Specific Processing Of Feedback Signal Or Circuit Therefore (i.e., A-d Conversion, Compression, Or Modification) Patents (Class 318/400.04)
  • Publication number: 20130334993
    Abstract: Embodiments of the present disclosure relate to methods, systems and apparatus for estimating angular position and/or angular velocity of a rotor of an electric machine.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: JIHOON JANG
  • Publication number: 20130328510
    Abstract: A method for driving a motor including a stator wound with a coil and a rotor rotatably disposed and confronting the stator, whereby the coil is energized and driven at energizing timing of which phase is determined based on an advance angle amount to rotate the rotor. At this time, it is determined whether or not a power supply voltage supplied to the motor exceeds a predetermined voltage, and when it is determined that the power supply voltage exceeds the predetermined voltage, the advance angle amount is changed to increase a current amount flowing through the coil, for energizing and driving the coil.
    Type: Application
    Filed: March 13, 2012
    Publication date: December 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Daisuke Sato
  • Patent number: 8593089
    Abstract: There are provided a motor driving apparatus and method. The motor driving apparatus includes: a speed detecting unit detecting a rotation speed of a motor according to an edge of a hall signal, and counting a preset clock signal while allocating a weighted value thereto according to a preset reference count value at the time of counting the clock signal based on the detected speed; a position calculating unit calculating a rotation position of the motor according to a count value of the speed detecting unit; and a driving unit driving the motor according to position information of the motor calculated by the position calculating unit.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 26, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Bon Young Koo
  • Patent number: 8589101
    Abstract: An apparatus for measuring RMS values of burst-fired currents includes a current sensor having a signal output, an analog-to-digital (A/D) converter coupled to the signal output of the current sensor, a digital processor coupled to an output of the A/D converter, and a digital memory coupled to the digital processor. Code segments stored in the digital memory are executable on the digital processor and implement a process of: a) initially sampling the output of the A/D converter; b) determining from the initial sampling a burst-fired current pattern; c) sampling the output of the A/D converter N times within a burst-fired current pattern to provide N samples; and d) calculating an RMS value from the N samples.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: November 19, 2013
    Assignee: Neilsen-Kuljian, Inc.
    Inventors: Huy D. Nguyen, Tom Lik-Chung Lee
  • Publication number: 20130300324
    Abstract: The invention relates to a method wherein the speed of the rotor of an electronically commutated synchronous machine is determined or controlled by means of one or more rotor position sensors, in particular, three rotor position sensors that are fixed to the stator, and a time measuring device, wherein the angle traveled by the rotor and the time lapsed during the travel are measured, wherein the measured angle traveled by the rotor is corrected by means of one or more first correction constants, in particular a differential for correcting for the influence of non-uniform positioning or expansion of the position marking of the rotor, and a circuit configuration for actuating an electronically commutated synchronous machine.
    Type: Application
    Filed: November 21, 2011
    Publication date: November 14, 2013
    Applicant: Continental Teve AG & Co, oHG
    Inventors: Tom Kaufmann, Thomas Pröger, Jochen Leideck, Jan Statzner, Christian Bitsch, Peter Stauder
  • Patent number: 8575871
    Abstract: The invention comprises a modular electric machine comprising a modular stator having a plurality of stator teeth and windings and a modular rotor comprising a plurality of modular magnetic elements for electromagnetic interaction with stator teeth. The invention further comprises a method of control of a modular electric machine.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 5, 2013
    Inventor: Christopher Moore
  • Patent number: 8564229
    Abstract: A motor controlling device is provided that controls a brushless motor having a plurality of phases based on magnetic pole signals output by a plurality of magnetic pole signal output sections each corresponding to one of the phases. The motor controlling device includes an abnormality determining section, a signal generating section, and a motor controlling section. The abnormality determining section determines whether a magnetic pole signal output by each magnetic pole signal output section is an abnormal magnetic pole signal. When the abnormality determining section determines that at least one of the magnetic pole signals is an abnormal magnetic pole signal, the signal generating section generates a simulated signal corresponding to the abnormal magnetic pole signal based on the normal magnetic pole signals other than the abnormal magnetic pole signal and the rotational state of the brushless motor.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Kazuhiro Imoto, Masahiro Matsuura, Hiroaki Niino
  • Patent number: 8564232
    Abstract: A motor drive control device is configured to control driving of a brushless DC motor including a stator having drive coils, a rotor having plural magnetic poles, and plural position detecting units that output position detection signals representing position of the rotor with respect to the stator. The motor drive control device includes a drive voltage generating unit configured to generate and output drive voltages to the motor to drive the motor. An abnormality detecting unit can be used to detect abnormality of the position detection signals. When abnormality of at least one of the position detection signals has been detected by the abnormality detecting unit, the motor drive control device can drive the motor based on at least one of the remaining position detection signals excluding the position detection signal that has been detected as abnormal.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: October 22, 2013
    Assignee: Daikin Industries, Ltd.
    Inventor: Toshiaki Sato
  • Patent number: 8552670
    Abstract: A control circuit controls an electric motor and includes: a measuring device configured to measure a first phase current of the motor and provide a corresponding first analog signal; an analog-to-digital converter structured to convert the first analog signal into a first digital signal; a conversion module for generating a first converted digital signal representative of the first digital signal expressed in a rotating reference system; a node structured to compare the first converted digital signal into a first reference signal and generate a first error signal; and a measure control circuit structured to provide a timing signal of the analog-to-digital converter depending on the first error signal and a time delay introduced by the measuring device.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 8, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe D'Angelo, Giovanni Moselli, Virginia Clemente, Vincenzo Buccino, Carolina Verde
  • Patent number: 8552668
    Abstract: An automotive electrical body system includes a plurality of electrical assemblies coupled to at least one automotive body component. Each of the assemblies includes a heating element for heating the at least one component, a motor for actuating the at least one component, or a switch configured to toggle the at least one component on and off. Each of the assemblies also includes a wireless communication module for receiving wireless signals, and, in response to the wireless signals, controlling operation of the heating element or motor. An electrical conductor interconnects each of the electrical assemblies and carries electrical power to each of the electrical assemblies.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: October 8, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Alfons Hogenmueller, Vivek Jain
  • Publication number: 20130249453
    Abstract: Three-phase resolver signals that are output from a resolver upon reception of an excitation signal are captured by a microcomputer. The microcomputer computes a rotation angle of an electric motor on the basis of the three-phase resolver signals. The ratio between an excitation period of the excitation signal and a capturing period of each of the three-phase resolver signals is set to 8:5. A computation period of the rotation angle is set to half of the least common multiple of the excitation period of the excitation signal and the capturing period of each resolver signal.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 26, 2013
    Applicant: JTEKT CORPORATION
    Inventor: Noritake URA
  • Publication number: 20130249452
    Abstract: Certain embodiments provide an angle detector comprising: an AD converter configured to analog-to-digital convert plural-phase signal waves having respective different phases; a corrector configured to delay a phase of an excitation signal by an amount corresponding to a phase difference between the excitation signal and the signal wave; a wave detector configured to perform synchronous detection to an output signal from the AD converter in synchronization with the excitation signal whose phase is corrected; and an angle calculator configured to calculate an estimated rotation angle using an output signal of the wave detector and output the estimated rotation angle to the AD converter.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Makoto SHINOHARA
  • Patent number: 8541966
    Abstract: The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: September 24, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 8508174
    Abstract: An electronically commutated motor (ECM 20) has a rotor (28) and a stator, associated with which is a winding arrangement (26) to which electrical current (i1) is applied to drive the motor (20), a computer (36), and a PWM generator (84) associated therewith. The motor (20) is designed for operation in a parameter range that encompasses at least one variable parameter, e.g. operating voltage or ambient temperature, that can have different values. The computer (36) is configured to operate by carrying out these steps: After the motor (20) is switched on and before normal startup begins, during an initial time phase (T1), current (i1) delivered to the stator winding arrangement (26) is switched off and on using a pulse duty factor (pwm) derived from said variable parameter, in order to produce startup of the motor (20); subsequent to phase (T1), when the rotor (28) is rotating, normal startup is performed.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 13, 2013
    Assignee: EBM-PAPST St. Georgen GmbH & Co. KG
    Inventors: Benjamin Haas, Frank Heller
  • Publication number: 20130181644
    Abstract: An angle detection apparatus for a rotor of a motor includes a period counter, a step period generator, and an angle generator. The period counter receives a rotor sensing signal, and calculates a plurality of time ranges of a plurality of pulses of the rotor sensing signal. The step period generator generates a ratio value and an error signal according to an average time range value of the time ranges and a set value. The step period generator further adjusts the ratio value according to the error signal, and generates a step time according to the adjusted ratio value and the average time range value. The angle generator receives the step time and the rotor sensing signal, and obtains an angle detection result according to the rotor sensing signal and the step time.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventors: Yi-Min Hsu, Chung-Hui Yeh, Pei-Sheng Tsu
  • Publication number: 20130175956
    Abstract: An apparatus and method to control a brushless direct current (BLDC) motor, which accurately detect driving current. To this end, the BLDC motor control apparatus includes a BLDC motor, a driver to generate driving current to drive the BLDC motor, a current measurer to measure the driving current, a pulse width modulator to change a driving voltage to drive the BLDG motor; and a controller to control the BLDC motor. The controller detects the amount of the driving current in synchronization with pulse width modulation of the pulse width modulator and determines current with a minimum change due to a variation of counter electromotive force, among currents flowing through a plurality of coils, as the driving current, thereby accurately detecting the driving current.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130170951
    Abstract: A method for setting a lead-angle value of a motor drive control circuit is disclosed. The motor drive control circuit energizes and drives the windings of a motor with an energizing timing based on a stored lead-angle value. The method includes the steps of: rotating a rotor at a given rpm (step S102), energizing and driving the windings during the rotation at the given rpm with the lead-angle value being switched (step S110); calculating an average value of current amount that energizes and drives the windings (step S114); calculating a total value of consecutive multiple average values for each lead-angle value (step S120); finding a smallest total value among the total values, and setting a lead-angle value corresponding to the smallest total value as a stored lead-angle value (step S122).
    Type: Application
    Filed: February 29, 2012
    Publication date: July 4, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Daisuke Sato
  • Patent number: 8476852
    Abstract: A controller for a brushless motor that includes a processor, a first timer, a second timer, a compare register, a comparator, an input, and one or more outputs. The processor starts the first timer in response to a signal at the input. The first timer then generates an interrupt after a first period. In response to the interrupt, the processor generates a first control signal at the outputs. The processor also loads the compare register and starts the second timer in response to either the input signal or the interrupt. The comparator then generates a second control signal at the outputs when the second timer and the compare register correspond. Additionally, a motor system that includes the controller.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: July 2, 2013
    Assignee: Dyson Technology Limited
    Inventors: David John Hawker, Hanping Dai
  • Publication number: 20130162184
    Abstract: There are provided a motor driving apparatus and method. The motor driving apparatus includes: a speed detecting unit detecting a rotation speed of a motor according to an edge of a hall signal, and counting a preset clock signal while allocating a weighted value thereto according to a preset reference count value at the time of counting the clock signal based on the detected speed; a position calculating unit calculating a rotation position of the motor according to a count value of the speed detecting unit; and a driving unit driving the motor according to position information of the motor calculated by the position calculating unit.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 27, 2013
    Inventor: Bon Young KOO
  • Patent number: 8471507
    Abstract: According to the present invention, an electrical power conversion system includes: a motor; an inverter circuit that outputs three-phase (U-phase, V-phase, W-phase) alternating currents to the motor; a current sensor that detects each of the three-phase alternating currents; and a control circuit that controls the inverter circuit based on a torque command value and values detected by the current sensor, so that the three-phase alternating currents outputted from the inverter circuit are formed as sine waves; and wherein the control circuit includes: a current component extraction unit that, based on the values detected by the current sensor, for each phase, extracts current components superimposed upon each of three-phase alternating currents; and an AC current abnormality detection unit that detects abnormality of an AC current flowing to the motor, based on the phases of the current components for any two phases among the three-phase alternating currents.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 25, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yoshio Akaishi, Yasuo Noto, Koichi Yahata, Hirokazu Matsui
  • Patent number: 8471506
    Abstract: A motor control apparatus includes a resolver and a R/D converter in which an electrical angle of 360° is set smaller than a mechanical angle of 360° and that outputs a two-phase encoder signal corresponding to the electrical angle; a two-phase encoder counter that counts the two-phase encoder signal and outputs a digital value corresponding to the electrical angle; a multiplication factor of angle detecting portion that detects a position of the mechanical angle to which an angle indicated by a signal output from the R/D converter corresponds, based on a change in a count value; and a motor controlling portion that corrects a current command value determined based on a torque command value, according to an output of the multiplication factor of angle detecting portion.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shizuo Manabe
  • Publication number: 20130154526
    Abstract: Provided is an apparatus for compensating offset of a current sensor detecting a motor current supplied by an inverter for PWM (Pulse Width Modulation) control of a motor, the apparatus including a current controller providing a PWM signal generated based on the motor current detected by the current sensor to the inverter, calculating an offset using the motor current detected by the current sensor in response to presence and absence of the PWM control of the motor, or offset-compensating the motor current detected by the current sensor.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 20, 2013
    Applicant: LSIS CO., LTD.
    Inventor: LSIS Co., Ltd.
  • Patent number: 8466644
    Abstract: First and second A/D converters perform analog/digital conversion of first and second signals of a Hall signal so as to generate third and fourth signals as digital signals. A differential conversion circuit generates a fifth signal as a single-ended signal that corresponds to the difference between the third and fourth signals. An offset correction circuit corrects offset of the fifth signal so as to generate a sixth signal. An amplitude control circuit stabilizes the amplitude of the sixth signal to a predetermined target value, and generates its absolute value, thus generating a seventh signal. A control signal generating unit generates a control signal based upon the seventh signal. A driver circuit drives a motor according to the control signal.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: June 18, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Tatsuro Shimizu, Hiroyuki Ishii, Nobuo Komura, Toshiya Suzuki
  • Patent number: 8456122
    Abstract: A control circuit includes a current sensing circuit, an analog digital converter (ADC), an amplifying circuit, a processor, and a switching circuit. The current sensing circuit senses current supplied to an electronic device by a power supply and outputs a first voltage signal. The amplifying circuit amplifies the first voltage signal output from the current sensing circuit to a second voltage signal. The ADC converts the second voltage signal to a digital signal. The processor outputs pulse width modulation (PWM) signals according to the digital signal. The switching circuit receives the PWM signals to control a fan of the electronic device according to the PWM signals.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 4, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ming-Chih Hsieh
  • Publication number: 20130106325
    Abstract: An apparatus for measuring an error in a resolver includes a first calculator that perform an inverse Park transform based on voltages Uq and Ud at an output of PI current regulators, and delivers voltage setpoint signals PWMA, PWMB, PWMC to a power stage via a line on which a DC voltage Ubus-dc is available. The power stage generates a three-phase system of voltages UA, UB, UC for energizing an electric machine. The apparatus also includes a signal processor that provides an angle measurement ?m. Based on currents MesIA, MesIB, MesIC of the three phases, and on a rotor angle ?r, a second calculator of the device delivers values MesId, MesIq used by the first calculator. A PI voltage regulator delivers an angle ?c for correcting the error by regulating a setpoint value for the voltage Ud.
    Type: Application
    Filed: May 5, 2011
    Publication date: May 2, 2013
    Applicants: MICHELIN RECHERCHE ET TECHNIQUE S.A., COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Cédric Savio, Jean-Louis Linda, Bertrand Vedy
  • Publication number: 20130099704
    Abstract: Motor control circuits and associated methods to control an electric motor provide a plurality of drive signal channels at the same phase, resulting in reduced jitter in the rotational speed of the electric motor.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: Allegro Microsystems, Inc.
    Inventor: Chee-Kiong Ng
  • Publication number: 20130093372
    Abstract: Position samples are stored from an encoder coupled to a permanent magnet electric machine. A data processor determines first changes in position between successive position samples and second changes between successive first changes in position. A data processor determines whether each first change in position is generally increasing, decreasing or constant. A corrective motion factor is applied to each stored position sample based on whether the first change in position is generally increasing or decreasing. The data processor estimates a final rotor angle of the electric machine based on a particular one of the position samples and a corresponding first change in position associated with the particular one of the position samples corresponding to a respective time.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Inventor: Lav Thyagarajan
  • Publication number: 20130076281
    Abstract: According to an embodiment, a motor control circuit includes a rotational position decoding unit, a rotational position determining unit, and a motor drive signal generating unit. The rotational position decoding unit is configured to generate a rotational position signal representing a rotational position of a motor according to a sensor signal provided by a sensor. The rotational position determining unit is configured to store a current rotational position of the motor based on the rotational position signal. When the rotational position signal represents a subsequent rotational position of the stored current rotational position, the rotational position determining unit is configured to update the stored current rotational position with the subsequent rotational position, and generate a motor control signal representing the subsequent rotational position. The motor drive signal generating unit is configured to generate a motor drive signal for driving the motor according to the motor control signal.
    Type: Application
    Filed: March 14, 2012
    Publication date: March 28, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Fumio NOGUCHI, Yoshihito Nakamura
  • Patent number: 8405365
    Abstract: When a distortion of an output waveform of an alternating-current generator is improved, an output voltage control apparatus of a generator, which has versatility, is obtained. An output voltage control apparatus of a generator (1), including a generator winding (2) and an excitation winding (3) wound around a stator side, a field winding (5) wound around a rotor (4), and a rectifier (12) for rectifying a current generated by the excitation winding (3) and supplying the rectified current to the field winding (5), the output voltage control apparatus includes a field current drive means (20) for comparing an output voltage generated to the generator winding (2) with a reference wave whose distortion ratio is 0% and flowing a field current to the field winding (5) by adjusting a drive timing of a PWM signal output by a drive unit (24) based on a result of the comparison.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yasuhiro Nakada, Minoru Maedako
  • Patent number: 8405329
    Abstract: A motor drive controller includes a position detector that detects and outputs positional signals representing rotational positions of the magnetic rotor at first resolution, a position change detector that detects and outputs position change signals representing rotational positions of the magnetic rotor at second resolution higher than the first resolution, a phase synchronizing circuit that generates and outputs low resolution absolute phase information based on the positional and position change signals. The phase synchronizing circuit generates and outputs high-resolution absolute phase information based on the position change signals. A drive voltage signal outputting device outputs a drive voltage signal causing the current to flow through the coils in accordance with the absolute phase information.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: March 26, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Fumihiro Shimizu
  • Patent number: 8400087
    Abstract: A method and an arrangement for determining the rotation speed of a motor fed by an inverter, the arrangement comprising means for determining the rotation speed of the motor in at least two alternative manners, whereby the means for determining the rotation speed of the motor comprise one of the at least two alternative manners of performance: means for measuring the frequency of the voltage fed to the motor by the inverter; and means for estimating the rotation speed of the motor on the basis of the measured frequency.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 19, 2013
    Assignee: ABB Oy
    Inventors: Reijo Virtanen, Osmo Pasuri
  • Publication number: 20130060407
    Abstract: A hybrid control system and method includes an offset candidate value determination step wherein an offset candidate value of a resolver is determined based on predetermined data; a zero current control step wherein all currents are controlled at zero; a voltage detection step wherein the voltage generated in the drive motor is detected while the currents are controlled at zero; an average value calculation step wherein the average value of the voltage is calculated using the detected voltage values; and a final offset value calculation step wherein the final offset valve is calculated using the average value and the offset candidate value. As such, a final offset value is quickly and accurately calculated.
    Type: Application
    Filed: December 28, 2011
    Publication date: March 7, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Jae Sung BANG
  • Patent number: 8384324
    Abstract: A motor drive circuit is configured to drive a motor based on first and second position detection signals opposite in phase to each other, the signals having a frequency corresponding to a rotational speed of the motor and indicating a rotational position of the motor. The circuit includes a first level-shift circuit, a second level-shift circuit, a timing detecting circuit, and an output circuit. The first level-shift circuit is configured to shift a level of at least either one of the first and second position detection signals so that a first period, during which a first output signal corresponding to the first position detection signal is higher in level than a second output signal corresponding to the second position detection signal, becomes longer than a second period, during which the second output signal is higher in level than the first output signal.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: February 26, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Masahiro Nakahata, Toshiyuki Imai
  • Publication number: 20130043814
    Abstract: A system for controlling a motor (3) includes a driver circuit (5) for generating a drive voltage (v) to generate a phase current (i) in the motor. Phase current sensing circuitry (10,21) digitizes the phase current. A first circuit (23) provides a reconstructed digital representation of a BEMF signal (vbemf) of the motor to generate an error-corrected synchronization signal (SYNC) in response to the phase current and a detected error in the motor speed, an amplitude feedback signal (15), and information (iR,iL,?iL,vL) indicative of a resistance (Rm) and an inductance (Lm) of the motor. A motor drive signal (15) having an error-corrected frequency is generated in response to the synchronization signal. A PWM circuit (16) produces a PWM signal (17) having a frequency equal to the error-corrected frequency of the synchronization signal (SYNC) and a duty cycle controlled according to the detected error.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Yew Tat Chuah, Yisong Lu
  • Patent number: 8373370
    Abstract: The present invention provides a position sensorless control method of a high performance permanent magnet synchronous motor during emergency operation, which can accurately detect a magnetic pole position of the synchronous motor based on a position sensorless vector control using an adaptive observer configured based on a permanent magnet synchronous motor model.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: February 12, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Postech Academy-Industry Foundation
    Inventors: Soon Woo Kwon, Seo Ho Choi, Joon Yong Lee, Kwang Hee Nam, Jin Seok Hong, Sung Yoon Jung, Tae Heon Kim
  • Publication number: 20130033208
    Abstract: The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.
    Type: Application
    Filed: October 10, 2012
    Publication date: February 7, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Publication number: 20130033207
    Abstract: A multi-phase rotary machine control apparatus executes calculation processing of an angle error caused by position error in attaching a rotation angle sensor to a motor. The control apparatus sets d-axis and q-axis current command values to zero. A rotary shaft of the rotary machine is rotated externally. The control apparatus detects phase currents caused by a counter-electromotive force, converts phases and outputs voltage command values so that the current detection values become zero. The control apparatus calculates an angle error based on the voltage command values, and stores the angle error as an angle correction value. The control apparatus corrects a detection value of a rotation angle sensor by the stored angle correction value.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Applicant: DENSO CORPORATION
    Inventors: Takafumi Satou, Takashi Suzuki
  • Patent number: 8368331
    Abstract: A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 5, 2013
    Assignee: RBC Manufacturing Corporation
    Inventors: Mark A. Brattoli, Guy Bonner, Jr.
  • Patent number: 8362723
    Abstract: The motor drive circuit 100 supplies a drive current to the motor 2 to drive the motor. Each of the first Hall amplifier HAMP1 to the third Hall amplifier HAMP3 is provided for each phase of the motor 2 and receives a pair of Hall signals from a corresponding phase Hall element to generate each phase sine wave voltage SIN_U, SIN_V and SIN_W by amplifying a difference between the pair of Hall signals. Each of the first PWM comparator PCMP1 to the third PWM comparator PCMP3 is provided for each phase of the motor 2 and compares the corresponding phase sine wave voltage SIN_U, SIN_V and SIN_W, with the periodic voltage Vosc to generate each phase PWM signal PWM_U, PWM_V and PWM_W. The drive unit 10 subjects a phase coil, a target to be driven, to pulse drive by using the pulse modulated signal from the corresponding PWM comparator.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: January 29, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Makoto Kuwamura
  • Patent number: 8354807
    Abstract: An anti-noise method for the Direct Current Brushless motor System, which includes a startup circuit, phase detective circuit, motor phase commutation circuit, driving circuit, BEMF detective circuit, and frequency detector, utilizes the BEMF detective circuit to detect the BEMF induced from the coils of the outer motor, and utilizes the sampled voltage phase to determine rotation speed and phase of the external motor by the phase detection circuit and frequency detector. Further, the sampling voltage of the BEMF detection circuit is feedback controlled by the frequency detector, utilized to keep good BEMF to noise ratio, and avoids the BEMF sampling error from the system.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 15, 2013
    Assignee: Amtek Semiconductor Co., Ltd.
    Inventors: Teng-Hui Lee, Chan-Chih Liu
  • Publication number: 20130009577
    Abstract: A system for controlling a motor is provided. The system for controlling the motor includes a sensor for sensing position information of a rotor of the motor, a processor for receiving the sensed signal from the sensor and estimating an electrical angle on the basis of the sensed signal, and a control signal generating module for generating a control signal used to control the operation of the motor based on the electrical angle. The system can obtain the necessary control signal for controlling the motor only by one sensor, thereby reducing the complexity of installation of the sensors in the motor and also saving the cost.
    Type: Application
    Filed: October 20, 2011
    Publication date: January 10, 2013
    Applicant: EBM-PAPST VENTILATOR (SHANGHAI) CO., LTD.
    Inventor: Wei Shang
  • Patent number: 8350505
    Abstract: An electrically commuted reversible synchronous motor is activated in a calibration journey using an externally forced rotating field, during which an electrical angle of a rotating field and a mechanical angle of the rotor are measured simultaneously at a reference position by an external sensor. These items are stored associated with one another as a measurement series of value pairs. The electrical angle of the rotating field and the mechanical angle of the rotor are also detected simultaneously after direction reversal of the rotating field. These are stored as a second measurement series of value pairs. The angle difference between the electrical angle and the mechanical angle are calculated from value pairs of both measurement series. The correction value for taking the actual incorrect angle into consideration is calculated from the two angle differences by averaging.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 8, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Uwe Krause, Uwe Nolte, Jan Spannberger
  • Patent number: 8344672
    Abstract: A differential amplifier detects a coil current Is at the time of steady rotation of a synchronous motor. An application voltage S0 at this time is detected from an output of an ATT circuit and so on. With the use of the coil current Is which is detected, the application voltage S0 at that time, and a predetermined scaling factor As, an induced current Ib is obtained based on Ib=As·S0?Is. The application voltage to the motor is controlled based on the induced current Ib which is obtained.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 1, 2013
    Assignees: Sanyo Electric Co., Ltd, Sanyo Semiconductor Co., Ltd
    Inventor: Kazumasa Takai
  • Patent number: 8340848
    Abstract: Methods and systems for controlling an electric motor are provided. A signal comprising at least first and second cycles is provided to the electric motor. A first flux value for the electric motor associated with the first cycle of the signal is calculated. A second flux value for the electric motor associated with the second cycle of the signal is calculated based on the first flux value.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 25, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Yo Chan Son, Nitinkumar R. Patel, Steven E. Schulz
  • Patent number: 8339076
    Abstract: An electric motor drive control apparatus includes a detection angle obtaining section that obtains the detection angle of the resolver; a correction information storage section that stores correction information for correcting the detection angle, in association with a modulation ratio that is a ratio of an effective value of a fundamental wave component of the AC voltage to the system voltage; and a detection angle correcting section that obtains the correction information from the correction information storage section, based on the modulation ratio at the time the detection angle obtaining section obtains the detection.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 25, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Takeshi Aoki, Subrata Saha
  • Patent number: 8314576
    Abstract: Methods and apparatuses for detecting faults and optimizing phase currents in an electromechanical energy converter are disclosed. An example method comprises: measuring a current of a phase of the electromechanical energy converter, modeling the electromechanical energy converter with the current measurement input into a field reconstruction module, calculating a flux linkage of the electromechanical energy converter, comparing the flux linkage with a flux linkage from a no fault electromechanical energy converter, and optimizing the current of the phase of the electromechanical energy converter in response to the comparison. Other embodiments are described and claimed.
    Type: Grant
    Filed: July 17, 2010
    Date of Patent: November 20, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: Babak Fahimi, Amir Khoobroo
  • Patent number: 8310184
    Abstract: The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 13, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Publication number: 20120273290
    Abstract: Provided is a motor control device including a main calculation unit (101), which takes a first operation state for controlling a brushless motor (5), and a second operation state for stopping the motor control, and a sub calculation unit (102) for monitoring the main calculation unit (101) by means of a first monitoring unit (106) in the first state, for calculating a motor rotation angle in the second state, thereby enabling continuous calculation of the motor rotation angle even when the motor control is stopped, for carrying out monitoring the sub calculation unit (102) by means of second monitoring unit (201), thereby securing reliability, and for calculating the motor rotation angle in a second calculation cycle in the second operation state, the second calculation cycle being longer than a first calculation cycle in the first operation state, thereby reducing a current consumption.
    Type: Application
    Filed: October 5, 2011
    Publication date: November 1, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yu KAWANO, Masatoshi Saito, Takayuki Kifuku
  • Publication number: 20120274248
    Abstract: The invention relates to an electrically commutated electrical motor having a stator and having an in particular permanent-magnetically designed rotor. The electronically commutated electrical motor also has a control unit which is connected to the stator and designed to actuate the stator for generating a magnetic rotary field. The control unit is designed to detect a voltage induced in at least one stator coil of the stator and to determine a motor torque constant representing an achievable torque in dependence on a rotational speed signal representing a rotor circumferential frequency of the rotor. According to the invention, the control unit in the electronically commutated electrical motor of the aforementioned type is designed to detect a frequency content of the motor torque constant and to actuate the stator for generating a torque in dependence of the frequency content, in particular a frequency amplitude of the motor torque constant.
    Type: Application
    Filed: October 8, 2010
    Publication date: November 1, 2012
    Applicant: ROBERT BOSCH GMBH
    Inventor: David Fricker
  • Patent number: 8301324
    Abstract: A vehicle includes a traction motor, a transmission, a speed encoder for the motor, and a control system. The control system compensates for angular wobble in an encoder signal. The control system receives, via a hybrid control processor (HCP), the encoder signal from the speed encoder, and determines a set of wobble characteristics of the encoder signal below a threshold motor speed. The control system also calculates a wobble-compensated speed value via the HCP using the wobble characteristics, and uses the wobble-compensated speed value as at least part of the input signals when controlling the motor. A lookup table tabulates a learned wobble value relative to the angular position value, and a learned wobble value is subtracted from a current angular wobble value to generate an error-adjusted wobble value. A method compensates for wobble in the encoder signal using the above control system.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Robert L. Morris