Gas Ionization Type (e.g., Ion Pump Or Gauge Source) Patents (Class 315/111.91)
  • Patent number: 6919690
    Abstract: A modular ion source design relies on relatively short modular anode layer source (ALS) components, which can be coupled together to form a longer ALS. For long ion sources, these shorter modular components allow for easier manufacturing and further result in a final assembly having better precision (e.g., a uniform gap dimensions along the longitudinal axis of the ion source). Modular components may be designed to have common characteristics so as to allow use of these components in ion sources of varying sizes. A modular gas distribution system uniformly distributes a working gas to the ionization region of the module ion source. For each gas distribution module, gas distribution channels and baffles are laid out relative to the module joints to prevent gas leakage. Furthermore, gas manifolds and supply channels are used to bridge module joints while uniformly distributing the working gas to the ALS.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: July 19, 2005
    Assignee: Veeco Instruments, Inc.
    Inventors: Daniel E. Siegfried, David Matthew Burtner, Scott A. Townsend, John Keem, Mark Krivoruchko, Valery Alexeyev, Vsevolod Zelenkov
  • Patent number: 6903511
    Abstract: Methods and apparatus for generating uniformly-distributed plasma are described. A plasma generator according to the invention includes a cathode assembly that is positioned adjacent to an anode and forming a gap there between. A gas source supplies a volume of feed gas and/or a volume of excited atoms to the gap between the cathode assembly and the anode. A power supply generates an electric field across the gap between the cathode assembly and the anode. The electric field ionizes the volume of feed gas and/or the volume of excited atoms that is supplied to the gap, thereby creating a plasma in the gap.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: June 7, 2005
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 6897617
    Abstract: A method to limit ozone production in wind ion devices while simultaneously realizing incidents of high acceleration in such devices varies the high voltage potential across the array of emitter(s) (10) and collectors (20) over time in such a manner as to generate a wave effect of airflow. The variance may be achieved by switching, ramping, or gating the high voltage potential delivered to the array.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 24, 2005
    Assignee: Zenion Industries, Inc.
    Inventor: Jim L. Lee
  • Patent number: 6888314
    Abstract: An electrostatic fluid accelerator having a multiplicity of closely spaced corona electrodes. The close spacing of such corona electrodes is obtainable because such corona electrodes are isolated from one another with exciting electrodes. Either the exciting electrode must be placed asymmetrically between adjacent corona electrodes or an accelerating electrode must be employed. The accelerating electrode can be either an attracting or a repelling electrode. Preferably, the voltage between the corona electrodes and the exciting electrodes is maintained between the corona onset voltage and the breakdown voltage with a flexible top high-voltage power supply. Optionally, however, the voltage between the corona electrodes and the exciting electrodes can be varied, even outside the range between the corona onset voltage and the breakdown voltage, in to vary the flow of fluid.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: May 3, 2005
    Assignee: Kronos Advanced Technologies, Inc.
    Inventors: Igor A. Krichtafovitch, Robert L. Fuhriman, Jr.
  • Patent number: 6888140
    Abstract: A signal detector for detecting electrically charged particles in a gaseous medium has an electrode having a tip region for gathering charged particles. The electrode is connected to a voltage source for applying a voltage that generates electro-static field for attracting the particles to the electrode, and at least part of the tip region has a radius of curvature which is sufficiently small or (in the case of a point tip or sharp edge) infinitesimally small so as to create a localised high intensity electro-static field which defines a detection zone in which, in use, charge particles are accelerated by the electric field so as to ionise gas molecules in the zone and thus amplify the signal to be received by the detector. The received signal is supplied through an output of the detector. The detector may be provided in a sample chamber of a scanning electron microscope.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 3, 2005
    Assignee: Leo Electron Microscopy Limited
    Inventor: Armin Heinz Hayn
  • Patent number: 6864486
    Abstract: A closed loop exit hole is formed in a magnetically permeable end wall (2) of an enclosure (1) of a closed electron drift ion source. Parts of this end wall separated by the exit hole serve as pole pieces (7 and 8) of the magnetic system and define the first pole gap. The magnetic system includes pole pieces (9 and 10), which define the second pole gap made in the form of a closed loop exit hole and arranged along the direction of ion emission. Magnetomotive force sources (5 and 6) are located in space between two groups of magnetic terminals. The ratio of width of each pole gap and distance between pole pieces of the first (7 and 8) and second (9 and 10) magnetic gaps along the direction of ion emission is not less than 0.05. The invention allows the intensity of the generated ion beam and the energy of ions to be increased, and this is provided by the homogeneous distribution of ion current density across the ion beam section.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: March 8, 2005
    Assignee: Veeco Instruments, Inc.
    Inventors: Valery V. Alekseev, Vsevolod V. Zelenkov, Mark M. Krivoruchko, John E. Keem
  • Patent number: 6849854
    Abstract: An ion source 10 for producing a beam of ions from a plasma is disclosed. A plasma is created at the center of an anode 12 by collisions between energetic electrons and molecules of an ionizable gas. The electrons are sourced from a cathode filament 11 and are accelerated to the anode 12 by an applied electric potential. A projection of the anode and a magnetic field having an axis aligned with the axis of the anode act together to concentrate the flow of electrons to the center of the anode 12. The ionizable gas is introduced into an ionization region 13 of the ion source 10 at the point of concentrated electron flow. Ions created in the ionization region are expelled from the ion source as an ion beam centred on the axis of the magnetic field. The surfaces of the anode are coated with an electrically conductive non-oxidising layer of Titanium Nitride to prevent a build up of an insulating layer on the anode.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 1, 2005
    Assignee: Saintech Pty Ltd.
    Inventor: Wayne Gregory Sainty
  • Patent number: 6826222
    Abstract: A pulse circuit, a plasma generator, and a excited atomic molecular state generator useful in an electric oxygen iodine laser of the present invention. The invention also comprises a laser wherein a beam passes through a gas expansion throat.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: November 30, 2004
    Inventor: Alan E. Hill
  • Publication number: 20040232848
    Abstract: An electron beam device wherein a low temperature gaseous plasma is generated in a chamber divided by two parallel wire grids. A semiconductor wafer serves as a cathode drawing ions from the plasma to impinge on the wafer, generating secondary electrons that are accelerated toward an anode on the opposite side of the grids where a target resides. In order to have a beam with uniform cross-sectional flux characteristics, the semiconductor wafer is doped with a graded dopant concentration that promotes a uniform beam.
    Type: Application
    Filed: October 16, 2003
    Publication date: November 25, 2004
    Inventor: George Wakalopulos
  • Publication number: 20040222745
    Abstract: Methods and apparatus for generating uniformly-distributed plasma are described. A plasma generator according to the invention includes a cathode assembly that is positioned adjacent to an anode and forming a gap there between. A gas source supplies a volume of feed gas and/or a volume of excited atoms to the gap between the cathode assembly and the anode. A power supply generates an electric field across the gap between the cathode assembly and the anode. The electric field ionizes the volume of feed gas and/or the volume of excited atoms that is supplied to the gap, thereby creating a plasma in the gap.
    Type: Application
    Filed: May 6, 2003
    Publication date: November 11, 2004
    Applicant: ZOND, INC.
    Inventor: Roman Chistyakov
  • Patent number: 6805779
    Abstract: The present invention relates to a plasma generator that generates a plasma with a multi-step ionization process. The plasma generator includes an excited atom source that generates excited atoms from ground state atoms supplied by a feed gas source. A plasma chamber confines a volume of excited atoms generated by the excited atom source. An energy source is coupled to the volume of excited atoms confined by the plasma chamber. The energy source raises an energy of excited atoms in the volume of excited atoms so that at least a portion of the excited atoms in the volume of excited atoms is ionized, thereby generating a plasma with a multi-step ionization process.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: October 19, 2004
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Publication number: 20040195973
    Abstract: An ion source configured for integration into both existing ion implanters used in semiconductor manufacturing and emerging ion implantation platforms, and is also suitable for use in ion dosing systems used in the processing of flat panel displays.
    Type: Application
    Filed: December 30, 2003
    Publication date: October 7, 2004
    Applicant: SemEquip, Inc.
    Inventor: Thomas N. Horsky
  • Publication number: 20040182702
    Abstract: The present invention relates to a plasma generator that generates a plasma with a multi-step ionization process. The plasma generator includes an excited atom source that generates excited atoms from ground state atoms supplied by a feed gas source. A plasma chamber confines a volume of excited atoms generated by the excited atom source. An energy source is coupled to the volume of excited atoms confined by the plasma chamber. The energy source raises an energy of excited atoms in the volume of excited atoms so that at least a portion of the excited atoms in the volume of excited atoms is ionized, thereby generating a plasma with a multi-step ionization process.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventor: Roman Chistyakov
  • Publication number: 20040183454
    Abstract: A device for handling a fluid includes a corona discharge device and an electric power supply. The corona discharge device includes at least one corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to said corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. An amplitude of an alternating component of the voltage of the electric power signal generated is no greater than one-tenth that of an amplitude of a constant component of the voltage of the electric power signal.
    Type: Application
    Filed: December 15, 2003
    Publication date: September 23, 2004
    Inventor: Igor A. Krichtafovitch
  • Publication number: 20040160191
    Abstract: A high efficiency plasma pump for use in a plasma processing system that includes a plasma processing device having a first plasma density proximate a processing region and a second plasma density proximate an exit region is disclosed. The plasma pump includes an inter-stage plasma (ISP) source fluidly coupled to the plasma processing device proximate the exit region, the ISP source comprising an inter-stage plasma region having a third plasma density; and a plasma pump fluidly coupled to the ISP, the plasma pump having a fourth plasma density, wherein pumping speed is dependent upon the third plasma density and the fourth plasma density. The ISP source increasing the third plasma density to increase the pumping efficiency.
    Type: Application
    Filed: December 23, 2003
    Publication date: August 19, 2004
    Applicant: Tokyo Electron Limited
    Inventors: Bill H. Quon, Wayne L. Johnson
  • Patent number: 6768120
    Abstract: An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Jani Reijonen, Arun Persaud, Qing Ji, Ximan Jiang
  • Publication number: 20040135517
    Abstract: The invention is directed to a radiation source for generating extreme ultraviolet (EUV) radiation, particularly for photolithography exposure processes. The object of the invention is to find a novel possibility for realizing radiation sources for generating extreme ultraviolet (EUV) radiation which permits a uniform basic construction for ensuring beam characteristics that are reproducible over the long term and in which the source is conceived so as to be flexible with respect to specific applications.
    Type: Application
    Filed: October 30, 2003
    Publication date: July 15, 2004
    Applicant: XTREME technologies GmbH
    Inventors: Guido Schriever, Kai Gaebel, Uwe Stamm
  • Patent number: 6759808
    Abstract: An apparatus and method which maintains plasma discharges (for instance 25) in containers (for instance 20) which have an internal section of 1 cm or less in width are described. The very small cross-section plasma discharges are useful in MEMS devices, in spectrometers and in spectroscopy.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: July 6, 2004
    Assignee: Board of Trustees of Michigan State University
    Inventors: Timothy A. Grotjohn, Jes Asmussen, Andy Wijaya
  • Patent number: 6744212
    Abstract: The present invention includes a system and method for confining plasma within a plasma processing chamber. The plasma processing apparatus comprises a first electrode, a power generator, a second electrode, at least one confinement ring, and a ground extension surrounding the first electrode. The first electrode is configured to receive a workpiece and has an associated first electrode area. The power generator is operatively coupled to the first electrode, and the power generator is configured to generate RF power that is communicated to the first electrode. The second electrode is disposed at a distance from the first electrode. The second electrode is configured to provide a complete electrical circuit for RF power communicated from the first electrode. Additionally, the second electrode has a second electrode area that is greater than the first electrode area. At least one confinement ring is configured to assist confine the plasma.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: June 1, 2004
    Assignee: Lam Research Corporation
    Inventors: Andreas Fischer, Dave Trussell, Bill Kennedy, Peter Loewenhardt
  • Publication number: 20040090185
    Abstract: A waveguide of the present invention comprises a waveguide main body made of a material selected from a boron nitride or an aluminum oxide, and a thin film made of a titanium nitride to cover an outer peripheral surface of the waveguide main body. The waveguide of the present invention can efficiently guide an electromagnetic wave such as a microwave, and has high physical and chemical durability.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Hiroyuki Ito, Noriyuki Sakudo
  • Patent number: 6727657
    Abstract: An electrostatic fluid acceleration and method of operation thereof includes at least two synchronously powered stages. A single power supply or synchronized and phase controlled power supplies provide high voltage power to each of the stages such that both the phase and amplitude of the electric power applied to the corresponding electrodes are aligned in time. The frequency and phase control allows neighboring stages to be closely spaced at a distance of from 1 to 2 times an inter-electrode distance within a stage, and, in any case, minimizing or avoiding production of a back corona current from a corona discharge electrode of one stage to an electrode of a neighboring stage. Corona discharge electrodes of neighboring stages may be horizontally aligned, complementary collector electrodes of all stages being similarly horizontally aligned between and horizontally offset from the corona discharge electrodes.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: April 27, 2004
    Assignee: Kronos Advanced Technologies, Inc.
    Inventors: Igor A. Krichtafovitch, Vladimir L. Gorobets
  • Patent number: 6686595
    Abstract: An ion source configured for integration into both existing ion implanters used in semiconductor manufacturing and emerging ion implantation platforms. The ion source in accordance with the present invention includes the following features, all of which depart from the prior art to produce a well-focused, collimated and controllable ion beam. These features include: ionizing electron beams generated external to the ionization chamber, thereby extending the emitter lifetime; 90 degree magnetic deflection of electron beams such that no line-of-sight exists between the emitter and the process gas load, and the emitter is protected from bombardment by energetic charged particles; two opposed electron beams which can be operated simultaneously or separately; and use of a deceleration lens to adjust the final energy of the electron beam, substantially without affecting electron beam generation and deflection.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: February 3, 2004
    Assignee: Semequip Inc.
    Inventor: Thomas N. Horsky
  • Publication number: 20040017157
    Abstract: A processed object, i.e., a circuit-constituting member is positioned by a member-transferring unit at a given position in a member-waiting portion when plasma starts to be generated in a plasma-generative portion, and the circuit-constituting member is transferred from the member-waiting portion to the plasma-generative portion when the plasma started to be generated in the plasma-generative portion is brought into a stable condition thereof. Thus, the circuit-constituting member is not subjected to a circuit-processing by plasma before the stable condition is not reached but is surely subjected to the circuit-processing-only by plasma in the stable condition.
    Type: Application
    Filed: July 21, 2003
    Publication date: January 29, 2004
    Inventor: Tetsuya Taguwa
  • Publication number: 20040007985
    Abstract: Apparatus for producing and sustaining a glow discharge plasma in a plasma discharge space comprising at least two oppositely spaced electrodes, means for supplying a gas or a gas mixture under atmospheric pressure conditions in the discharge space, AC power supply means for energizing the electrodes, and electric stabilisation means for stabilizing current variations in the plasma. The stabilisation means connect between the electrodes and the power supply means, and are arranged for providing a negative feedback opposed to a positive feedback of the plasma to instabilities in the plasma.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Hindrik Willem de Vries, Fuyuhiko Mori, Eugen Aldea, Mauritius Cornelius Maria Van De Sanden
  • Publication number: 20040004440
    Abstract: An electrostatic fluid acceleration and method of operation thereof includes at least two synchronously powered stages. A single power supply or synchronized and phase controlled power supplies provide high voltage power to each of the stages such that both the phase and amplitude of the electric power applied to the corresponding electrodes are aligned in time. The frequency and phase control allows neighboring stages to be closely spaced at a distance of from 1 to 2 times an inter-electrode distance within a stage, and, in any case, minimizing or avoiding production of a back corona current from a corona discharge electrode of one stage to an electrode of a neighboring stage. Corona discharge electrodes of neighboring stages may be horizontally aligned, complementary collector electrodes of all stages being similarly horizontally aligned between and horizontally offset from the corona discharge electrodes.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventors: Igor A. Krichtafovitch, Vladimir L. Gorobets
  • Publication number: 20040000875
    Abstract: A plasma in a vacuum chamber where a workpiece is processed is bounded by a plasma confinement volume including a region between a first electrode simultaneously responsive to power at first and second RF frequencies and a DC grounded second electrode. A DC grounded extension is substantially aligned with the first electrode. A substantial percentage of power at the first frequency is coupled to a path including the first and second electrodes but not the extension while a substantial percentage of power at the second frequency is coupled to a path including the first electrodes and extension, but not the second electrode. Changing the relative powers at the first and second frequencies, as applied to the first electrode, controls DC bias voltage of the first electrode.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Inventors: Vahid Vahedi, Peter Loewenhardt, Albert Ellingboe, Andras Kuthi, Andreas Fischer
  • Publication number: 20030234618
    Abstract: A device for handling a fluid includes a corona discharge device and an electric power supply. The corona discharge device includes at least one corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to said corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. An amplitude of an alternating component of the voltage of the electric power signal generated is no greater than one-tenth that of an amplitude of a constant component of the voltage of the electric power signal.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 25, 2003
    Inventor: Igor A. Krichtafovitch
  • Patent number: 6664739
    Abstract: The invention pertains to the use of enhanced electron emitting surfaces to increase the supply of electrons in a thin film deposition system including the ion source in order to enhance the deposition rates of thin film materials. The use of enhanced electron emitting surfaces reduces the erosion of component parts in the ion source while increasing the rate and quality of the film deposited on the substrate. Allowing for ion source operation at lower gas pressure also increases the range of cold-cathode applications and improving operation at all pressures. The cathode section of the ion source is comprised of a reactive material that upon reaction with a reactive gas forms an insulating thin film on the cathode surface that provides an addition source of electrons for the ion beam source. Also, electron emitters located outside of the ion beam source have cathode sections that comprise enhanced electron emitting surfaces to provide electron flow to the ion beam.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: December 16, 2003
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Michael Kishinevsky, Andrew Shablin
  • Patent number: 6664741
    Abstract: A device for handling a fluid includes a corona discharge device and an electric power supply. The corona discharge device includes at least corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to the corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. An amplitude of an alternating component of the voltage of the electric power signal generated is no greater than one-tenth that of an amplitude of a constant component of the voltage of the electric power signal.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: December 16, 2003
    Inventor: Igor A. Krichtafovitch
  • Patent number: 6661178
    Abstract: The metastable atom bombardment source provides a charged particle free beam of metastable species that can be used to bombard and ionize organic and inorganic substances in a gas phase. The metastable atoms are produced by inducing a discharge in a gas (rare gases or small molecules). The discharge is curved between the cathode and anode, with the cathode located in a medium pressure zone and the anode located off-axis in a low pressure zone. A nozzle located between the cathode and the anode provides a collimated beam of metastable atoms of low kinetic energy that is directed at an ion volume containing the substances to be analyzed. By selecting the energy of the metastable state, selective fragmentation of molecules, particularly large molecular weight molecules, can be carried out.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: December 9, 2003
    Assignee: Universite de Montreal
    Inventors: Michel J. Bertrand, Olivier Peraldi
  • Publication number: 20030218427
    Abstract: A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the sidewall and the workpiece support being located along a common axis of symmetry.
    Type: Application
    Filed: July 9, 2002
    Publication date: November 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Matthew L. Miller, Jang Gyoo Yang, Heeyeop Chae, Michael Barnes, Tetsuya Ishikawa, Yan Ye
  • Patent number: 6653792
    Abstract: An ion implanting system including an ion implanting chamber for implanting an ion into a semiconductor wafer, a load lock chamber for loading the semiconductor wafer into the ion implanting chamber, a turbo pump for creating a high vacuum atmosphere in the load lock chamber, a low vacuum pump for creating a low vacuum atmosphere in the turbo pump, a cryo pump controller for generating a control signal to control a pumping operation of the turbo pump, a control voltage generator for generating a control voltage in response to the control signal generated from the cryo pump control, an interface for generating a starting signal in response to the control voltage, and a turbo pump controller for applying a voltage to operate the turbo pump and the low vacuum pump in response to the starting signal output from the interface.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: November 25, 2003
    Assignee: Samsung Electronics, Co., Ltd.
    Inventor: Young-Byeong Joo
  • Patent number: 6645301
    Abstract: An ion source for use in ion assisted deposition of films, has an ionization region, a gas supply supplying ionizable gas to the ionization region, a gas excitation system causing ionization of the gas, ion influencing means forming the ions into a current directed at a target, and an ion source controller controlling the ion source so as to intermittently produce the ion current.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: November 11, 2003
    Assignee: Saintech Pty Limited
    Inventor: Wayne G Sainty
  • Publication number: 20030201723
    Abstract: The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
    Type: Application
    Filed: May 20, 2003
    Publication date: October 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Dan Katz, Douglas A. Buchberger, Yan Ye, Robert B. Hagen, Xiaoye Zhao, Ananda H. Kumar, Kang-Lie Chiang, Hamid Noorbakhsh, Shiang-Bau Wang
  • Patent number: 6629508
    Abstract: A neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam. The apparatus includes an electron source, and a circularly cylindrical ionizing region that is substantially free of magnetic fields. In one embodiment of the invention, the beam is a gas cluster beam, and the electron source includes a heated filament for emitting thermions, the filament including one or more direction reversals shaped to produce self-nulling magnetic fields so as to minimize the magnetic field due to filament heating current. In another embodiment of the invention, a neutral beam ionizing apparatus for electron impact ionization of a substantially cylindrical neutral beam includes at least one electron source, and an elliptically cylindrical ionizing region.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: October 7, 2003
    Assignee: Epion Corporation
    Inventor: Jerald P. Dykstra
  • Patent number: 6627881
    Abstract: For analyzing micro-organisms and other high-molecular weight species, a sample of the substance to be analyzed is prepared, placed in a pyrolyzer where it is pyrolyzed with a selected temperature program to provide pyrolyzed product of a high-dalton mass range. The product is ionized using metastable atoms which results in efficient ionization with little fragmentation. The metastable atoms are generated using a generator that provides a beam of metastable atoms which is basically free from ions. The ionized product is then analyzed using a high acquisition rate mass analyzer, such as a time-of-flight (TOF) analyzer.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 30, 2003
    Assignees: Dephy Technolgies Inc., Université de Montréal
    Inventors: Michel J. Bertrand, Olivier Peraldi
  • Patent number: 6624584
    Abstract: The invention relates to a particle source, particularly an ion source for the production of excited particles in gaseous media. A dielectric, e.g., Kapton foil, is coated electrically conductively on both sides, and a voltage, preferably pulsed, is applied between the two coatings. A gas discharge is ignited in the gas through-flow by the voltage. Due to a pressure difference between the two sides of the foil, the gas expands from the high pressure side to the low pressure side, preferably in an ultrasonic expansion, whereby a directed, cold beam of excited particles or ions is produced.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: September 23, 2003
    Assignee: Roentdek Handels GmbH
    Inventors: Horst Schmidt-Boecking, Lutz Spielberger, Angela Braeuning-Demian, Maria Cristina Penache, Sven Schoessler, Till Jahnke, Oliver Hohn, Volker Mergel
  • Patent number: 6624583
    Abstract: A method of treating a first chemical species in a gas using a plasma, the method including the steps of providing an array of micro-scale cavity discharge devices capable of sustaining the plasma where the first chemical species is capable of flowing proximate to the array of micro-scale cavity discharge devices, wherein the first chemical species is converted to a second chemical species within the plasma.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: September 23, 2003
    Assignee: Motorola, Inc.
    Inventors: Bernard F. Coll, Paul A. Vonallmen, Frederic Zenhausern
  • Patent number: 6612105
    Abstract: A system for uniformly distributing propellant gas in a Hall-effect thruster (10) (HET) includes an anode (42, 42′) and a porous material gas distributor (60, 89) (PMGD). The porous material (120) may be porous metal or porous ceramic. Propellant gas is directed from a supply to the PMGD for distribution into a gas discharge region (16) of the HET (10). The gas flows through the porous material (120) of the PMGD and out of the PMGD's exit surface (71) into the annular gas discharge region (16). The PMGD has an average pore size, pore density and thickness that are optimized to control the flow of the gas at the desired flow rate and distribution uniformity at a relatively short distance downstream from the PMGD. This feature allows HET to be short, significantly decreasing susceptibility to vibration problems encountered during vehicle launch. The PMGD can include a shield (79, 80) for preventing contaminants from traveling upstream from the gas discharge region from adhering to the porous metal.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: September 2, 2003
    Assignee: Aerojet-General Corporation
    Inventors: Arnold W. Voigt, David Q. King, Kristi H. De Grys, Roger M. Myers
  • Publication number: 20030151372
    Abstract: This application discloses the technique of the RF plasma processing using two RF waves of different frequencies, where plasma is generate and retained sufficiently and stably. The first frequency is for generating plasma by igniting a discharge, and the second frequency is for generating self-biasing voltage at a substrate to be processed. The wave of the second frequency is applied with a time-lag after applying the RF wave of the first frequency. This application also discloses the impedance matching technique in the RF plasma processing, where impedance to be provided is optimized both for igniting the discharge and for stabilizing the plasma.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 14, 2003
    Inventors: Nobuaki Tsuchiya, Yasumi Sago, Masayoshi Ikeda
  • Publication number: 20030122492
    Abstract: A stand-alone plasma vacuum pump for pumping gas from a low-pressure inlet to a high-pressure outlet, composed of: a housing enclosing one or more pumping regions located between the inlet and the outlet; a plurality of permanent magnet assemblies providing magnetic fields that extend in the pumping region between the inlet and the outlet, the magnetic field forming magnetic flux channels for guiding and confining plasmas; elements disposed for coupling microwave power into the flux channels to heat electrons, ionize gas, and accelerate plasma ions in a direction from the inlet to the outlet; elements disposed for creating an electric in the magnetic flux channels to accelerate ions in the flux channels toward the outlet by momentum transfer; and a differential conductance baffle proximate to the outlet for promoting flow of plasma ions and neutral atoms to the outlet while impeding flow of neutral gas molecules in a direction from the outlet toward the inlet.
    Type: Application
    Filed: October 11, 2002
    Publication date: July 3, 2003
    Inventors: Raphael A. Dandl, Bill H. Quon
  • Publication number: 20030111963
    Abstract: An inductively coupled plasma apparatus is provided, wherein the inductively coupled plasma apparatus includes a process chamber having a wafer susceptor on which a substrate is installed, a top plasma source chamber which is installed on the process chamber, a reactor, which is installed in the top plasma source chamber, having a channel through which a gas flows, wherein the reactor supplies plasma reaction products to the process chamber, an inductor, having two ends, is installed between the top plasma source chamber and the reactor and is wound around the reactor, an opening which is positioned within a circumferential space in which the inductor is installed between the reactor and the process chamber, and a shutter operable to open and close the opening. Thus, a uniform radial distribution of radicals emanating from a plasma source can be improved.
    Type: Application
    Filed: September 30, 2002
    Publication date: June 19, 2003
    Inventors: Yuri Nikolaevich Tolmachev, Dong-Joon Ma, Chang-Wook Moon, Hea-Young Yoon
  • Publication number: 20030094903
    Abstract: A gas distribution system for improving asymmetric etching and deposition control over a substrate diameter in a plasma reactor including a plasma reactor chamber further comprising a substrate holder for holding a substrate surface disposed in a lower portion of said plasma reactor; at least one gas distributor disposed within the plasma reactor chamber for distributing reactant gases said at least one gas distributor including a plurality of gas feed zones in communication with at least one gas source for selectively delivering a gas flow independently to at least one of the plurality of gas feed zones.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 22, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Jhun-jan Tao, Huan-Just Lin, Mong-Song Liang
  • Publication number: 20030090209
    Abstract: An electrostatic fluid accelerator having a multiplicity of closely spaced corona electrodes. The close spacing of such corona electrodes is obtainable because such corona electrodes are isolated from one another with exciting electrodes. Either the exciting electrode must be placed asymmetrically between adjacent corona electrodes or an accelerating electrode must be employed. The accelerating electrode can be either an attracting or a repelling electrode. Preferably, the voltage between the corona electrodes and the exciting electrodes is maintained between the corona onset voltage and the breakdown voltage with a flexible top high-voltage power supply. Optionally, however, the voltage between the corona electrodes and the exciting electrodes can be varied, even outside the range between the corona onset voltage and the breakdown voltage, in to vary the flow of fluid.
    Type: Application
    Filed: November 18, 2002
    Publication date: May 15, 2003
    Inventors: Igor A. Krichtafovitch, Robert L. Fuhriman
  • Publication number: 20030085661
    Abstract: A plasma apparatus is disclosed, wherein an RF feed through having a stick type not a wire type is used. Accordingly, even if heat is generated at the RF feed through by an applied RF, heat is more easily emitted outwardly than at the conventional wire type. According to this, an impedance of the RF feed through is least changed by heat, thereby having a reliability of a process. Also, since the RF feed through is formed at an upper portion of the plasma chamber not at a lateral side, the RF feed through unit including a cooling jacket and an air cooling jacket is easily engaged to the plasma apparatus. In addition, since an outer upper portion of the bell jar is flat, when the RF feed through penetrates an upper center of the bell jar, an area of a contacted part of the RF feed through with the bell jar becomes minimum, thereby having less influence by a bell jar heater.
    Type: Application
    Filed: October 28, 2002
    Publication date: May 8, 2003
    Applicant: Jusung Engineering Co., Ltd.
    Inventor: Tae-Kyun Kwon
  • Patent number: 6554968
    Abstract: A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 29, 2003
    Assignee: The Regents of the University of California
    Inventors: Patrick A. Kearney, Scott C. Burkhart
  • Patent number: 6548946
    Abstract: An electron beam generator having circuit interconnections between individual components that are less prone to the adverse effects of thermal cycling. The generator includes a conductor rod within a guide tube, a center conductor secured to one end of the rod, and an outer conductor secured to the adjacent end of the guide tube. An opposite end of the center conductor has an integrally-formed flange extending radially therefrom. A first tower is secured and electrically connected to the flange, while a second and adjacent tower is electrically connected to the outer conductor. A filament is mounted to and between the first and second towers. A forward leg of the filament circuit comprises the conductor rod, the center conductor, the flange and the first tower, and the return leg of the filament circuit comprises the second tower and the guide tube interconnected by the outer conductor.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 15, 2003
    Assignee: General Electric Company
    Inventor: Thomas Orrin Zengel
  • Patent number: 6545419
    Abstract: An improved double chamber ion source comprising a plasma generating chamber, a charge exchange chamber and a divider structure therebetween. The charge exchange chamber includes magnetic shielding material to reduce exposure of interior components to magnetic field lines externally generated. The double compartment ion source further comprises inclusion of a heat shield and/or a cooling system to overcome deleterious effects caused by increased temperature in the plasma generating chamber. The divider structure has a plurality of apertures having a configuration to reduce surface area on the divider structure in the charge exchange chamber.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 8, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Michael C. Vella
  • Publication number: 20030057847
    Abstract: The present invention provides an apparatus and a method of generating and controlling plasma formed in a capacitively coupled plasma region between a plasma electrode and a bias electrode. The plasma electrode includes a plurality of sub-electrodes that are electrically insulated from one another. Radio frequency plasma generating electric power is provided to the plasma electrode. Radio frequency bias electric power, at a lower frequency than the plasma generating radio frequency electric power, is also provided. A first portion of the bias electric power is provided to the bias electrode, and a second portion of the bias electric power is provided to the plasma electrode. At least one filter, impedance matching network, phase shifter, and power splitter are used to affect the electric power provided to the electrodes.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 27, 2003
    Inventor: Eric J. Strang
  • Patent number: 6522077
    Abstract: An ionizing rod comprising a core having an outer surface with a plurality of ionizing points disposed along the outer surface of the core. The plurality of ionizing points are sufficiently dense upon the core surface such that air between the plurality of ionizing points and an object is sufficiently ionized to remove static charge from the object. The core material can be electrically conductive, insulative, or static dissipative. The methods to attach the ionizing points to the core include a pullover sleeve, made of fibers including ionizing points, and glue to adhere either fibers in electrical communication or not in electrical communication depending on whether conductive or non-conductive adhesive are employed. Alternative embodiments include a device for the ionizing charged particles to travel to ground or electrically charged and a grip.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: February 18, 2003
    Inventor: William J. Larkin