodiuk-Kenig
  • Patent number: 6979935
    Abstract: A piezoelectric motor has a vibrating body for undergoing vibrational movement in accordance with a vibration wave, a contact member disposed in contact with and driven by the vibrating body during vibration thereof, and a support member for supporting the vibrating body in the vicinity of a vibration node of the vibration wave. A pressurization member applies pressure to the support member along a pressurization axis to maintain the vibrating body in pressure contact with the contact member so that during vibration of the vibrating body, the support member regulates movement of the vibrating body in a direction of rotation about the pressurization axis.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: December 27, 2005
    Assignee: Seiko Instruments Inc.
    Inventors: Akihiro Iino, Haruhiko Hasegawa
  • Patent number: 6831393
    Abstract: A linear actuator is an actuator for directly driving (moving) a slider. The linear actuator has an actuator unit constituted by the slider and an actuator body on which the slider is movably provided for linear movement. The actuator body has a base, a vibrating element for moving the slider, two rollers to movably support the slider, pushing means for pushing the vibrating element into contact with the slider, and a conducting circuit for conducting each of electrodes of the vibrating element by selecting a conducting pattern to each of the electrodes. Grooves are respectively formed in outer circumferential surfaces of the rollers, and the slider is arranged inside each of the grooves.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: December 14, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Osamu Miyazawa
  • Publication number: 20040119377
    Abstract: A device for transmitting the deflection of an actuator (2), comprising at least one transmission element (4) that has a first, a second and a third support zone, said first support zone (6) being associated with a counter-support, said second support zone (8) being associated with the actuator, and said third support zone being associated with a control element (20). The at least one transmission element rests on the counter-support with the first support zone under the action of the actuator and displaces the control element with the third support zone by way of a rotational movement about a center of rotation. The at least one transmission element is substantially configured as a plate (5) that is disposed substantially perpendicular to the movement of adjustment and the first, the second and the third support zone are configured as substantially plane surfaces on the plate. further relates to a method for producing the inventive transmission element.
    Type: Application
    Filed: October 20, 2003
    Publication date: June 24, 2004
    Inventors: Wilhelm Frank, Thomas Komischke, Maximilian Kronberger, Harald Schmidt
  • Publication number: 20040113519
    Abstract: A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.
    Type: Application
    Filed: December 12, 2002
    Publication date: June 17, 2004
    Inventor: Charles Mentesana
  • Patent number: 6744176
    Abstract: The present invention concerns a piezoelectric motor of the type including: a stator (2); a rotor (20) capable of moving in rotation in a plane (Pdm) called the mean movement plane perpendicular to a geometrical rotational axis (X1) on which the rotor (20) is centred; coupling means (8) for driving the rotor (20) arranged between the stator (2) and said rotor (20); piezoelectric means (12) capable of being electrically excited to impart a vibratory movement onto the coupling means (8); transmission means (40) able to transmit the vibratory movement from the coupling means (8) to the rotor (20) in order to drive said rotor (20) in rotation about its axis (X1), and holding means (44) for applying the rotor (20) onto the coupling means (8), characterised in that the coupling means (8) are arranged freely about the geometrical rotational axis (X1) on which they are centred, and in that the coupling means (8) rest on the stator (2) via support means (10) shaped to convert the vibratory movement of the point
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: June 1, 2004
    Assignee: Asulab S.A.
    Inventor: Rudolf Dinger
  • Patent number: 6353278
    Abstract: A ceramic piezoelectric transformer is provided which includes a compression mechanism. The compression mechanism is made up of, for example, a bolt and a nut which add a given compressive stress to a transformer body in a lengthwise direction thereof for absorbing a tensile stress arising from oscillations of the transformer body during operation, thereby allowing output energy from the transformer to be increased. In a modified form, a weight block is mounted on an end of the transformer body to increase the range of the output energy.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 5, 2002
    Assignee: Denso Corporation
    Inventors: Akira Fujii, Takumi Kataoka, Eturo Yasuda, Hitoshi Shindo
  • Publication number: 20020017831
    Abstract: A piezoelectric motor having a stator and a rotor. The stator and the rotor are in mechanical contact with one another along at least one cylindrical friction surface by means of curved, elastic and longitudinally elongated pusher plates, the pusher plates being held against the friction surface at a first end of the pusher plates, and arranged at an angle to the friction surface. A piezoelectric element is connected to either the rotor or the stator. The piezoelectric element has electrodes placed on opposing surfaces of the piezoelectric element, and is connectable to an alternating current source via the electrodes for providing longitudinal oscillations in the piezoelectric element. A first ring plate and a second ring plate are arranged on opposite sides of the piezoelectric element, so that at least a portion of surfaces of the piezoelectric element are pressed against surfaces of the first ring plate and the second ring plate, respectively, by a clamping device.
    Type: Application
    Filed: July 30, 2001
    Publication date: February 14, 2002
    Inventors: Alexander M. Iarochenko, V?apos;Yacheslav V. Lavrinenko
  • Patent number: 6323579
    Abstract: A fixing member is inserted under pressure into a central hole of an ultrasonic vibrator, a case and a center axle are fixed by a screw, a bearing is fixed on an end portion of the center axle, a rotor is mounted to rotate by the bearing, a connection member is fixed to the rotor, projections are formed on the edge of a disk of the connection member, spaces are formed between the projections respectively, a contact member is composed by inserting ends of divided parts into spaces of the connection member, and a ring-like elastic member is mounted on the contact member which is pressed on the ultrasonic vibrator.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: November 27, 2001
    Assignee: Honda Electronics Co., Ltd.
    Inventors: Yasunobu Yagita, Hisao Kurata, Keichi Sato, Shoji Takahashi, Yuji Maeda
  • Patent number: 6278221
    Abstract: A small, efficient and stable ultrasonic motor is provided, wherein force is prevented from varying before and after assembly and can be adjusted after assembly without requiring troublesome operations. An electronic apparatus with such a ultrasonic motor is also provided. The ultrasonic motor has a force applying device for applying a force to a vibrating member to be vibrated and to a moving member placed in abutment against the vibrating member to cause a frictional force therebetween so that the moving member is driven by the frictional force. The force applying device comprises a main force applying device for applying a main force and a force adjusting elements for adjusting the force applied by the main force applying device. In one embodiment, the main force applying device is a leaf spring and the force applying elements are slits formed in the leaf spring and strips formed between the slits. Adjustment of the force applied by the leaf spring is performed by removing one or more of the strips.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: August 21, 2001
    Assignee: Seiko Instruments Inc.
    Inventors: Masao Kasuga, Akihiro Iino, Makoto Suzuki
  • Publication number: 20010013740
    Abstract: An ultrasonic motor includes a stator, which includes a piezoelectric element, and a rotor, which opposes the stator. The piezoelectric element vibrates the stator to rotate the rotor. The rotor has an annular thin section. An elastic ring is secured to the thin section. The mass of the elastic ring is selected from a predetermined range of masses. The motor speed at which a predetermined level of noise is produced by the motor is substantially constant for the range of the masses. This reliably damps undesirable vibration of the motor.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 16, 2001
    Applicant: ASMO CO., LTD.
    Inventors: Takashi Fukui, Kouichi Ikeda
  • Publication number: 20010011859
    Abstract: An ultrasonic motor driven by a self-oscillation circuit which can be mounted in an electronic device without imposing structural restrictions on the electronic device and can thus be used easily. Among an oscillating member for generating an oscillatory wave, a pressing mechanism for causing a moving body to make pressing contact with the oscillating member, a moving body frictionally driven by the oscillatory wave, and outputting means for transmitting an output from the moving body to the outside, at least one member is made of an insulating material, and when in particular the moving body is provided with outputting means for transmitting an output torque this outputting means is made of an insulating material and no restrictions are imposed on the shapes and the materials of the oscillating member and the moving body, which closely relate to the output performance of the ultrasonic motor.
    Type: Application
    Filed: August 28, 1998
    Publication date: August 9, 2001
    Inventors: TAKASHI YAMANAKA, MASAO KASUGA, AKIHIRO IINO, KENJI SUZUKI
  • Patent number: 6262514
    Abstract: The application seeks to eliminate errors introduced by bearings and supports. It does so by integrating the drive means, in the form of a piezoelectric actuator, into the bearing or support. Thus the bearing no longer acts against the drive means, eliminating errors. It also describes a drive mechanism for elongate prismatic objects (140). The mechanism uses piezoelectric drives (148) and achieves very high accuracy of positioning with minimal backlash etc, whilst occupying only a small volume. This makes it suitable for use in electro-discharge machining and electro-discharge texturing operations where one or more wire electrodes (140) need to be positioned accurately with respect to a workpiece and maintained in that relative position as the workpiece erodes and the electrode (140) is consumed.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: July 17, 2001
    Assignee: Intelligent Manufacturing Systems Limited
    Inventors: Ramutis Bansevicius, Sami Ahmed
  • Patent number: 6211604
    Abstract: An ultrasonic motor includes a stator having a piezoelectric element and a rotor facing the stator. The piezoelectric element vibrates the stator to rotate the rotor. A lining member is located between the rotor and the stator. A spring is installed in the motor. The spring is deformed by a predetermined amount to press the rotor against the stator. The force of the spring pressing the rotor changes in accordance with the deformation of the spring. The spring is installed such that its deformation is in a predetermined range, so that, within the range, the urging force of the spring changes by a relatively small amount for a given change of deformation. Therefore, when deformation of the spring changes due to wearing of the lining member, the urging force of the disk spring scarcely changes. Accordingly, the rotation characteristics of the motor scarcely change over time.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: April 3, 2001
    Assignee: ASMO Co., Ltd.
    Inventors: Nobumitsu Oda, Takashi Fukui, Yoshihiro Adachi
  • Patent number: 6198201
    Abstract: A vibration wave apparatus includes a plurality of vibration member groups. Each vibration member group includes a plurality of vibration members having respective driving portions in which driving vibration waves are generated, where the respective driving portions are arranged at axially opposite sides of the vibration member group and the said plurality of vibration members are disposed coaxially with one another, and a holding member disposed between the respective driving portions of the plurality of vibration members, and arranged to support the vibration member group at a peripheral portion of the holding member.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: March 6, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ichiro Okumura
  • Patent number: 6177754
    Abstract: An ultrasonic motor has a piezoelectric element having an electrode pattern and driven by a voltage signal to undergo expansion and compression. An oscillator is connected to the piezoelectric element and is vibrationally driven by the expansion and compression movement of the piezoelectric vibrator. A rotor is disposed on the oscillator to be frictionally driven by expansion and compression movement of the piezoelectric element. A pivot member is connected to a central portion of the rotor. A pressing member is in pressure contact with the pivot member for urging the rotor into pressure contact with the oscillator. The pressing member and the pivot member are comprised of different materials, and the material of the pivot member has a hardness greater than that of the pressing member.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: January 23, 2001
    Assignee: Seiko Instruments Inc.
    Inventors: Makoto Suzuki, Akihiro Iino, Masao Kasuga, Kenji Suzuki, Takashi Yamanaka