Orientation Of Piezoelectric Polarization Patents (Class 310/357)
  • Publication number: 20140210315
    Abstract: A micro-electrical-mechanical system (MEMS) vibrating structure includes a carrier substrate, a first anchor, a second anchor, a single crystal piezoelectric body, a first conducting layer, and a second conducting layer. The first anchor and the second anchor are provided on the surface of the carrier substrate. The single-crystal piezoelectric body is suspended between the first anchor and the second anchor, and includes a uniform crystalline orientation defined by a set of Euler angles. The single-crystal piezoelectric body includes a first surface parallel to and facing the surface of the carrier substrate on which the first anchor and the second anchor are formed and a second surface opposite the first surface. The first conducting layer is inter-digitally dispersed on the second surface of the single-crystal piezoelectric body. The second conducting layer is inter-digitally dispersed on the first surface of the single-crystal piezoelectric body.
    Type: Application
    Filed: September 19, 2013
    Publication date: July 31, 2014
    Applicant: RF Micro Devices, Inc.
    Inventors: Kushal Bhattacharjee, Sergei Zhgoon
  • Publication number: 20140210915
    Abstract: A liquid ejecting head including a piezoelectric element, the piezoelectric element includes: a first electrode; an orientation control layer provided on the first electrode, the orientation control layer having a perovskite structure including Bi in an A site and Fe and Ti in a B site, and the orientation control layer being self-oriented in a (100) plane; a piezoelectric body layer provided on the orientation control layer and made of a piezoelectric material of the perovskite structure preferentially oriented in the (100) plane; and a second electrode provided on the piezoelectric body layer.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 31, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Tetsuya Isshiki
  • Publication number: 20140191619
    Abstract: In a method of manufacturing a piezoelectric device, among a +C plane on a +Z axis side of a piezoelectric thin film and a ?C plane on a ?Z axis side of the piezoelectric thin film, the ?C plane on the ?Z axis side of the piezoelectric thin film is etched. Thus, ?Z planes of the piezoelectric thin film on which epitaxial growth is possible are exposed. Ti is epitaxially grown on the ?Z planes of the piezoelectric thin film in the ?Z axis direction such that the crystal growth plane thereof is parallel to the ?Z planes of the piezoelectric thin film. Al is then epitaxially grown on the surface of the Ti electrode in the ?Z axis direction such that the crystal growth plane thereof is parallel to the ?Z planes of the piezoelectric thin film.
    Type: Application
    Filed: September 17, 2013
    Publication date: July 10, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Korekiyo ITO, Takashi IWAMOTO
  • Publication number: 20140191618
    Abstract: A plasma poling device includes a holding electrode (4) which is disposed in a poling chamber (1) and holds a substrate to be poled (2), an opposite electrode (7) which is disposed in the poling chamber and disposed facing the substrate to be poled held on the holding electrode, a power source (6) electrically connected to one electrode of the holding electrode and the opposite electrode, a gas supply mechanism supplying a plasma forming gas into a space between the opposite electrode and the holding electrode, and a control unit controlling the power source and the gas supply mechanism. The control unit controls the power source and the gas supply mechanism so as to form a plasma at a position facing the substrate to be poled and to apply a poling treatment to the substrate to be poled.
    Type: Application
    Filed: June 7, 2011
    Publication date: July 10, 2014
    Applicant: YOUTEC CO., LTD.
    Inventors: Takeshi Kijima, Yuuji Honda
  • Patent number: 8729982
    Abstract: The elementary filter of the HBAR type includes two resonators (20, 22) of the HBAR type which are each formed by a transducer (8) and a substrate (12) which are coupled in a suitable manner by electroacoustic waves. The first resonator (20), the second resonator (22) and the coupling element (28) by way of evanescent waves include the same monobloc acoustic substrate (12) which is arranged facing and coupled to the piezoelectric transducer (8) by waves having the same longitudinal or transverse vibration mode through the same reference electrode (10).
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: May 20, 2014
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S.), Universite de Franche-Comte
    Inventors: Dorian Gachon, Sylvain Ballandras
  • Publication number: 20140132118
    Abstract: Multilayered piezoelectric transformers, transformer elements and methods of constructing piezoelectric transformers are disclosed.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 15, 2014
    Inventors: Ross W. Bird, William M. Bradley, Gareth J. Knowles
  • Publication number: 20140132117
    Abstract: A method of fabricating a rare-earth element doped piezoelectric material having a first component, a second component and the rare-earth element. The method includes: providing a substrate; initially flowing hydrogen over the substrate; after the initially flowing of the hydrogen over the substrate, flowing the first component to form the rare-earth element doped piezoelectric material over a surface of a target, the target comprising the rare-earth metal in a certain atomic percentage; and sputtering the rare-earth element doped piezoelectric material from the target on the substrate.
    Type: Application
    Filed: January 22, 2014
    Publication date: May 15, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventor: John D. Larson, III
  • Patent number: 8720024
    Abstract: A method for processing a ring type piezoelectric device comprises: providing a ring type piezoelectric embryo; printing at least a pair of electrodes to divide the ring type piezoelectric embryo into a plurality of equal sections; and immersing the divided ring type piezoelectric embryo into high temperature silicon oil with high voltage for polarization so as to make the polarization of the ring type piezoelectric device perpendicular to a cross-section thereof.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: May 13, 2014
    Assignee: Chung-Yuan Christian University
    Inventors: Yung Ting, Sheuan-Perng Lin
  • Patent number: 8707549
    Abstract: The present invention relates to ultrasound transducers for ultrasonic imaging systems and, in particular, to improved grip assemblies for ultrasound transducers. One grip assembly includes a locking plate defining first and second apertures and a coupling post extending from the locking plate. An interface plate has a first elongate extension being extendable at least partially through the first aperture and a second elongate extension being extendable at least partially through the second aperture. A handle is coupled to the locking plate and includes a grip, a coupling interface, and a neck extending between the grip and the coupling interface. The coupling interface defines a coupling aperture for receiving the coupling post.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 29, 2014
    Assignee: Boise State University
    Inventors: Joie Burns, Michelle Sabick, Seth Kuhlman, Carly Lockard, Brittany Siewert
  • Patent number: 8650728
    Abstract: In one general aspect, various embodiments are directed to an ultrasonic surgical instrument that comprises a transducer configured to produce a standing wave of vibrations along a longitudinal axis having a node and an anti-node at a predetermined frequency. In various embodiments, an ultrasonic blade extends along the longitudinal axis and is coupled to the transducer. In various embodiments, the ultrasonic blade includes a body having a proximal end and a distal end, wherein the distal end is movable relative to the longitudinal axis by the vibrations produced by the transducer. In one general aspect, various embodiments are directed to a method of assembling the transducer for the ultrasonic surgical instrument. In various embodiments, the method comprises selecting piezoelectric elements and arranging the piezoelectric elements relative to the node to minimize the difference in magnitude between the currents drawn by the piezoelectric elements.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 18, 2014
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Shan Wan, Scott A. Nield, Shawn D. Bialczak, Ashvani K. Madan
  • Publication number: 20140001923
    Abstract: The present invention discloses a composite polarization type piezoelectric actuator comprising a ceramic element having a first polarizing region and a second polarizing region, wherein the first polarizing region has a first polarizing direction different from a second polarizing direction of the second polarizing region. When a voltage is applied to the composite polarization type piezoelectric actuator, an end face of the ceramic element is deformed. When a pulse wave voltage is applied to the composite polarization type piezoelectric actuator, the end face of the ceramic element generates an elliptical motion.
    Type: Application
    Filed: April 9, 2013
    Publication date: January 2, 2014
    Applicant: CHUNG-YUAN CHRISTIAN UNIVERSITY
    Inventors: Yung TING, SHEUAN-PERNG LIN, YUN-JUI SHIEH
  • Patent number: 8572825
    Abstract: A method for producing a piezoelectric composite substrate with satisfactory productivity controls the inclination of the crystal axis and the polar axis of a single-crystal thin film and prevents an adverse effect due to pyroelectricity in a production process. The method for producing a piezoelectric composite substrate provided with a plurality of piezoelectric materials includes an ion-implantation step, a bonding step, and a separation step. In the ion-implantation step, H+ ions are implanted into a piezoelectric single crystal material. In the bonding step, the piezoelectric single crystal material is bonded to a piezoelectric single crystal material. At this time, the polarity of the polar surface of the piezoelectric single crystal material is opposite to the polarity of the polar surface of the piezoelectric single crystal material, the polar surfaces being bonded to each other.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: November 5, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Norihiro Hayakawa, Hajime Kando, Ippei Hatsuda
  • Patent number: 8567026
    Abstract: A piezoelectric film poling method in which, with respect to an unpoled piezoelectric film formed on a substrate by a vapor phase growth method and having a Curie point Tc not higher than 300° C., an electric field greater than a coercive electric field of the film is applied in a predetermined direction under a temperature condition not higher than 0° C. to orient spontaneous polarization of the film in the predetermined direction.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 29, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Yasukazu Nihei
  • Patent number: 8567926
    Abstract: A piezoelectric element comprising a first electrode, a piezoelectric layer containing bismuth lanthanum iron and manganese formed above the first electrode, and a second electrode formed above the piezoelectric layer. The piezoelectric layer contains crystals preferentially oriented in a (111) plane.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: October 29, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Tomokazu Kobayashi, Masahisa Nawano
  • Publication number: 20130278115
    Abstract: Multilayered piezoelectric transformers, transformer elements and methods of constructing piezoelectric transformers are disclosed.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 24, 2013
    Inventors: Ross W. Bird, William M. Bradley, Gareth J. Knowles
  • Publication number: 20130257228
    Abstract: A PZT-based ferroelectric thin film formed on a lower electrode of a substrate having the lower electrode in which the crystal plane is oriented in a (111) axis direction, having an orientation controlling layer which is formed on the lower electrode and has a layer thickness in which a crystal orientation is controlled in a (100) plane preferentially in a range of 45 nm to 150 nm, and a film thickness adjusting layer which is formed on the orientation controlling layer and has the same crystal orientation as the crystal orientation of the orientation controlling layer, in which an interface is formed between the orientation controlling layer and the film thickness adjusting layer.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takashi Noguchi, Toshihiro Doi, Hideaki Sakurai, Toshiaki Watanabe, Nobuyuki Soyama
  • Patent number: 8525607
    Abstract: A crystal oscillator having a plurality of quartz crystals that are manufactured so that the directional orientation of the acceleration sensitivity vector is essentially the same for each crystal. This enables convenient mounting of the crystals to a circuit assembly with consistent alignment of the acceleration vectors. The crystals are aligned with the acceleration vectors in an essentially anti-parallel relationship and can be coupled to the oscillator circuit in either a series or parallel arrangement. Mounting the crystals in this manner substantially cancels the acceleration sensitivity of the composite resonator and oscillator, rendering it less sensitive to vibrational forces and shock events.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: September 3, 2013
    Assignee: Greenray Industries, Inc.
    Inventors: Steven Fry, Wayne Bolton, John Esterline
  • Publication number: 20130181580
    Abstract: A piezoelectric resonator element includes: a resonating arm extending in a first direction and cantilever-supported; a base portion cantilever-supporting the resonating arm; and an excitation electrode allowing the resonating arm to perform flexural vibration in a second direction that is orthogonal to the first direction. In the piezoelectric resonator element, the resonating arm includes an adjusting part adjusting rigidity with respect to a bend in a third direction that is orthogonal to the first and second directions.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 18, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Patent number: 8468665
    Abstract: A method of manufacturing a capacitive microphone comprises providing a substrate having at least one cavity. The method further comprises forming a backplate on the substrate, wherein the backplate has a plurality of holes, and forming a diaphragm on the backplate, wherein there are a first distance and a second distance between the diaphragm and the backplate. The method still further comprises forming an air gap between the backplate and the diaphragm through the first distance, and fastening the diaphragm to the backplate through the second distance.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: June 25, 2013
    Assignee: Industrial Technology Research Institute
    Inventor: Jen-Yi Chen
  • Publication number: 20130147321
    Abstract: A liquid ejecting head including a pressure-generating chamber which communicates with a nozzle opening, and a piezoelectric element including a first electrode, a piezoelectric layer formed above the first electrode and having a perovskite structure represented by the general formula ABO3, and a second electrode formed above the piezoelectric layer, wherein the piezoelectric layer, lead, zirconium, and titanium are present at A sites of the perovskite structure, and lead, zirconium, and titanium are present at B sites of the perovskite structure.
    Type: Application
    Filed: February 6, 2013
    Publication date: June 13, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Publication number: 20130093288
    Abstract: A method for forming an electrical device having a {100}-textured platinum electrode comprising: depositing a textured metal thin film onto a substrate; thermally oxidizing the metal thin film by annealing to convert it to a rocksalt structure oxide with a {100}-texture; depositing a platinum film layer; depositing a ferroelectric film. An electrical device comprising a substrate; a textured layer formed on the substrate comprising metal oxide having a rocksalt structure; a first electrode film layer having a crystallographic texture acting as a template; and at least one ferroelectric material layer exhibiting spontaneous polarization epitaxially deposited on the first electrode film layer whereby the rocksalt structure of the textured layer facilitates the growth of the first electrode film layer with a {100} orientation which forms a template for the epitaxial deposition of the ferroelectric layer such that the ferroelectric layer is formed with an {001} orientation.
    Type: Application
    Filed: June 5, 2012
    Publication date: April 18, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Glen R. Fox, Ronald G. Polcawich, Daniel M. Potrepka
  • Publication number: 20130093290
    Abstract: A ferroelectric device comprising a substrate; a textured layer; a first electrode comprising a thin layer of metallic material having a crystal lattice structure divided into granular regions; a seed layer; the seed layer being epitaxially deposited so as to form a column-like structure on top of the granular regions of the first electrode; at least one ferroelectric material layer exhibiting spontaneous polarization epitaxially deposited on the seed layer; the ferroelectric material layer, the seed layer, and first electrode each having granular regions in which column-like structures produce a high degree of polarization normal to the growth plane and a method of making.
    Type: Application
    Filed: March 30, 2012
    Publication date: April 18, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: GLEN R. FOX, Ronald G. Polcawich, Daniel M. Potrepka, Luz M. Sanchez
  • Patent number: 8395301
    Abstract: A piezoelectric transformer includes a single crystal relaxor ferroelectric element poled along a [0 11] direction and selected from the group consisting of PZN-PT, PMN-PZT, PZN-PT and PMN-PT. The element has two opposed surfaces substantially perpendicular to the [0 11] direction with an input electrode and an output electrode positioned on one surface. The output electrode is isolated from electrical communication with the input electrode. A ground electrode is positioned on the second, opposed surface. Input electrical energy results in piezoelectric change in the element that is mechanically coupled through the element to generate piezoelectric output energy.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: March 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Kenji Uchino, Yuan Zhuang, Seyit O Ural, Ahmed Amin
  • Patent number: 8375538
    Abstract: There is provided a method for manufacturing a piezoelectric actuator where the planar shape is adjusted by subjecting the piezoelectric body layer located on one of the outer surfaces in the two or more piezoelectric body layers to a polarization treatment to control remnant polarization of the piezoelectric body layer. The piezoelectric actuator is used as a drive portion of a piezoelectric drive type variable capacitor. The variable capacitor has high mechanical strength and excellent reliability for a long period of time. The relation between the displacement amount of the piezoelectric actuator and the capacity of the capacitor is stable, and the variable capacity is wide.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Hideki Shimizu, Takao Ohnishi, Takashi Ebigase, Naoki Goto
  • Patent number: 8347483
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 8, 2013
    Assignee: MR Holdings (HK) Limited
    Inventor: Xiaocong Guo
  • Patent number: 8344588
    Abstract: A multidomain plate acoustic wave device is provided having one or more single piezoelectric crystalline plates with differently polarized ferroelectric domains, where the domains have diverse directions of their axes of polarization. The device may consist of a multidomain plate acoustic wave transducer, a multidomain plate acoustic wave delay line, a multidomain plate acoustic wave rf filter, and any combination thereof. The differently polarized ferroelectric domains may comprise a collection of inversely or differently poled ferroelectric domains within a single piezoelectric medium. The medium may be any crystalline or ceramic plate with non-zero piezoelectric properties, in which the domains are created and embedded. In varying embodiments, the device includes electrodes oriented to generate an external rf field in various, respective directions, including in a direction normal to a basal plane of the device, or in a direction parallel to a length or a width of the device.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 1, 2013
    Assignee: University of Mississippi
    Inventors: Igor Ostrovskii, Andriy Nadtochiy
  • Publication number: 20120319533
    Abstract: Provided are a piezoelectric thin film having good piezoelectricity in which a rhombohedral structure and a tetragonal structure are mixed, and a piezoelectric element using the piezoelectric thin film. The piezoelectric thin film includes a perovskite type metal oxide, in which the perovskite type metal oxide is a mixed crystal system of at least a rhombohedral structure and a tetragonal structure, and a ratio between an a-axis lattice parameter and a c-axis lattice parameter of the tetragonal structure satisfies 1.15?c/a?1.30. The piezoelectric element includes on a substrate: the above-mentioned piezoelectric thin film; and a pair of electrodes provided in contact with the piezoelectric thin film.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 20, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kenichi Takeda, Jumpei Hayashi, Mikio Shimada, Yuichi Shimakawa, Masaki Azuma, Yoshitaka Nakamura, Masanori Kawai
  • Patent number: 8310134
    Abstract: Compositions and devices for harvesting electrical energy from mechanical and thermal energy, storing such produced energy, and sensing strain based on low cost materials and processes. In embodiments, the compositions are flexible and include a flexible polymer embedded and coated with a nanostructured piezoelectric material.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 13, 2012
    Assignee: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Ashavani Kumar, Andres Rafael Botello-Mendez, Hemtej Gullapalli, Mauricio Terrones Maldonado
  • Patent number: 8304967
    Abstract: A flexural vibration piece includes: a base portion; a vibrating arm extending from the base portion and having a first surface, a second surface opposing the first surface, and side surfaces connecting the first surface and second surface, wherein a laminated structure including a first electrode, a second electrode, and a piezoelectric layer disposed between the first electrode and second electrode, is formed on each of the first surface and second surface, the piezoelectric layer formed on the first surface side and the piezoelectric layer formed on the second surface side have mutually opposite polarization directions, and the first electrode formed on the first surface side and the first electrode formed on the second surface side are connected to each other.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Teruo Takizawa
  • Patent number: 8253300
    Abstract: An electrostrictive composite includes a flexible polymer matrix and a plurality of carbon nanotubes dispersed in the flexible polymer matrix. The carbon nanotubes cooperatively form an electrically conductive network in the flexible polymer matrix. A plurality of bubbles are defined by the flexible polymer matrix.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: August 28, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chang-Hong Liu, Lu-Zhuo Chen, Shou-Shan Fan
  • Patent number: 8237325
    Abstract: The invention is an energy transducer that utilizes a material's internal energy as an energy source by operating in a cycle where there is a net loss in the material's internal energy without the need to raise the temperature of the material above ambient temperature. The invention is accomplished by the use of selected materials in which the material's mechanical strain, magnetization or electric polarization can be controlled by cross coupling forces, and where the cross coupling coefficients are not equal to each other in finite operating regions.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 7, 2012
    Inventor: Gerald N. Pellegrini
  • Patent number: 8232708
    Abstract: To stably provide a KNN piezoelectric thin film element having piezoelectric characteristics replaceable with a PZT thin film. A piezoelectric thin film element includes: a piezoelectric thin film on a substrate, having an alkali niobium oxide series perovskite structure expressed by a general formula (K1-xNax)NbO3 (0<x<1), wherein an intensity of a higher angle side skirt field is stronger than an intensity of a lower angle side skirt field of a diffraction peak in a KNN (002) diffraction peak in an X-ray diffraction 2?/? pattern of the piezoelectric thin film element.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: July 31, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kenji Shibata, Hideki Sato, Kazufumi Suenaga, Akira Nomoto
  • Patent number: 8212456
    Abstract: A method for producing ceramic articles with multiple distinct regions of density by blending pore formers of different types or amounts with ceramic particles to create multiple pore former/ceramic particle mixtures. The mixtures are placed in a divided die cavity, divider removed and subjected to compaction under pressure to produce a compacted billet. The compacted billet is thermally processed to volatilize organics from the billet and sinter the billet, creating a cohesive billet of ceramic having two or more regions of density.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Sandia Corporation
    Inventors: Roger H. Moore, Michael A. Hutchinson, Ted V. Montoya, Thomas L. Spindle, Jr.
  • Publication number: 20120147100
    Abstract: A liquid ejecting head includes a pressure generating chamber communicating with a nozzle aperture, and a piezoelectric element including a piezoelectric layer and electrodes that apply a voltage to the piezoelectric layer. The piezoelectric layer is made of a complex oxide having a perovskite structure. The piezoelectric layer contains bismuth, barium, iron and titanium. The piezoelectric layer has an intensity ratio of a (111) orientation intensity to a (100) orientation intensity of 3 or more.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 14, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Masahisa NAWANO, Tomokazu KOBAYASHI
  • Patent number: 8188800
    Abstract: A crystal oscillator having a plurality of quartz crystals that are manufactured so that the directional orientation of the acceleration sensitivity vector is essentially the same for each crystal. This enables convenient mounting of the crystals to a circuit assembly with consistent alignment of the acceleration vectors. The crystals are aligned with the acceleration vectors in an essentially anti-parallel relationship and can be coupled to the oscillator circuit in either a series or parallel arrangement. Mounting the crystals in this manner substantially cancels the acceleration sensitivity of the composite resonator and oscillator, rendering it less sensitive to vibrational forces and shock events.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: May 29, 2012
    Assignee: Greenray Industries, Inc.
    Inventors: Steven Fry, Wayne Bolton, John Esterline
  • Publication number: 20120126668
    Abstract: A piezoelectric resonator element includes a piezoelectric substrate formed of an AT-cut quartz crystal substrate in which the thickness direction thereof is a direction parallel to the Y? axis; and excitation electrodes disposed so as to face vibrating regions on both front and rear principal surfaces of the piezoelectric substrate. The piezoelectric substrate includes a rectangular excitation portion in which sides parallel to the X axis are long sides thereof, and sides parallel to the Z? axis are short sides thereof; and a peripheral portion having a smaller thickness than the excitation portion and formed around the excitation portion. Each of side surfaces of the excitation portion extending in a direction parallel to the X axis is present in one plane, and each of side surfaces of the excitation portion extending in a direction parallel to the Z? axis has a step.
    Type: Application
    Filed: October 4, 2011
    Publication date: May 24, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Toshihiro II, Kenji KOMINE, Matsutaro NAITO
  • Patent number: 8156620
    Abstract: A method of producing an ultrasonic probe may include superimposing an ultrasonic wave receiving organic piezoelectric element layer made of an organic material on an ultrasonic wave transmitting inorganic piezoelectric element layer made of an inorganic material, and polarizing the ultrasonic wave receiving organic piezoelectric element layer and the ultrasonic wave transmitting inorganic piezoelectric element layer on a condition that the ultrasonic wave receiving organic piezoelectric element layer is superimposed on the ultrasonic wave transmitting inorganic piezoelectric element layer.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 17, 2012
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Takeshi Habu, Takayuki Sasaki
  • Patent number: 8148878
    Abstract: A piezoelectric element having a crystal structure that enables a piezoelectric film to be formed in an unstressed state is provided. The piezoelectric film contains an a-axis oriented crystal and a c-axis oriented crystal, where a difference in lattice constant between the a-axis oriented crystal and the c-axis oriented crystal is not more than 0.06 ?. The present inventors have newly found that a stress accumulated in the piezoelectric film can be reduced while maintaining favorable piezoelectric properties when a condition that the difference in lattice constant between the a-axis oriented crystal and the c-axis oriented crystal is not more than 0.06 ? is satisfied. When the condition is satisfied, the c-axis oriented crystal and the a-axis oriented crystal are properly balanced and as a result crystal particles of the piezoelectric film are closest-packed on its base in an ideal state, which contributes to a reduced stress.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 3, 2012
    Assignee: TDK Corporation
    Inventors: Kazuya Maekawa, Takao Noguchi, Kenichi Tochi, Ken Unno
  • Publication number: 20120062073
    Abstract: A liquid ejecting head including a pressure-generating chamber which communicates with a nozzle opening, and a piezoelectric element including a first electrode, a piezoelectric layer formed above the first electrode and having a perovskite structure represented by the general formula ABO3, and a second electrode formed above the piezoelectric layer, wherein the piezoelectric layer, lead, zirconium, and titanium are present at A sites of the perovskite structure, and lead, zirconium, and titanium are present at B sites of the perovskite structure.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Hiromu MIYAZAWA, Jiro KATO
  • Publication number: 20120017680
    Abstract: A piezoelectric resonator element includes: a resonating arm extending in a first direction and cantilever-supported; a base portion cantilever-supporting the resonating arm; and an excitation electrode allowing the resonating arm to perform flexural vibration in a second direction that is orthogonal to the first direction. In the piezoelectric resonator element, the resonating arm includes an adjusting part adjusting rigidity with respect to a bend in a third direction that is orthogonal to the first and second directions.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 26, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Masayuki KIKUSHIMA
  • Publication number: 20110292134
    Abstract: A perovskite oxide, which includes a first component represented by General Formula (P1) given below and a second component represented by General Formula (P2) given below. (Bix1, Xx2) (Fez1, Mnz2)O3 ??(P1) (Ay1, Yy2)BO3 ??(P2) (where, Bi is an A-site element and X is an A-site element with an average ion valence of not less than four. A is one kind or a plurality of kinds of A site elements other than Pb with an average ion valence of two, Y is a one kind or a plurality of kinds of A-site elements with an average valence of not less than three. Fe and Mn are B-site elements, and B is one kind or plurality of kinds of B-site elements with an average ion valence of four.) 0.6?x1<1.0, 0?x2?0.4, 0.65?y1<1.0, 0?y2?0.4, x2+y2>0, 0.6?z1<1.0, 0?z2?0.4.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Tsutomu SASAKI, Yukio SAKASHITA
  • Publication number: 20110292133
    Abstract: Disclosed is a non-lead perovskite oxide having a low Curie temperature and high ferroelectricity represented by General Formula (P) given below. (Bix1, Bax2, Xx3)(Fey1, Tiy2, Mny3)O3 ??(P) (where, Bi and Ba are A-site elements, X is one kind or a plurality of kinds of A-site elements, other than Pb and Ba, with an average ion valence of 2. Fe, Ti, and Mn are B-site elements. O is oxygen. 0<x1+X2<1.0, 0<x3<1.0, 0<y1+y2<1.0, 0?y3<1.0, 0<x1, 0<x2, 0<y1, 0<y2. The standard molar ratios among A-site elements, B-site elements, and oxygen are 1:1:3, but the molar ratios among them may deviate from the standard ratios within a range in which a perovskite structure may be formed.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Tsutomu SASAKI, Yukio Sakashita
  • Publication number: 20110279187
    Abstract: The invention relates to a resonator of the harmonic bulk acoustic resonator IIBAR type, comprising a piezoelectric transducer (6) clamped between two electrodes (4, 8) with a strong electroacoustic coupling, cut according to a first cutting angle ?1, and an acoustic substrate (10) with a working frequency acoustic quality coefficient at least equal to 5.1012, cut according to a second cutting angle ?2 with at least one shearing vibration mode. The transducer and the substrate are arranged in such a way that the polarisation direction of the shearing mode of the transducer and the polarisation direction of the shearing of the substrate are aligned, and the second cutting angle ?2 is such that the temperature coefficient of the frequency of the first order CTFB1 corresponding to the shearing mode and to the second cutting angle ?2 is zero with inversion of the sign thereof on either side of, or equal to, a bias.
    Type: Application
    Filed: May 29, 2009
    Publication date: November 17, 2011
    Applicant: Centre National De La Recherche Scientifique (C.N.R.S.)
    Inventors: Sylvain Ballandras, Dorian Gachon
  • Publication number: 20110216130
    Abstract: A piezoelectric element having a piezoelectric layer and electrodes. The piezoelectric layer is 3 ?M or less in thickness. The piezoelectric layer is made of a piezoelectric material containing a perovskite compound including bismuth manganate ferrate and barium titanate. The piezoelectric layer is preferentially oriented with the (110) plane. The position (2?) of the X-ray diffraction peak attributed to the (110) plane is 31.80° or more and 32.00° or less.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 8, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Yasuaki HAMADA
  • Publication number: 20110216133
    Abstract: A piezoelectric element having a piezoelectric layer and electrodes. The piezoelectric layer is 3 ?m or less in thickness. The piezoelectric layer is made of a piezoelectric material containing a perovskite compound including bismuth manganate ferrate and barium titanate. The piezoelectric layer is preferentially oriented with the (110) plane. A full width at half maximum of the X-ray diffraction peak attributed to the (110) plane is 0.24° or more and 0.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 8, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Yasuaki HAMADA
  • Patent number: 8004164
    Abstract: In a piezoelectric device that uses a vibration mode in a direction parallel to a polarization direction, a single crystal device that achieves an electromechanical coupling factor of 65% or more, which is more than the electromechanical coupling factor (about 60%) of the existing flat plane type piezoelectric single crystal device in that vibrational direction, is provided by performing certain treatment to its device plane. Specifically, a piezoelectric portion having a comb-shaped structure in which a plurality of slits are formed with a certain arrangement pitch on either of device planes whose polarization direction is their normal direction, the slits having a depth extending in a direction substantially perpendicular to the device plane and being filled with an insulating material, is formed to achieve 65% or more of an electromechanical coupling factor in a direction parallel to the polarization direction.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 23, 2011
    Assignee: JFE Mineral Company, Ltd.
    Inventor: Mitsuyoshi Matsushita
  • Publication number: 20110181154
    Abstract: A thin film piezoelectric bulk acoustic wave resonator has a multilayer structure including a piezoelectric thin film, a first metal electrode film, and a second metal electrode film. At least a part of the piezoelectric thin film is interposed between the first and second metal electrodes. A resonance part and a connection part are formed on an insulating substrate as films by a thin film forming apparatus. The resonance part vibrates in radial extension mode with a center of the piezoelectric thin film used as a node, the piezoelectric thin film of two resonance parts is polarized in a direction perpendicular to a film surface, and a width of the connection part is one-fourth or less of a width of two resonance parts.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 28, 2011
    Inventors: Atsushi Isobe, Kengo Asai, Hisanori Matsumoto
  • Publication number: 20110180623
    Abstract: Provided is a multi-layer piezoelectric element capable of achieving a high response speed and an increase in the displacement amount, ensuring sufficient mechanical strength, and suppressing deterioration of characteristics. A multi-layer piezoelectric element (1) includes a stacked body in which piezoelectric layers (3) and internal electrode layers (5) are alternately laminated, and the piezoelectric layers (3) include a polarization domain (12) extending over a plurality of crystal particles (11). Since the piezoelectric layers (3) include the polarization domain (12) extending over the plurality of crystal particles (11), the multi-layer piezoelectric element (1) can achieve a high response speed and an increase in the displacement amount, ensure sufficient mechanical strength, and suppress deterioration of characteristics.
    Type: Application
    Filed: August 26, 2009
    Publication date: July 28, 2011
    Applicant: KYOCERA CORPORATION
    Inventor: Tomohiro Kawamoto
  • Publication number: 20110164098
    Abstract: A piezoelectric element comprising a first electrode, a piezoelectric layer containing bismuth lanthanum iron and manganese formed above the first electrode, and a second electrode formed above the piezoelectric layer. The piezoelectric layer contains crystals preferentially oriented in a (111) plane.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 7, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Tomokazu Kobayashi, Masahisa Nawano
  • Patent number: 7969073
    Abstract: A tangentially poled piezoelectric single crystal ring resonator is disclosed. A single crystal material is machined into elements and formed into a ring structure. The single crystal elements have a <110> poled tangential axis. The elements may also have a <211>, <511> or <322> orientation range in the radial direction. The elements may have a generally wedge shape.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 28, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Wesley S. Hackenberger, Kevin A. Snook