Discharge Device Load With Fluent Material Supply To The Discharge Space Patents (Class 315/111.01)
  • Patent number: 10098218
    Abstract: For the purpose of providing a transportable linear accelerator system which can restrain entering of losing ion beams deviated from a trajectory therefor, to thereby efficiently achieve reduction in radioactivity at low cost, and a transportable neutron source equipped therewith, a transportable linear accelerator system is configured to be provided with a beam chopper just before an inlet of a post-accelerator, thereby to cut off, from the proton beams pre-accelerated by a pre-accelerator, uncontrolled proton beams, and thus to radiate only the controlled proton beams to the post-accelerator, so that the proton beams are prevented from hitting an acceleration electrode, etc. of the post accelerator.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: October 9, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazuo Yamamoto, Sadahiro Kawasaki, Hiromitsu Inoue
  • Patent number: 9837249
    Abstract: A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: December 5, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Soonam Park, Dmitry Lubomirsky, Hideo Sugai
  • Patent number: 9734976
    Abstract: An array of carbon nanotube micro-tip structure includes an insulating substrate and a plurality of patterned carbon nanotube film structures. The insulating substrate includes a surface. The surface includes an edge. A plurality of patterned carbon nanotube film structures spaced from each other. Each of the plurality of patterned carbon nanotube film structures is partially arranged on the surface of the insulating substrate. Each of the plurality of patterned carbon nanotube film structures comprises two strip-shaped arms joined together forming a tip portion protruding and suspending from the edge of the surface of the insulating substrate. Each of the two strip-shaped arms comprises a plurality of carbon nanotubes parallel to the surface of the insulating substrate.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: August 15, 2017
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20150145414
    Abstract: A variable frequency microwave pulse generator that includes a high voltage charger for charging with a high voltage, a high pressure gas tank for supplying insulation gas, and an electrode discharge unit. The electrode discharge unit includes a case, an accommodation section defined inside the case, and a pair of electrode sections disposed at one side and the other side of the accommodation section so as to face each other. The pair of electrode sections is spaced apart from each other to define a spark gap therebetween where the insulation gas supplied from the high pressure gas tank is loaded. An annular resonance recess is defined at the central portion of one electrode section of the pair of electrode sections, the depth of the resonance recess being variable in response to an adjustment knob disposed on the case being manipulated.
    Type: Application
    Filed: June 23, 2014
    Publication date: May 28, 2015
    Inventors: Hoon LEE, Sung-Hyun KIM, Sang-Kyu KIM, Dong-Min KIM, Kyung-Hoon LEE
  • Patent number: 9006972
    Abstract: A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of ¼ of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: April 14, 2015
    Assignee: Trustees of Tufts College
    Inventor: Jeffrey A. Hopwood
  • Patent number: 8993982
    Abstract: A switchable ion gun switchable between a cluster mode setting for producing an ion beam substantially comprising ionised gas clusters and an atomic mode setting for producing an ion beam substantially comprising ionised gas atoms, comprising: a source chamber having a first gas inlet; a gas expansion nozzle for producing gas clusters in the presence of gas atoms by expansion of a gas from the source chamber through the nozzle; an ionisation chamber for ionising the gas clusters and gas atoms; wherein the ionisation chamber has a second gas inlet for admitting gas directly into the ionisation chamber to form ionised gas atoms; and a variable mass selector for mass selecting the ionised gas clusters and ionised gas atoms to produce an ion beam variable between substantially comprising ionised gas clusters and substantially comprising ionised gas atoms.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 31, 2015
    Assignee: VG Systems Limited
    Inventor: Bryan Barnard
  • Publication number: 20150084508
    Abstract: A structural body is provided in fluid, perpendicular to a typical flow direction of the fluid. The structural body includes a cylindrical insulating body having at least one hollow portion and at least one conducting body positioned in the hollow portion of the insulating body. In a cross section of the insulating body having a normal line in an axial direction of the insulating body, the following relationship is satisfied: 1.5×Diy?Dix?15×Diy where Dix is a length of the insulating body in the typical flow direction (direction x) and Diy is a maximum value of a length of the insulating body in a direction (direction y) perpendicular to the typical flow direction.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 26, 2015
    Inventors: Yoshimasa KONDO, Kunihiko YOSHIOKA
  • Patent number: 8969838
    Abstract: A device is described herein which may comprise a chamber, a fluid line, a pressurized source material in the fluid line, a component restricting flow of the source material into the chamber, a sensor measuring flow of a fluid in the fluid line and providing a signal indicative thereof, and a pressure relief valve responsive to a signal to reduce a leak of source material into the chamber in the event of a failure of the component.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: March 3, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Georgiy O. Vaschenko, Krishna Ramadurai, Richard Charles Taddiken
  • Publication number: 20150015144
    Abstract: Embodiments provide a ceramic metal halide (CMH) lamp and methods for making the same that provide or achieve, during lamp operation, a correlated color temperature (CCT) greater than 5000 K, a color rendering index (CRI) of 85 or greater, a lumen maintenance percentage (LM %) greater than 90%, and a life of at least 15,000 hours.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventors: Timothy David RUSSELL, James A. LEONARD, Nicholas James BARBUTO, Corey Justin CHECKAN
  • Patent number: 8933415
    Abstract: One embodiment of a particle accelerator includes: a vacuum container with its inside evacuated to produce vacuum, the vacuum container being formed with a laser beam entrance window for allowing a laser beam to enter; a target arranged in the vacuum container so as to be irradiated with a laser beam to generate ions; and a condenser lens for focusing the laser beam onto the target. The condenser lens is arranged at the laser beam entrance window of the vacuum container, and takes a role of a vacuum bulkhead.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: January 13, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akiko Kakutani, Takayuki Sako, Kiyokazu Sato, Yoshiharu Kanai, Takeshi Yoshiyuki, Tsutomu Kurusu
  • Patent number: 8872427
    Abstract: A plasma generating apparatus includes: a power supply one of whose electrodes is connected to vacuum chamber walls of N vacuum chambers; an oscillator which outputs a pulse signal at every predetermined period; N pulse amplifying circuits which are connected in parallel to the oscillator as well as to the other electrode of the power supply, and each of which amplifies the pulse signal and supplies the amplified pulse signal to a corresponding one of N electrodes disposed in the N vacuum chambers; and at least (N-1) timing generating circuits which are connected between the oscillator and at least (N-1) pulse amplifying circuits, and which delay the pulse signal by respectively different delay times so that at any specific time, the pulse signal is supplied to only one of the pulse amplifying circuits.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 28, 2014
    Assignee: Denso Corporation
    Inventors: Daisuke Itomura, Ryonosuke Tera, Yasuaki Hirokawa, Hayato Nagaya
  • Patent number: 8866390
    Abstract: A hybrid plasma reactor includes a first plasma chamber for providing a first ring-shaped plasma discharge space, second plasma chambers providing a second plasma discharge space connected to the first plasma discharge space and coupled to magnetic flux channels, a hybrid plasma source including magnetic cores, which partially surround the first plasma chamber and have magnetic entrances forming the magnetic flux channels, and primary winding coils wound in the magnetic cores and complexly generating ring-shaped transformer-coupled plasma in the first plasma discharge space and magnetic flux channel coupled plasma in the second plasma discharge space, and an AC switching power supply for supplying plasma generation power to the primary winding coils. The hybrid plasma reactor can complexly generate magnetic flux channel coupled plasma and transformer coupled plasma so that it has a high control capability for plasma ion energy and a wide operation region from a low-pressure region to a high-pressure region.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: October 21, 2014
    Inventor: Dae-Kyu Choi
  • Patent number: 8835870
    Abstract: Provided is an ion beam treatment apparatus including the target. The ion beam treatment apparatus includes a substrate having a first surface and a second surface opposed to the first surface, and including a cone type hole decreasing in width from the first surface to the second surface to pass through the substrate, wherein an inner wall of the substrate defining the cone type hole is formed of a metal, an ion generation thin film attached to the second surface to generate ions by a laser beam incident into the cone type hole through the first surface and strengthen, and a laser that emits a laser beam to generate ions from the ion generation thin film and project the ions onto a tumor portion of a patient. The laser beam incident into the cone type hole is focused by the cone type hole and is strengthened.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Youn Jung, Hyeon-Bong Pyo, Hyung Ju Park, Seunghwan Kim, Seon Hee Park, Dong-Ho Shin, Hwang Woon Lee
  • Patent number: 8835869
    Abstract: Ion sources and methods for generating an ion bean with a controllable ion current density distribution. The ion source includes a discharge chamber having an optical grid position proximate at a first end and a re-entrant vessel positioned proximate a second end that opposes the first end. A plasma shaper extends from the re-entrant vessel and into the plasma discharge chamber. A position of the plasma shaper is adjustable relative to the grid-based ion optic such that the plasma shaper may operably change a plasma density distribution within the discharge chamber.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Veeco Instruments, Inc.
    Inventors: Rustam Yevtukhov, Boris L. Druz, Viktor Kanarov, Alan V. Hayes
  • Patent number: 8822947
    Abstract: A particle beam generating device includes at least one accelerator unit for generating a particle beam and at least one emission unit for the output of the at least one particle beam onto a workpiece. The device is configured to release at least two particle beams including hadronic particles with at least one of a different mass or a different charge.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 2, 2014
    Assignee: GSI Helmholzzentrum fuer Schwerionenforschung GmbH
    Inventors: Gerhard Kraft, Nami Saito, Dieter Schardt
  • Patent number: 8803424
    Abstract: A physical vapor deposition system may include an RF generator configured to transmit an AC process signal to a physical vapor deposition chamber via an RF matching network. A detector circuit may be configured to sense the AC process signal and output a DC magnitude error signal and a DC phase error signal. A controller may be coupled to the detector circuit and the RF matching network and configured to receive the DC magnitude and phase error signals and to vary an impedance of the RF matching network in response to the DC magnitude and phase error signals.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 12, 2014
    Assignee: COMET Technologies USA, Inc.
    Inventor: Gerald E. Boston
  • Patent number: 8796932
    Abstract: Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 5, 2014
    Assignee: California Institute of Technology
    Inventors: Harish Manohara, Mohammed M. Mojarradi
  • Publication number: 20140196520
    Abstract: Micro discharge devices, methods, and systems are described herein. One device includes a non-conductive material, a channel through at least a portion of the non-conductive material having a first open end and a second open end, a first electrode proximate to a first circumferential position of the channel between the first open end and the second open end, a second electrode proximate to a second circumferential position of the channel between the first open end and the second open end, a discharge region defined by a portion of the channel between the first electrode and the second electrode, an optical emission collector positioned to receive an optical emission from the discharge region; and a discharge shielding component between the discharge region and the optical emission collector.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Teresa M. Marta, Fouad Nusseibeh
  • Patent number: 8779400
    Abstract: An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder, a gas tube, a gas volume control valve, and a stop valve.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: July 15, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Satoshi Tomimatsu, Kaoru Umemura, Noriyuki Kaneoka, Koji Ishiguro
  • Patent number: 8773018
    Abstract: Apparatus and methods for generating and optimizing a plasma discharge are provided. The device includes a plasma generating device, one or more sensors, and at least one controller for adjusting the plasma in light of the sensed characteristics. Methods for optimizing a plasma, particularly a spatially disoriented plasma discharge include generating a plasma, sensing one or more plasma characteristics, modifying one or more plasma generating properties to optimize the plasma.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 8, 2014
    Inventor: Paul F. Hensley
  • Patent number: 8771480
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: July 8, 2014
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8759788
    Abstract: In one embodiment an ion source includes an arc chamber and an emitter having a surface disposed in the arc chamber, where the emitter is configured to generate a plasma in the arc chamber. The ion source further includes a repeller having a repeller surface positioned opposite the emitter surface, and a hollow cathode coupled to the repeller and configured to provide a feed material into the arc chamber.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 24, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Neil Bassom
  • Patent number: 8747624
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 10, 2014
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8742665
    Abstract: Embodiments of the present invention generally provide a plasma source apparatus, and method of using the same, that is able to generate radicals and/or gas ions in a plasma generation region that is symmetrically positioned around a magnetic core element by use of an electromagnetic energy source. In general, the orientation and shape of the plasma generation region and magnetic core allows for the effective and uniform coupling of the delivered electromagnetic energy to a gas disposed in the plasma generation region. In general, the improved characteristics of the plasma formed in the plasma generation region is able to improve deposition, etching and/or cleaning processes performed on a substrate or a portion of a processing chamber that is disposed downstream of the plasma generation region.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: June 3, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Jang-Gyoo Yang, Matthew Miller, Jay Pinson, Kien Chuc
  • Patent number: 8735766
    Abstract: A cathode assembly and a method for generation of pulsed plasma are disclosed. The cathode assembly comprises a cathode holder connected to multiple longitudinally aligned cathodes, preferably of the same diameter, and different lengths. The method is characterized by forming an electric arc between the cathodes in the assembly and an anode by passing DC current of a predetermined magnitude. Once the arc is established the current is reduced to the magnitude sufficient to sustain an electric arc, or a slightly larger magnitude, thereby reducing the area of arc attachment to a single cathode. Once the area of attachment has been reduced, the current is raised to the operational level of the pulse, while the area of attachment does not increase significantly.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: May 27, 2014
    Assignee: Plasma Surgical Investments Limited
    Inventor: Nikolay Suslov
  • Patent number: 8736175
    Abstract: A plasma processing system for generating plasma to process at least a wafer. The plasma processing system includes a coil for conducting a current for sustaining at least a portion of the plasma. The plasma processing system also includes a sensor coupled with the coil for measuring a magnitude of a supplied current to provide a magnitude measurement without measuring any phase angle of the supplied current. The supplied current is the current or a total current that is used for providing a plurality of currents (e.g., including the current). The plasma processing system also includes a controller coupled with the sensor for generating a command using the magnitude measurement and/or information derived using the magnitude measurement, without using information related to phase angle measurement, and for providing the command for controlling the magnitude of the supplied current and/or a magnitude of the total current.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Seyed Jafar Jafarian-Tehrani, Arthur Sato, Neil Martin Paul Benjamin, Norman Williams
  • Patent number: 8736177
    Abstract: An inductively coupled plasma ion source for a focused ion beam (FIB) system is disclosed, comprising an insulating plasma chamber with a feed gas delivery system, a compact radio frequency (RF) antenna coil positioned concentric to the plasma chamber and in proximity to, or in contact with, the outer diameter of the plasma chamber. In some embodiments, the plasma chamber is surrounded by a Faraday shield to prevent capacitive coupling between the RF voltage on the antenna and the plasma within the plasma chamber. High dielectric strength insulating tubing is heat shrunk onto the outer diameter of the conductive tubing or wire used to form the antenna to allow close packing of turns within the antenna coil. The insulating tubing is capable of standing off the RF voltage differences between different portions of the antenna, and between the antenna and the Faraday shield.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: FEI Company
    Inventor: Shouyin Zhang
  • Patent number: 8729805
    Abstract: A plasma generator has a first member 2 containing a dielectric material, and an electrode group composed of a plurality of electrodes and including a first assembly 6 partially including a plurality of electrodes and a second assembly 7 partially including a plurality of electrodes. In accordance with an AC voltage, the first assembly 6 generates a plasma in a first space 23 contacting the first member 2. In accordance with a DC voltage, the second assembly 7 generates an electric field in a second space 24 contacting the first member 2 and communicating with the first space 23. At least one or more electrodes of a portion of the first assembly 6 and at least one or more electrodes of a portion of the second assembly 7 are provided on the surface of or in the inside of the first member 2.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 20, 2014
    Assignee: Kyocera Corporation
    Inventors: Takashige Yagi, Hiroshi Makino, Shingo Sato
  • Patent number: 8729804
    Abstract: A switching module capable of adjusting a visual angle is disclosed. The switching module includes an edge-type optical substrate, a light source disposed by a side of the edge-type optical substrate, and an optical modulating component disposed between the light source and the edge-type optical substrate. The edge-type optical substrate has an emitting surface. The light source includes a plurality of light units. Each light unit can emit a beam to the edge-type optical substrate according to a predetermined angle. The optical modulating component can modulate divergence of the beam emitted from the light unit, so that the beam can be guided out of the edge-type optical substrate via the emitting surface according to the predetermined angle.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: May 20, 2014
    Assignee: Wistron Corporation
    Inventors: Chung-Hao Tien, Yu-Lin Tsai, Szu-Fen Chen, Hui-Chen Lin, Meng-Chao Kao
  • Patent number: 8716938
    Abstract: A thermionic emission device includes an insulating substrate, a patterned carbon nanotube film structure, a positive electrode and a negative electrode. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. The patterned carbon nanotube film structure includes a number of carbon nanotubes parallel to the surface of the insulating substrate. The patterned carbon nanotube film structure is connected between the positive electrode and the negative electrode in series.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 6, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8674607
    Abstract: There is provided a plasma processing apparatus for generating inductively coupled plasma in a processing chamber and performing a process on a substrate accommodated in the processing chamber. The plasma processing apparatus includes an upper cover installed to cover a top opening of the processing chamber and having a dielectric window; a high frequency coil installed above the dielectric window at an outer side of the processing chamber; a gas supply mechanism supported by the upper cover and installed under the dielectric window. Here, the gas supply mechanism includes a layered body including plates having through holes. Further, the gas supply mechanism is configured to supply a processing gas into the processing chamber in a horizontal direction via groove-shaped gas channels installed between the plates or between the plate and the dielectric window, and end portions of the groove-shaped gas channels are opened to edges of the through holes.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Hachishiro Iizuka
  • Patent number: 8669543
    Abstract: An extreme ultraviolet light generation system used with a laser apparatus may be provided, and the extreme ultraviolet light generation system may include: a chamber including at least one window for at least one laser beam and a target supply unit for supplying a target material into the chamber; and at least one polarization control unit, provided on a laser beam path, for controlling a polarization state of the at least one laser beam.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 11, 2014
    Assignee: Gigaphoton, Inc.
    Inventors: Tatsuya Yanagida, Osamu Wakabayashi
  • Patent number: 8669705
    Abstract: A surface wave plasma (SWP) source is described. The SWP source comprises an electromagnetic (EM) wave launcher configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the EM wave launcher adjacent the plasma. The EM wave launcher comprises a slot antenna having at least one slot. The SWP source further comprises a first recess configuration and a second recess configuration formed in the plasma surface, wherein at least one first recess of the first recess configuration differs in size and/or shape from at least one second recess of the second recess configurations. A power coupling system is coupled to the EM wave launcher and configured to provide the EM energy to the EM wave launcher for forming the plasma.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 11, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Jianping Zhao, Ronald V. Bravenec, Merritt Funk
  • Patent number: 8669538
    Abstract: A system for improving ion beam quality is disclosed. According to one embodiment, the system comprises an ion source, having a chamber defined by a plurality of chamber walls; an RF antenna disposed on a first wall of the plurality of chamber walls; a second wall, opposite the first wall, the distance between the first wall and the second wall defining the height of the chamber; an aperture disposed on one of the plurality of chamber walls; a first gas inlet for introducing a first source gas to the chamber; and a second gas inlet for introducing a second source gas, different from the first source gas, to the chamber; wherein a first distance from the first gas inlet to the second wall is less than 35% of the height; and a second distance from the second gas inlet to the first wall is less than 35% of the height.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 11, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, Peter F. Kurunczi, Timothy J. Miller, Svetlana B. Radovanov
  • Patent number: 8633648
    Abstract: A gas conversion system using microwave plasma is provided. The system includes: a microwave waveguide; a gas flow tube passing through a microwave waveguide and configured to transmit microwaves therethrough; a temperature controlling means for controlling a temperature of the microwave waveguide; a temperature sensor disposed near the gas flow tube and configured to measure a temperature of gas flow tube or microwave waveguide; an igniter located near the gas flow tube and configured to ignite a plasma inside the gas flow tube so that the plasma converts a gas flowing through the gas flow tube during operation; and a plasma detector located near the gas flow tube and configured to monitor the plasma.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 21, 2014
    Assignee: ReCarbon, Inc.
    Inventors: Toru Tanibata, Jae-Mo Koo, Sang Hun Lee
  • Patent number: 8618501
    Abstract: Provided is an ion generating device for an air-conditioner duct, which can be easily attached to the inside of an existing air conditioner duct and can ensure a desired ion generation quantity. The ion generating elements of the sub-units (3, 4, 5) of the ion generating device are connected to the drive circuit of the ion generating device main unit (2), and are driven by the drive circuit.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: December 31, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshio Mamiya, Masato Urushisaki, Hiroaki Kiyohara
  • Patent number: 8610353
    Abstract: An apparatus for generating plasma, comprises: a microwave generator configured to generate a microwave; a wave guide which is connected to the microwave generator, wherein the wave guide is elongated in a traveling direction of the microwave and has a hollow shape having a rectangular section in a direction perpendicular to the traveling direction; a gas feeder which is connected to the wave guide and feeds process gas into the wave guide; and an antenna unit which is a part of the wave guide and discharges plasma generated by the microwave to the outside, wherein the antenna unit has one or more slots formed on a wall constituting a short side in a section of the antenna unit, plasmarizes the process gas fed into the wave guide under an atmospheric pressure in the slots by the microwave, and discharges the plasma out of the slots.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 17, 2013
    Assignees: Tokyo Electron Limited, National University Corporation Nagoya University
    Inventors: Hitoshi Itoh, Hidenori Miyoshi, Masaru Hori, Hirotaka Toyoda, Makoto Sekine
  • Patent number: 8610354
    Abstract: The invention is related to a gas discharge-based radiation source which emits short-wavelength radiation, wherein an emitter is ionized and compressed by pulse-shaped currents between two electrodes arranged in a vacuum chamber and is excited to form an emitting plasma. According to the invention, the plasma is preserved by means of a high-frequency sequence of pulse-shaped currents the pulse repetition period of which is adjusted so as to be shorter than a lifetime of the plasma so that the plasma is kept periodically alternating between a high-energy state of an emitting compressed plasma and a low-energy state of a relaxing plasma. For exciting the relaxing plasma to the compressed plasma, excitation energy is coupled into the relaxing plasma by making use of pulse-shaped currents with repetition frequencies between 50 kHz and 4 MHz and pulse widths equal to the pulse repetition period.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 17, 2013
    Assignee: XTREME technologies GmbH
    Inventors: Max Christian Schuermann, Lutz Dippmann, Juergen Kleinschmidt, Guido Schriever
  • Patent number: 8610355
    Abstract: A distance from a negative output terminal of a secondary winding of the transformer to a feeding terminal of the cathode plate is longer than a distance from a positive output terminal of the secondary winding to a feeding terminal of the anode. The anode side feeding path electrically connects the feeding terminal of the anode bar to the positive output terminal of the secondary winding. The cathode side feeding path electrically connects the feeding terminal of the cathode plate to the negative output terminal of the secondary winding. A path length of the cathode side feeding path is longer than a path length of the anode side feeding path. The housing is formed by an electric conductor and is electrically connected to the cathode side feeding path.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: December 17, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tatsuya Terazawa, Wataru Shionoya
  • Patent number: 8581494
    Abstract: A glow discharge spectrometer discharge lamp includes: a lamp body having a vacuum enclosure connected to pump elements and to injector elements for injecting an inert gas into the enclosure; a hollow cylindrical first electrode of longitudinal axis X-X?; a second electrode for receiving a sample for analysis and for holding the sample facing one end of the cylindrical electrode; electric field generator including an applicator for applying to the terminals of the electrodes an electric field that is continuous, pulsed, radiofrequency, or hybrid, and suitable for generating a glow discharge plasma in the presence of the gas; coupler elements for coupling the discharge lamp to a spectrometer suitable for measuring at least one component of the plasma; and magnetic field generator elements for generating a magnetic field having field lines oriented along the axis X-X?, the magnetic field being uniform in orientation and in intensity over an area of the sample that is not less than the inside area of the hollow
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 12, 2013
    Assignee: Horiba Jobin Yvon SAS
    Inventors: Mihai Ganciu-Petcu, Virgil Mircea Udrea, Agnes Tempez, Patrick Chapon
  • Patent number: 8575565
    Abstract: An ion beam source that emits an ion beam in a direction of a substrate is provided. A cathode with a discharge opening defined therein is included. An anode is also included and spaced apart from the cathode. Ions are set to be emitted in an area proximate to the discharge opening in a direction similar to the direction from the anode to the discharge opening. First and second ceramic walls at least partially define a discharge channel between the anode and the cathode. At least one magnet generates a magnetic field in an area proximate to the discharge opening.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: November 5, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Maximo Frati
  • Patent number: 8563924
    Abstract: An ionization device comprises: a plasma source configured to generate a plasma. The plasma comprises light, plasma ions and plasma electrons. The plasma source comprises an aperture disposed such that at least part of the light passes through the aperture and is incident on a gas sample. The ionization device further comprises an ionization region; and a plasma deflection device comprising a plurality of electrodes configured to establish an electric field, wherein the electric field substantially prevents the plasma ions from entering the ionization region.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 22, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: James Edward Cooley, Sameer Kothari
  • Patent number: 8536539
    Abstract: An ion beam generator includes a discharge tank for generating plasma that includes ions. A lead-out electrode has an annular grid portion provided with openings for leading out the ions generated in the discharge tank, while accelerating the generated ions as an annular ion beam. A deflecting electrode deflects the annular ion beam, which is led out of the lead-out electrode, in an annular center direction.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Canon Anelva Corporation
    Inventors: Hirohisa Hirayanagi, Ayumu Miyoshi, Einstein Noel Abarra
  • Patent number: 8530832
    Abstract: Improved apparatuses and methods are provided for ionizing samples and analyzing the samples with mass spectrometry.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 10, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Mark H. Werlich, Craig P. Love, James L. Bertsch
  • Patent number: 8525412
    Abstract: A plasma lamp system is described with the capability to tune the resonant frequency of the resonator of the plasma lamp system after the manufacturing process has been completed. The tuning method developed allows a simple low-cost approach to continuously tune the resonant frequency and set the desired frequency to an ISM (Industrial Scientific Medical) band or set the resonant frequency to optimize the performance of the system. The tuning ability of the resonator relaxes the tolerance required for the dimensions of the resonator reducing the manufacturing cost and improving the manufacturing yield of the plasma lamp.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 3, 2013
    Assignee: Topanga Technologies, Inc.
    Inventors: Frederick M. Espiau, Erik H. M. Lundin
  • Patent number: 8519355
    Abstract: A charged particle source comprises at least one gas inlet configured to supply gas particles, at least one tip having a tip apex being biased to provide an electrical field for generating charged particles, and at least one ionization area to which gas particles are supplied. The gas particles are ionized in the ionization area due to the electrical field. Additionally, the charged particle source comprises at least one first electrode configured to accelerate charged particles and at least one light emitting device providing a light beam. The light beam is focused to a focus point in the ionization area, specifically, to a focus volume such that the ionization area is at least partly positioned in the focus volume. The ionization area is arranged between the tip apex and the first electrode. The distance between the ionization area and the tip apex may be from 0.1 nm to 1 nm.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 27, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Wolfram Buhler, Matthias Langer, Xiong Liu
  • Patent number: 8487536
    Abstract: A dense plasma focus device is disclosed as having an anode with a non-constant radius and a cathode coupled to the anode, the cathode also having a non-constant radius. The anode and/or the cathode may be tapered. In addition, a ratio of the non-constant radius of the anode and the non-constant radius of the cathode may be held constant along the length of the dense plasma focus device in order to maintain constant inductance. Alternatively, the inductance may be varied by varying the ratio of the anode and cathode radii along the length of the dense plasma focus device.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: July 16, 2013
    Assignee: National Security Technologies, LLC
    Inventors: Edward Christopher Hagen, Bernard Timothy Meehan, III
  • Patent number: 8482206
    Abstract: A new device based on very short pulsed discharges, generating plasmas balls and plumes over very long distances (up to several meters). These plasma balls travel in a dielectric guide at the end of which there is generation of an apparent plasma plume like zone, with a shape and intensity dependent on the discharge repetition rate. A secondary mixture plasma can be produced close to a given surface by adding other gas fluxes in the main gas stream. The plasma balls can be generated in gases at a repetition rate in the range from single shot to multi-kilohertz.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: July 9, 2013
    Assignees: Centre National de la Recherche Scientifique (CNRS), Universite D'Orleans
    Inventors: Jean-Michel Pouvesle, Christophe Cachoncinlle, Raymond Viladrosa, Ahmed Khacef, Eric Robert, Sébastien Dozias
  • Patent number: 8481980
    Abstract: An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder a gas tube, a gas volume control valve, and a stop valve.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: July 9, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Satoshi Tomimatsu, Kaoru Umemura, Noriyuki Kaneoka, Koji Ishiguro
  • Patent number: 8481965
    Abstract: The process of the present application facilitates the production of electric energy by the deliberate extraction of electrons from atoms and molecules of a gas, vapor, liquid, particulate solid, or any other form of matter that can be passed along the surface or through the electron extraction unit. The extracted electrons are captured, collected and controlled or regulated for distribution as electric energy. It is an energy efficient process for the extraction and capture of electrons for the production of electric energy with positive atomic or molecular ions as byproducts. The product ions can then be confined in a coherent beam or restricted to a magnetic enclosure or by other confinement methods, expelled to the atmosphere, another environment or to ground, or modified into useful molecules. These results are accomplished by the forcible extraction and capture of electrons from the object particles by electrically charged particles in a strong electric field.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 9, 2013
    Inventor: Eugene B. Pamfiloff