Phosphor On Envelope Wall Patents (Class 313/485)
  • Patent number: 8358054
    Abstract: Provided is a light emitting device package. The light emitting device package comprises a substrate, a light emitting device on the substrate, a first heatsink between the substrate and the light emitting device, the first heatsink being at least partially disposed within the substrate to transfer heat generated from the light emitting device, first and second electrodes electrically separated from each other, the first and second electrodes being electrically connected to the light emitting device.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: January 22, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bum Chul Cho
  • Patent number: 8354784
    Abstract: A light emitting device comprises at least one light emitter, typically an LED, operable to generate blue light and a wavelength conversion component. The wavelength conversion component can be light transmissive or light reflective and comprises at least two phosphor materials that are operable to absorb at least a portion of said blue light and emit light of different colors and wherein the emission product of the device comprises the combined light generated by the LED(s) and the phosphor materials. The phosphor materials are configured as a pattern of non-overlapping areas on a surface of the component.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: January 15, 2013
    Assignee: Intematix Corporation
    Inventors: Xianglong Yuan, Bing Dai, Yi-Qun Li
  • Patent number: 8350460
    Abstract: The invention relates to a fluorescent coating for Hg low-pressure discharge lamps, comprising a fluorescent composition from at least one green fluorescent material emitting in the green spectral range, especially a Tb-and/or Eu-doped green fluorescent material, and a red fluorescent material emitting in the red spectral range, especially a Eu and/or Mn red fluorescent material. The invention is characterized in that a further fluorescent material is present which is adapted to absorb UV Hg and Hg-Vis radiation.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 8, 2013
    Assignee: OSRAM AG
    Inventors: Claudia Castiglioni, Wolfgang Gruber, Armin Konrad
  • Publication number: 20120319559
    Abstract: A lamp including a first and second lamp substrate with a first and second external electrode, respectively, and a first and second internal phosphor coating, respectively, wherein the first phosphor coating is a phosphor monolayer. A method of manufacturing a lamp, including screen-printing a phosphor monolayer on a first lamp substrate; screen-printing a phosphor layer on a second lamp substrate; joining the phosphor-coated faces of the first and second lamp substrates together with a seal; and joining a first and second electrode to the uncoupled exterior faces of the first and second lamp substrates, respectively.
    Type: Application
    Filed: May 18, 2012
    Publication date: December 20, 2012
    Inventors: JEFFRY M. BULSON, JAY E. POGEMILLER, DAVID B. DEHAVEN, WALTER E. MASON, CYRUS M. HERRING, SUNG-JIN PARK
  • Patent number: 8324795
    Abstract: A fluorescent lamp may include a pair of hot cathode electrodes at both its ends, wherein a phosphor is formed in a laminated manner on the inner surface of a glass tube and a protection film is formed between the glass tube and the phosphor, wherein a residual impure gas in the lamp, including the amount occluded by the phosphor and the protection film, is set to 0.5% or less with the sealed rare gas partial pressure ratio, and wherein the following relationship is fulfilled: GHg=A×CL, A=0.0032-0.163 [mg/cc], wherein the amount of sealed mercury is GHg [mg], the lamp internal volume is CL [cc], and the coefficient is A [mg/cc].
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: December 4, 2012
    Assignee: Osram AG
    Inventors: Keigo Iwase, Yukio Matsuda, Takashi Osawa, Takehiko Sakurai
  • Patent number: 8294357
    Abstract: A wavelength conversion element, including: a substrate; and a ceramic layer formed on the substrate, the ceramic layer being obtained by sintering a ceramic precursor; wherein the ceramic precursor is a compound selected from the group composed of alkoxysilane and a compound having a plurality of siloxane structures; a phosphor and particles of an oxide are mixed with the ceramic precursor; the phosphor has particle diameters within a range of from 1 ?m to 50 ?m and a concentration of the phosphor in the ceramic layer is equal to or more than 40 wt % and less than 95 wt %; and the particles of the oxide have primary particle diameters within a range of from 0.001 ?m to 30 ?m and a concentration within a range of from 0.5 wt % to 20 wt % in the ceramic layer.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 23, 2012
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Takashi Washizu, Takuji Hatano, Yoshihito Taguchi
  • Patent number: 8294352
    Abstract: In a fluorescent lamp, a fluorescent material has a particle size of not greater than 1 ?m and a thickness of not greater than 5 ?m. With this structure, ultraviolet ray of 254 nm is efficiently converted into visible light and the light obtained by conversion is efficiently emitted to the outside.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: October 23, 2012
    Assignee: Tohoku University
    Inventors: Tadahiro Ohmi, Yasuyuki Shirai
  • Patent number: 8292468
    Abstract: A light emitting apparatus includes a lamp base, a light-transmissive bulb envelope, a light source for emitting light, and a heat sink coupled to the light source. A solid state LED light bulb may further include a down conversion material. The down conversion material is disposed within the bulb envelope, remote from the light source and between the light source and the lamp base. The heat sink may include at least one metal fin and, additionally or alternatively, include a mesh disposed over at least an outer portion of the bulb envelope. A solid state light bulb may include a light guide for directing the light emitted by the light source. The solid state light bulb configurations place the light source and heat sink at the apex of the light bulb envelope, distant from the lamp base, in order to dissipate heat produced by the light source into the environment. In addition, at least part of the heat sink is outside the light bulb envelope to maximize the heat dissipation.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 23, 2012
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Nadarajah Narendran, Jean Paul Freyssinier, Yiting Zhu
  • Patent number: 8294351
    Abstract: A matrix-type cold-cathode electron source device includes a mesh structure (8) on which through-holes (9) are formed and drive portions (7a, 7b). The through-hole (9) has an opening diameter of 1/N or less of the alignment pitch of electron source elements (4) and the drive portions (7a, 7b) drive the mesh structure (8) every 1/N of the alignment pitch of the electron source elements (4). Thus it is possible to increase a resolution without reducing the size of an electron source.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Makoto Yamamoto, Keisuke Koga
  • Publication number: 20120248966
    Abstract: A reduced wattage gas discharge lamp and method of making same. The gas discharge lamp includes a light transmissive envelope with an inner surface, having a light scattering reflective layer disposed thereon. A phosphor layer is coated on an inner surface of the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes at least 88% argon, by volume, at a low pressure. An electrode is located within the light-transmissive envelope. The electrode is capable of providing an electric discharge to trigger a reaction within the light-transmissive envelope to cause the lamp to emit light. The remainder of the discharge-sustaining gaseous mixture is substantially neon, at a low pressure. The low pressure is about 3.6 Torr.
    Type: Application
    Filed: May 15, 2011
    Publication date: October 4, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Brian D. Jones, Craig Boyce
  • Patent number: 8269410
    Abstract: To achieve a light-emitting device emitting light with high brightness, closer to natural light, and less color shift due to a small change in intensity of emitted light, in a light-emitting device including a light source emitting light by driving current and at least one wavelength-converting material absorbing at least part of the light from the light source and emitting light having a different wavelength, the color coordinate x1(17.5) and the color coordinate y1(17.5) of the light emitted at a driving current density of 17.5 A/cm2 and the color coordinate x1(70) and the color coordinate y1(70) of the light emitted at a driving current density of 70 A/cm2 satisfy the following Expressions (D) and (E): ?0.006?x1(17.5)?x1(70)?0.006??(D), ?0.006?y1(17.5)?y1(70)?0.006??(E).
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 18, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Naoto Kijima, Yasuo Shimomura, Hideaki Kaneda, Kimiya Takeshita
  • Publication number: 20120229013
    Abstract: An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventors: John Peterson, Daniel Marian, Paul Salvi
  • Patent number: 8247960
    Abstract: A 3-dimension facet light-emitting source device including a transparent container, an anode plate, a cathode plate, a plurality of transparent plates and a low-pressure gas layer is provided. The transparent container has a sealed space. The transparent plates are disposed between the anode plate and the cathode plate, and have a fluorescent layer thereon respectively. The lower pressure gas layer is filled in the sealed space to induce electrons emitting from the cathode plate, and the electrons fly in a direction parallel to the transparent plates and hit each fluorescent layer to emit light, so as to form a set of 3-dimension facet patterns.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: August 21, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Po-Hung Wang, Yi-Ping Lin, Yen-I Chou, Ming-Chung Liu, Jung-Yu Li, Shih-Pu Chen, Jung-Ya Hsieh, Ta-Wei Chien
  • Patent number: 8242525
    Abstract: Disclosed herein is a group of phosphors of the formula M2(SiO4)1-x-y-z(TiO4)x(ZrO4)y(HfO4)z:A,S and light emitting devices which utilize these phosphors.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 14, 2012
    Assignee: Lightscape Materials, Inc.
    Inventors: Yongchi Tian, Perry Niel Yocom, Olga Zakharov, Alison Sides, Alan C. Thomas
  • Publication number: 20120200613
    Abstract: To obtain effective luminance and light efficiency while avoiding discharge, it is necessary to sufficiently increase a current luminous efficiency of gas and an electron emission efficiency of an electron source. In a fluorescent lamp, an anode electric field is increased by setting a pressure of a noble gas or a molecular gas enclosed to 10 kPa or higher, setting an anode voltage to 240 V or lower, and setting a substrate distance to 0.4 mm or smaller. Furthermore, the resulting effect that the current luminous efficiency is increased in proportion to the electric field is used. Also, by applying a MIM electron source having an electron emission efficiency exceeding 10% as an electron source, a non-discharge fluorescent lamp having a light emission luminance equal to or larger than 104 [cd/m2] and a light emission efficiency equal to or larger than 120 [lm/W] is achieved.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 9, 2012
    Inventors: Masakazu Sagawa, Shin Imamura, Toshiaki Kusunoki
  • Patent number: 8232717
    Abstract: To achieve a light-emitting device emitting light with high brightness, closer to natural light, and less color shift due to a small change in intensity of emitted light, in a light-emitting device including a light source emitting light by driving current and at least one wavelength-converting material absorbing at least part of the light from the light source and emitting light having a different wavelength, the color coordinate x1(17.5) and the color coordinate y1(17.5) of the light emitted at a driving current density of 17.5 A/cm2 and the color coordinate x1(70) and the color coordinate y1(70) of the light emitted at a driving current density of 70 A/cm2 satisfy the following Expressions (D) and (E): ?0.006?x1(17.5)?x1(70)?0.006??(D), ?0.006?y1(17.5)?y1(70)?0.006??(E).
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: July 31, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Naoto Kijima, Yasuo Shimomura, Hideaki Kaneda, Kimiya Takeshita
  • Publication number: 20120187871
    Abstract: A low-pressure discharge lamp includes a discharge vessel, a gas discharge medium including nitrogen contained in the discharge vessel at low pressure, wherein the discharge lamp is configured such that light may be generated by a high-current discharge process of the gas discharge medium.
    Type: Application
    Filed: September 17, 2009
    Publication date: July 26, 2012
    Applicant: OSRAM AG
    Inventors: Ursel Fantz, Roland Friedl, Holger Hein, Achim Hilscher, Patrick Starke
  • Patent number: 8227972
    Abstract: A display filter includes a base film disposed on a display panel. The base film includes a phototransmissive unit having a constant horizontal cross-sectional area, and a light absorbing unit which includes a light absorbing material and surrounds the phototransmissive unit. A plasma display panel (PDP) may include the display filter. The display filter may improve ambient contrast by increasing the transmittance of light emitted by a display panel and by blocking externally incident light.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yeon-Joo Choi, Cha-Won Hwang, Sang-Mi Lee, Seung-Goo Baek
  • Patent number: 8216017
    Abstract: In a method of fabricating a planar light source, a first substrate is formed at first. First electrodes approximately parallel to each other are formed on the first substrate. Sets of first dielectric patterns are formed on the first substrate. Each set of the first dielectric patterns includes at least two first striped dielectric patterns, and each of the first striped dielectric patterns covers one of the first electrodes correspondingly. The edges of the top of each first striped dielectric pattern are raised in a peak shape. A phosphor layer is formed between the first striped dielectric patterns of each set of the first dielectric patterns. A second substrate is formed. The first and second substrates are bound; meanwhile, a discharge gas is injected into the discharge space.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: July 10, 2012
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Yu-Heng Hsieh, Chu-Chi Ting, Shinn-Haw Huang, Chang-Jung Yang, Chia-Hua Ai
  • Patent number: 8217567
    Abstract: LED lighting systems operate their LED above a junction temperature of 85° C. and space apart from the LED, components of the LED lighting system that reduce an expected lifetime of the LED lighting system to less than 25,000 hours as a result of operating the LED above the junction temperature of 85° C. Accordingly, the LED itself may be driven hotter than is conventionally the case, without impacting its lifetime. By allowing the LED to operate hotter, reduced heat sinking may be needed for the LED itself, which can decrease the cost, size and/or complexity of the thermal management system for the LED lighting system and/or can allow a thermal budget for the LED lighting system to be used elsewhere. Related structures are also described.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 10, 2012
    Assignee: Cree, Inc.
    Inventors: Antony P. van de Ven, Gerald H. Negley
  • Patent number: 8210698
    Abstract: A light-conversion composition and light sources utilizing that composition are disclosed. The light-conversion composition includes a transparent carrier medium, a phosphor-conversion medium, and a heat-conducting medium. The transparent carrier medium is transparent to light at first and second wavelengths. The phosphor-conversion medium converts light of the first wavelength to light of the second wavelength, the phosphor-conversion medium being dispersed in the transparent carrier medium. The heat-conducting medium has a thermal resistance that is less than that of the carrier medium. The heat-conducting medium is dispersed in the transparent carrier medium such that the heat-conducting medium is present in a concentration sufficient to yield a net thermal resistance that is less than 90 percent of the carrier thermal resistance. The heat-conducting medium can include particles of a transparent crystalline material, such as silicon, diamond, or sapphire.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Bridgelux, Inc.
    Inventor: Heng Liu
  • Publication number: 20120153804
    Abstract: The present invention is related to a UV CCFL lamp, and more particularly, to a UV CCFL lamp for curing a nail gel with a UVA irradiation having a peak wavelength of such as 366 nm or 368 nm in the field of nail art. In order to provide a UV CCFL lamp capable generating ultraviolet light of high intensity and uniform lighting with great electrical safety and reliability, the UV CCFL lamp of the present invention comprises a translucent hermetic envelope configured to enclose a discharge medium and a UV-excited phosphor to generate the desired UV irradiation preferably in the UVA spectrum range.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Inventor: Yu Jen Li
  • Patent number: 8193696
    Abstract: An oxynitride phosphor including: a compound represented by Formula 1: M1a-xM2x-yCeySib-zAlzOc-xNx,??Formula 1 wherein M1 is at least one element selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and europium, M2 is at least one element selected from the group consisting of scandium, yttrium, lutetium, lanthanum, praseodymium, samarium, gadolinium, terbium, ytterbium, and dysprosium, and a is about 1.7 to about 2.3, b is about 0.7 to about 1.3, c is about 3.5 to about 4.5, x is greater than 0 and less than about 2, y is greater than 0 and less than about 0.5, and z is equal to or greater than 0 and less than about 0.5.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: June 5, 2012
    Assignees: Samsung Electronics Co., Ltd., Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tae-gon Kim, Tae-hyung Kim, Seoung-jae Im
  • Publication number: 20120119639
    Abstract: The invention relates to a luminescent converter (10, 12) for a phosphor-enhanced light source (100, 102, 104). The luminescent converter comprises a first luminescent material (20) configured for absorbing at least a part of excitation light (hv0) emitted by a light emitter (40, 42) of the phosphor-enhanced light source, and for converting at least a part of the absorbed excitation light into first emission light (hv1) comprising a longer wavelength compared to the excitation light. The luminescent converter further comprising a second luminescent material (30) comprising organic luminescent material (30) and configured for absorbing at least a part of the first emission light emitted by the first luminescent material, and for converting at least a part of the absorbed first emission light into second emission light (hv2) having a longer wavelength compared to the first emission light.
    Type: Application
    Filed: March 31, 2010
    Publication date: May 17, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Cornelia Titia Staats, Gerardus Arnoldus Rita Van Dijk, Rene Theodorus Wegh, Willibrordus Hubertus, Martinus, Maria Van De Spijker, Martinus Petrus Joseph Peeters
  • Publication number: 20120104930
    Abstract: The invention relates to an electron emission material for use in fluorescent lamps that releases a significantly reduced amount of decomposition material, predominantly CO2, during in-lamp heat-treatment. Consequently, there is a significant reduction in the amount of electrode decomposition-related contaminants in the lamp. In addition, the emission material of the invention requires a much lower temperature in-lamp heat-treatment during manufacturing than that of conventional lamps of the same type. The invention, while described herein for use primarily with fluorescent lamps, has broader application to any device where the primary means of electron emission is of the thermionic type.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Inventors: Zoltan Somogyvari, Laszlo Balazs, Csaba Horvath
  • Patent number: 8169136
    Abstract: A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Toshitaka Nakamura, Hironaka Fujii, Hiroaki Miyagawa, Rajesh Mukherjee, Bin Zhang, Amane Mochizuki
  • Patent number: 8169131
    Abstract: A lamp includes a light-emitting body that converts electric energy into light energy and a translucent glass covering the light-emitting body, wherein a phosphor layer is provided on at least inner or outer surface of the translucent glass. The phosphor layer includes a fluorescent material including a first phosphor that at least partially converts energy emitted by an excitation source, which emits ultraviolet having a wavelength of about 365 nm, to a first emission spectrum that is different from the energy, and a second phosphor that at least partially converts the first emission spectrum to a second emission spectrum. Peak wavelengths of the emission spectrum of the first and second phosphors have a relation of complementary colors so that when the light created due to the peak wavelengths of the first and second phosphors are mixed, the resulting light is in the white region.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 1, 2012
    Assignee: Nichia Corporation
    Inventors: Yoshinori Murazaki, Shinpei Kinoshita, Masatoshi Kameshima, Suguru Takashima, Hiroto Tamaki
  • Publication number: 20120098411
    Abstract: Disclosed herein are low pressure discharge lamps having enhanced chroma and color preference. improved color quality scale, especially at elevated color temperatures, is provided. The light generated by the light-emitting elements of the lamp, when the lamp is energized, has Color Preference Scale values, as well as delta chroma values for fifteen color samples of the Color Quality Scale, within select parameters.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Inventors: Katalin Tóth, István Károly Deme, Attila Kulcsár, Gáza István Szeghy
  • Publication number: 20120074848
    Abstract: The present invention provides a method of monitoring performance of a discharge lamp. The discharge lamp includes electrodes and a discharge vessel filled with gas and equipped with a luminescent layer, wherein the gas is intended to emit a first ultraviolet light in a first spectral range when the gas is excited by an electric field produced by the electrodes, and at least part of the first ultraviolet light is intended to be changed into a second ultraviolet light in a second spectral range of longer wavelength than the first spectral range by the luminescent layer. The method comprises the steps of finding the value of a first intensity of the first ultraviolet light; finding the value of a second intensity of the second ultraviolet light; and determining the conversion efficiency of the luminescent layer for converting the first ultraviolet light into the second ultraviolet light on the basis of the ratio of the value of the second intensity to the value of the first intensity.
    Type: Application
    Filed: June 2, 2010
    Publication date: March 29, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Xiaoyan Zhu, Georg Greuel, Levinus Pieter Bakker, Cornelis Reinder Ronda, Thomas Juestel
  • Patent number: 8142051
    Abstract: An illumination system according to the principles of the invention may include a first LED and a carrier material. The carrier material may be comprised of plastic, synthetic material, polymer, latex, rubber or other material. The carrier material may also contain a phosphor, fluorescent material, organic fluorescent material, inorganic fluorescent material, impregnated phosphor, phosphor particles, phosphor material, YAG:Ce phosphor, or other material for converting electromagnetic radiation into illumination or visible light.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 27, 2012
    Assignee: Philips Solid-State Lighting Solutions, Inc.
    Inventor: Alfred D. Ducharme
  • Patent number: 8089079
    Abstract: A light emitting device includes a package body including a multilayer cavity; a first light emitting part including a first light emitting device in a first cavity of a first layer area of the multilayer cavity, and a second light emitting part including a second light emitting device in a second cavity of a second layer area higher than the first layer area.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 3, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Kwang Cheol Lee
  • Publication number: 20110316412
    Abstract: A surface light source apparatus with dual-side emitting light includes at least a cathode wire structure, a transparent anode structure, a fluorescent layer and a low-pressure gas layer. The transparent anode structure is a surface structure, wherein the cathode wire structure and the transparent anode structure are parallel to each other. The fluorescent layer is located between the cathode wire structure and the transparent anode structure. The low-pressure gas layer fills the space between the cathode wire structure and the transparent anode structure and functions to induce the cathode evenly emitting electrons. The electron mean free path of the low-pressure gas layer allows at least a sufficient number of electrons to directly impact the fluorescent layer under an operation voltage.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi-Ping Lin, Shih-Pu Chen, Jung-Yu Li, Lian-Yi Cho
  • Publication number: 20110291547
    Abstract: A Plasma Display Panel (PDP) enabling optimization of a process to apply phosphor paste in order to achieve mass production using a jet nozzle method includes dummy areas structured to determine whether application conditions such as an ejecting pressure or the like are stable by measuring a depth of the applied layer after applying phosphor paste at a portion thereof in advance. The PDP includes: a first substrate and a second substrate opposing each other; address electrodes arranged on the first substrate; display electrodes arranged on the second substrate along a direction perpendicular to the address electrodes; barrier ribs arranged in a space between the first substrate and the second substrate to define a plurality of discharge cells, and phosphor layers arranged in each of the discharge cells.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 1, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Byung-Soo Jeon
  • Publication number: 20110291546
    Abstract: Disclosed herein is a low pressure discharge lamp having a coating disposed upon at least a portion of inner lead-in wires, wherein the coating comprises refractory nanoparticles. Also disclosed herein, in particular, are fluorescent lamps having a coating disposed upon at least a portion of inner lead-in wires, the coating comprising refractory oxide nanoparticles having a median primary particle size of less than about 70 nm, with a thickness of from about 0.5 micrometer to about 10 micrometer. Disclosed advantages may include lessened end discoloration over the operational lifetime of the lamp, enhanced lumen maintenance, and inhibited mercury consumption.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Inventor: Jon Bennett JANSMA
  • Patent number: 8049400
    Abstract: A surface light source apparatus with dual-side emitting light includes a transparent cathode structure, a transparent anode structure, a fluorescent layer and a low-pressure gas layer. The transparent cathode structure and the transparent anode structure are opposite to each other and respectively a surface structure. The fluorescent layer is located between the transparent cathode structure and the transparent anode structure. The low-pressure gas layer fills a space between the transparent cathode structure and the transparent anode structure and functions to induce the cathode for evenly emitting electrons. In addition, the electron mean free path of the low-pressure gas layer allows at least sufficient electrons to directly impact the fluorescent layer under an operation voltage.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 1, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Ping Lin, Shih-Pu Chen, Jung-Yu Li, Lian-Yi Cho
  • Patent number: 8044572
    Abstract: A light conversion structure ensuring good light transmission and less deterioration and capable of controlling light to a desired color tone and emitting a highly bright light, and a light-emitting device using the same. The light conversion structure is a light conversion structure including a layer formed of a ceramic composite, which absorbs a part of a first light to emit a second light and transmits a part of the first light, and a fluorescent layer for the control of color tone, which is formed on the surface of the ceramic composite and which absorbs a part of the first light or a part of the second light to emit a third light and transmits a part of the first light or a part of the second light, wherein the ceramic composite includes a solidified body where at least two or more metal oxide phases are formed continuously and three-dimensionally entangled with each other, and at least one metal oxide phase in the solidified body includes a metal element oxide capable of emitting fluorescence.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: October 25, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Shin-ichi Sakata, Atsuyuki Mitani, Itsuhiro Fujii
  • Patent number: 8043653
    Abstract: In method of forming a dielectric film and a Plasma Display Panel (PDP) using the dielectric film, a paste is coated on a substrate and forms a dielectric film, and a lateral surface of a terminal portion of the dielectric film has a contact angle in a range of 30 to 80° with respect to a surface of the substrate. The PDP preferably includes: a first substrate and a second substrate facing each other and forming a discharge space; a plurality of pairs of sustain electrodes arranged on the first substrate; and a plurality of address electrodes arranged on the second substrate. At least one dielectric film is preferably arranged between the first substrate and the second substrate, and a lateral surface of a terminal portion of the dielectric film preferably has a contact angle in a range of 30 to 80° with respect to a surface of the first substrate.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Tae-Joung Kweon
  • Patent number: 8044591
    Abstract: A fluorescent lamp can be configured to prevent a decrease in luminescent efficiency when located in a high temperature room. The fluorescent lamp can include a couple of stems each including an emitter electrode located opposite to each other at each end of a tube, a filler gas located in the tube, a damping material and a coolest portion connected to the tube via the stem and the damping material. The coolest portion can be configured with a first material that has a higher thermal conductivity than the conductivity of both the tube and the stems. The damping material can be configured with both the first material and a second material that has a lower conductivity than the conductivity of the first material. A content ratio of first material vs. second material can change along a length of the damping material. Thus, the coolest portion can maintain a favorable temperature and the fluorescent lamp can maintain a favorable luminescent efficiency even when in a sealed casing.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: October 25, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yoshifumi Takao, Naoyuki Matsubara
  • Patent number: 8030836
    Abstract: An apparatus and method for photodynamic therapy or photodynamic diagnosis using an illuminator comprising a plurality of light sources generally conforming to a contoured surface and irradiating the contoured surface with substantially uniform intensity visible light. The light sources may comprise generally U-shaped fluorescent tubes that are driven by electronic ballasts. Adjustment of the ballast voltage controls the output power of the tubes. The tubes are supported by a sheet-metal or plastic housing and are covered by a polycarbonate shield which directs cooling airflow within the unit and prevents glass-patient contact in the vent of tube breakage. An aluminum reflector located behind the tubes increases both the output irradiance and the uniformity of the output distribution. The spacing of the U-shaped tubes is varied to increase the output at the edges of the illuminator to make the output more uniform. Also, different portions of the tubes are cooled at different amounts, to improve uniformity.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 4, 2011
    Assignee: Dusa Pharmaceuticals, Inc.
    Inventors: Scott Lundahl, Rebecca Kozodoy, Ronald Carroll, Elton Leppelmeier
  • Patent number: 8029155
    Abstract: There is provided a lighting device comprising one or more groups of solid state light emitters and one or more groups of lumiphors, which emits mixed illumination having x, y color coordinates within a region defined by (0.32, 0.40), (0.36, 0.38), (0.41, 0.455), and (0.36, 0.48). Also, such lighting devices which emit light having x, y color coordinates within other specified regions. Also, such lighting devices with respective groups which emit light within two specified regions, and which mix to produce light within such regions. Also, methods of lighting light from such emitters and/or lumiphors.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: October 4, 2011
    Assignee: Cree, Inc.
    Inventors: Antony Paul Van De Ven, Gerald H. Negley
  • Patent number: 8026661
    Abstract: A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: September 27, 2011
    Assignee: The Regents of The University of California
    Inventors: Shimon Weiss, Michael C. Schlamp, A. Paul Alivisatos
  • Patent number: 8026657
    Abstract: An electron emission light-emitting device includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, having a function of inducing the cathode to emit electron uniformly. The low-pressure gas layer has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 27, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Jung-Yu Li, Shih-Pu Chen, Yi-Ping Lin, Wei-Chih Lin, Lian-Yi Cho
  • Patent number: 8025816
    Abstract: This invention provides a novel phosphor material that has better brightness than conventional phosphors using dispersed rare earth ions, and that possesses excellent light resistance, temporal stability, and the like, and a light-emitting device with high brightness comprising such phosphor material and an excitation ultraviolet light source corresponding to the properties thereof. A phosphor comprising a silicon-containing solid matrix and semiconductor superfine particles dispersed therein at a concentration of 5×10?4 to 1×10?2 mol/L, said semiconductor superfine particles having a fluorescence quantum yield of 3% or greater and a diameter of 1.5 to 5 nm, and a light-emitting device including said phosphor and a light source for excitation light with an intensity of 3 to 800 W/cm2.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: September 27, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Norio Murase, Masanori Ando
  • Patent number: 8013507
    Abstract: A cold cathode fluorescent lamp which makes a step dedicated to the acquisition of advantageous effects unnecessary without lowering an optical flux maintaining factor and, at the same time, prevents peeling-off of a phosphor layer in a step of bending light transmitting glass tube is provided. The cold cathode fluorescent lamp includes a light-transmitting glass tube, a phosphor layer which is formed on an inner surface of the light-transmitting glass tube, mercury and a rare gas which is filled in the inside of the light-transmitting glass tube, and cold cathodes which are arranged in a sealed manner in both end portions of the light-transmitting glass tube in a state that the cold cathodes face each other in an opposed manner, wherein the phosphor layer is constituted of a plurality of phosphor particles and a bonding agent. The bonding agent is made of aluminum oxide and boron oxide. The phosphor particles are covered with the bonding agent by coating.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 6, 2011
    Assignee: Hitachi Displays, Ltd.
    Inventor: Norikazu Uchiyama
  • Patent number: 8008847
    Abstract: A gas discharge tube is manufactured by closing an opening of a glass tube by forming a glass layer with outer peripheral shape identical to the outer peripheral shape of the glass tube on an end face of the glass tube. An open end face (opening) of the glass tube is pressure-welded to a dry film containing a low melting point glass powder and a binder resin, and then the glass tube is lifted up to transfer the dry film for closing the opening to the end face of the glass tube. A phosphor support member is inserted into the glass tube from a side opposite to the end face and then an end of the phosphor support member is caused to adhere to the dry film. The binder resin is burnt off, and the dry film is vitrified to produce a low melting point glass layer.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: August 30, 2011
    Assignee: Shinoda Plasma Corporation
    Inventors: Akira Tokai, Hitoshi Yamada, Kenji Awamoto
  • Patent number: 8002413
    Abstract: There is provided a light source unit which includes a luminescent light source which receives excitation light so as to emit light of a predetermined wavelength band, excitation light sources which shine excitation light on to the luminescent light source, a reflection space having the luminescent light source in an interior thereof and an emission space which emits luminescent light source light emitted from the reflection space from an emission port whose area is made smaller than the area of the luminescent light source and a projector which employs the light source unit.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 23, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Tetsuro Narikawa
  • Patent number: 7994700
    Abstract: An image display apparatus includes a rear plate having a plurality of electron-emitting devices, a face plate having a plurality of pixels, each pixel having one or more phosphors that emit fluorescence in response to electrons emitted from the electron-emitting devices, and a drive circuit for driving the electron-emitting devices. At least one of the phosphors is CaAlSiN3:Eu2+; and the electrons are supplied to the pixels for 2 ?s to 70 ?s from the electron-emitting devices on a scan basis, each of which devices supplies current to one or more of the phosphors.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shoshiro Saruta
  • Publication number: 20110187263
    Abstract: A plasma display device with lowered discharge voltage by mixing activated carbon with phosphor layers and/or barrier ribs to produce carbon dioxide. The plasma display device includes a first substrate and a second substrate spaced from the first substrate, wherein the first substrate and the second substrate are sealed together. A plurality of barrier ribs are on the first substrate for defining a plurality of discharge cells between the first substrate and the second substrate. A phosphor layer is in the plurality of discharge cells, and a gas mixture including carbon dioxide is between the first and second substrates, wherein at least one of the phosphor layer or the plurality of barrier ribs includes an activated carbon.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Inventors: Younggil Yoo, Kyeongwoon Chung
  • Patent number: 7990040
    Abstract: A fluorescent lamp including a phosphor layer including (Y1-x-yGdx)AlO3:EU3+y, wherein 0.4?x?0.7 and 0?y?0.1, and at least one of each of a green and blue emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of preferably 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of (Y1-x-yGdx)AlO3:Eu3+y in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Alok Srivastava, Holly Comanzo, Venkatesan Manivannan
  • Patent number: 7990039
    Abstract: A cold cathode fluorescent lamp for a backlight of a liquid crystal display device includes a light-transmitting glass tube in which a rare gas and mercury are sealed, and a phosphor film which is formed on an inner peripheral surface of the glass tube. The phosphor film is formed such that a phosphor suspension is formed by mixing phosphors into a suspension produced by strongly stirring a mixed solvent made of butyl acetate and nitrocellulose and by re-stirring the mixture, and the phosphor suspension is applied to the inner peripheral surface of the glass tube by coating.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: August 2, 2011
    Assignee: Hitachi Displays, Ltd.
    Inventors: Yuko Matsumoto, Hidetsugu Matsukiyo, Emiko Hayakawa