With Particular Interpolation Means Patents (Class 318/568.15)
  • Patent number: 11587287
    Abstract: A method of forming a physical model of a geographic area. The method includes the steps of generating a digital elevation model of a topography of a defined geographic area, scaling the digital elevation model to a predetermined size, determining a parametric function from the scaled digital elevation model according to a predetermined shape, determining a linear function from the parametric function, determining a machine path from the linear function, and forming one or more material portions according to the machine path, thereby forming one or more portions representative of the defined geographic area.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: February 21, 2023
    Inventor: Thomas Percy
  • Patent number: 11518024
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating motions for components in a robotic operating environment. One of the methods includes receiving a request to generate a motion for a kinematic system having a plurality of connected entities. An entity-specific sampling module for each of multiple degree-of-freedom (DOF) groups representing respective entities of the kinematic system is identified. A plurality of joint configuration samples are generated according to an ordering of a plurality of nonfunctional DOF groups using a respective entity-specific sampling module for each nonfunctional DOF group. A final joint configuration sample is generated for one or more one or more control points using a respective entity-specific sampling module for a functional DOF group. A motion comprising a sequence of respective joint configuration samples from each of the plurality of DOF groups is generated.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 6, 2022
    Assignee: Intrinsic Innovation LLC
    Inventor: Stoyan Gaydarov
  • Patent number: 10908581
    Abstract: A numerical control apparatus includes: a curvature radius calculating portion which calculates a first radius ra which is a radius of a passage arc C passing through three points of a start point Ps, an object point Pt, and an end point Pe as a curvature radius R at the object point Pt; a point sequence evaluating portion which calculates a chord error E to the passage arc C and compares the calculated chord error E and a previously defined permissible error; and a curvature radius correcting portion which calculates a second radius which is a radius of an arc in which a chord error with a front line segment and a rear line segment is the permissible error or less when the calculated chord error E exceeds the permissible error and corrects a curvature radius at the object point Pt to the second radius.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 2, 2021
    Assignee: OKUMA CORPORATION
    Inventor: Katsuya Hioki
  • Patent number: 10737378
    Abstract: A robot includes: a base; a first arm which is provided on the base so as to be rotatable around a first rotation axis; and a second arm which is provided on the first arm so as to be rotatable around a second rotation axis having an axial direction different from the axial direction of the first rotation axis, an angle formed by the first arm and the second arm is set as 0°, when seen in the axial direction of the second rotation axis, and the second arm does not interfere with an attachment surface where the base is provided, when the angle is 0°.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: August 11, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Kazushige Akaha, Christoph Meyerhoff, Kazuto Yoshimura
  • Patent number: 10671054
    Abstract: A numerical control device configured to perform stopping control of an axis of a machining tool to be controlled corresponding to command for machining interruption during machining by moving a workpiece or a tool using cycle operation, the numerical control device includes an override input unit, a decelerating and stopping override change unit configured to calculate actual override, decelerated in stages at each interpolation period based on the override acquired by the override input unit, and a velocity calculation unit configured to decelerating and stopping control of the axis.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 2, 2020
    Assignee: FANUC CORPORATION
    Inventor: Iwao Makino
  • Patent number: 10427302
    Abstract: A robot control apparatus includes a setting unit which sets a workpiece parameter, which is a parameter of a workpiece itself and affects transferability of the workpiece transferred by the industrial robot, a storage unit which stores a rated workpiece parameter, which is a maximum parameter of the workpiece itself which can be transferred by the robot at a rated velocity, and a velocity limiting unit which reduces the maximum velocity of the industrial robot to a value lower than the rated velocity when the workpiece parameter set by the setting unit exceeds the rated workpiece parameter stored in the storage unit.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: October 1, 2019
    Assignee: FANUC CORPORATION
    Inventors: Hiromitsu Takahashi, Tsuyoshi Hannya
  • Patent number: 10105849
    Abstract: A manufacturing system having a master controller for monitoring and controlling a master axis of a manufacturing line and one or more individual robotic apparatus with an end point capable of performing two dimensional or three dimensional movements and a robotic control system that interacts with the master controller such that standard motion commands from the master controller are used to modify the end points in response to changes in the master axis.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: October 23, 2018
    Inventor: Glen C Wernersbach
  • Patent number: 10007252
    Abstract: A controller controls a machine tool that rotates a cutting tool attached to a spindle to cut a workpiece in accordance with a machining program. The controller identifies, when the machining program is executed to cause the cutting tool to cut into the workpiece, a position where the cutting tool has come into contact with the workpiece for the first time and a machining direction at the time when the cutting tool has cut into the workpiece, and inserts, in the machining program, a roll-in path instruction having an end point set to the identified position at which the cutting tool has come into contact with the workpiece for the first time.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 26, 2018
    Assignee: FANUC CORPORATION
    Inventor: Takaaki Fujii
  • Patent number: 9778645
    Abstract: A numerical controller uses a work lattice region setting unit and a rotation axis work lattice region setting unit to form lattice points for error correction and uses a work-caused translation correction amount setting unit to set a correction amount of a work-caused translation error. A work-caused translation correction amount calculation unit calculates a correction amount at a tool center point position, and a correction section of the numerical controller adds the work-caused translation correction amount to positions of three commanded linear axes for error correction.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: October 3, 2017
    Assignee: FANUC Corporation
    Inventor: Tsuyuki Shimizu
  • Patent number: 9377772
    Abstract: A numerical controller configured to control a machine tool for machining the workpiece on the basis of a machining program composed of a plurality of blocks includes a corner multiple curves inserting unit. This corner multiple curves inserting unit inserts, between consecutive two blocks, three cubic polynomial curves in which a position, a direction and a curvature are continuous and the distances from these two blocks are within a prescribed allowable tolerance, if a direction or a curvature between these two blocks is discontinuous in the machining program.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 28, 2016
    Assignee: FANUC Corporation
    Inventor: Naoya Koide
  • Patent number: 9268323
    Abstract: Provided is a numerical controller having a machining curve creating function. A command point sequence is divided into a plurality of segments and a segment curve corresponding to each segment command point sequence is created. The segment curve is created so that a distance of the segment curve from the segment command point sequence is within a permissible value set in advance, and the maximum number of command points are included between a starting point and an ending point of the segment command point sequence. This process of segment curve creation is repetitively executed from the starting point to the ending point of the command point sequence to create a machining curve. Subsequently, the machining curve is interpolated and drive axes of a machine tool are moved to the interpolated positions on the machining curve.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: February 23, 2016
    Assignee: FANUC Corporation
    Inventor: Toshiaki Otsuki
  • Patent number: 9221175
    Abstract: A path is generated for an end effector arranged at a top of links of a multiaxial robot, where the end effector is moved along the path from a start point thereof to an end point thereof. In generating the path, the start and end points are positionally specified in the real space, and initial pass points are also generated between the start and end points. Coordinate positions of both specified start and end points and generated initial pass points are converted to angles of the respective axes of the joints. Based on the start and end points and initial pass points, which have been converted to the joint angle space, the path is generated which enables the end effector to be moved in the shortest time from its start point to its end point, during the initial pass points are changed repeatedly for generating the path.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 29, 2015
    Assignee: DENSO WAVE INCORPORATED
    Inventor: Yoshirou Iwasaki
  • Patent number: 8831768
    Abstract: A CPU 41 reads a next block (S1), and then determines whether the read block is a TCP (tool center point) control finish command “G49” or not (S2). If it is determined to be the TCP control finish command “G49”, the TCP control is finished. If it is determined not to be the TCP control finish command “G49”, whether the read block is a coordinate-system transformation command “P1” or not is determined (S3). Next, if it is determined not to be the coordinate-system transformation command “P1”, the TCP control is performed, without transforming the coordinate system, in accordance with a command of the block (S11). Next, the process returns to S1, and then the process after S1 is executed.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shunro Ono, Kotaro Nagaoka, Tomonori Sato, Daisuke Fujino
  • Patent number: 8825209
    Abstract: If a manipulator of a robot falls in local minima when expanding a node to generate a path, the manipulator may efficiently escape from local minima by any one of a random escaping method and a goal function changing method or a combination thereof to generate the path. When the solution of inverse kinematics is not obtained due to local minima or when the solution of inverse kinematics is not obtained due to an inaccurate goal function, an optimal motion path to avoid an obstacle may be efficiently searched for. The speed to obtain the solution may be increased and thus the time consumed to search for the optimal motion path may be shortened.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung Hee Kim, Kyung Shik Roh, San Lim, Bok Man Lim, Guo Chunxu
  • Patent number: 8810184
    Abstract: The characteristic is defined by a characteristic line that connects a lowest point at which the duty of the PWM signal is a minimum value and the rotation command signal is a minimum rotation command signal, and a highest point at which the duty of the PWM signal is a maximum value and the rotation command signal is a maximum rotation command signal. The duty calculating circuit updates the characteristic so that the characteristic line passes through a first control point at which the duty of the PWM signal is a value set based on the first setting signal and the rotation command signal is a first rotation command signal between the minimum rotation command signal and the maximum rotation command signal.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiaki Ohgushi, Takehiro Hara
  • Patent number: 8786243
    Abstract: In a numerically controlled machine tool which has a linear feed axis and a rotational feed axis and in which a main spindle and a table are movable relative to each other, a position error and an attitude error produced by an operation of a linear feed axis and a rotational feed axis are measured at a plurality of measurement points set within a movable range of the linear feed axis and the rotational feed axis, and the position error and the attitude error thus measured are stored as an error map in correspondence to a position of the linear feed axis and a rotation angle of the rotational feed axis.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: July 22, 2014
    Assignee: Makino Milling Machine Co., Ltd.
    Inventors: Norio Mori, Tadashi Kasahara, Tadahiro Nishiguchi
  • Patent number: 8614558
    Abstract: Disclosed herein are a motor control apparatus and a motor control method thereof. The motor control method includes estimating a current torque of a motor based on dynamics of a body driven by the motor, judging whether the estimated torque is higher than a predetermined torque value, compensating for a velocity profile to drive the motor from the predetermined torque value, upon judging that the estimated torque is higher than the predetermined torque value, and driving the motor using the compensated velocity profile. Thereby, the velocity profile is compensated for in real time, and thus the velocity of the motor is raised while preventing the motor from stepping out.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electonics Co., Ltd.
    Inventors: Ki Moon Lee, Yong Joon Hong, Chi Gun An, Dae Hyung Park
  • Patent number: 8504200
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 6, 2013
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 8505086
    Abstract: The present disclosure is directed to a system and method for managing communications with robots. In some implementations, a computer network, where operators interface with the network to control movement of robots on a wireless computer network includes a network arena controller and a plurality of robot controllers. The network arena controller is configured to provide firewall policies to substantially secure communication between robot controllers and the associated robots. Each controller is included in a different robot and configured to wirelessly communicate with the network arena controller. Each robot controller executes firewall policies to substantially secure wireless communication.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 6, 2013
    Assignee: Innovation First, Inc.
    Inventors: David Anthony Norman, Robert H. Mimlitch, III, Corey Lee Chitwood, Richard D. Torrance, Mark J. Lambert, Brandon Lee Martus, Lester E. Heath, III
  • Patent number: 8473202
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 25, 2013
    Assignee: C.H.I. Development Mgmt. Ltd. XXIV, LLC
    Inventor: John R. Lapham
  • Patent number: 8374718
    Abstract: A preceding-check processing sequence is provided separately from a machine-control processing sequence for an actual machine control, to make it possible to perform a collision check at an accurate position from an operation restart time of a machining program even when an operator interrupts an operation in the middle of the machining program or when the operator interrupts the operation as having detected a collision. This preceding-check processing sequence performs a collision possibility check ahead of an actual machine control. In this arrangement, there is provided a control-state synchronizing unit that matches a state of the preceding-check processing sequence with a state of the machine-control processing sequence during a period from when a machine stops until when the machine restarts an operation.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: February 12, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Nobuyuki Takahashi, Takashi Kamiya, Daisuke Kanaya, Tadahiro Otsuka, Ryoichi Ikeda
  • Patent number: 8350514
    Abstract: A numerical controller for controlling a multi-axis machine calculates an axis-dependent translation error amount and an axis-dependent rotation error amount based on a command axis position. Translation and rotation compensation amounts are calculated based on the axis dependent translation and rotation error amounts, respectively. The translation and rotation compensation amounts are added to command linear and rotary axis positions, respectively. Three linear axes and three rotary axes are driven to the added positions, individually. Thus, there is provided a numerical controller that enables even machining with a side face of a tool or boring to be in commanded tool position and posture (orientation) in the multi-axis machine.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: January 8, 2013
    Assignee: Fanuc Corporation
    Inventors: Toshiaki Otsuki, Soichiro Ide, Osamu Hanaoka, Takafumi Sasaki
  • Patent number: 8260453
    Abstract: A numerical controller for controlling a five-axis machining apparatus, in which a tool orientation command is corrected to thereby attain a smooth machined surface and a shortened machining time. The numerical controller includes command reading device that successively reads a tool orientation command, tool orientation command correcting device that corrects the tool orientation command so that a ratio between each rotary axis motion amount and a linear axis motion amount is constant in each block, interpolation device that determines respective axis positions at every interpolation period based on the tool orientation command corrected by the tool orientation command correcting device, a motion path command, and a relative motion velocity command such that a tool end point moves along a commanded motion path at a commanded relative motion velocity, and device that drives respective axis motors such that respective axis positions determined by the interpolation device are reached.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: September 4, 2012
    Assignee: Fanuc Ltd
    Inventors: Toshiaki Otsuki, Soichiro Ide, Osamu Hanaoka, Daijirou Koga
  • Patent number: 8093855
    Abstract: A low speed control method and an apparatus for a servo motor. The control apparatus comprises: an encoder capable of acquiring a speed signal from a servo motor and encoding the speed signal to output a low-resolution encoded signal; an insertion calculation unit capable of receiving the low-resolution encoded signal from the encoder to be processed by an interpolation operation for converting the low-resolution encoded signal into a high-resolution encoded signal to be outputted therefrom; a servo control chip capable of setting internal parameters and receiving the high-resolution encoded signal from the insertion calculation unit to be processed by a calculation process so as to output a switch control instruction; and a power module capable of receiving the switch control instruction from the servo control chip and then transmitting the same to the servo motor for adjusting the operation speed of the servo motor.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: January 10, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chia-Min Ting, Hsin-Hung Chou, Chiu-Pao Tien, Cheng-Min Chang, Ya-Ling Chang
  • Patent number: 8095237
    Abstract: A method of three-dimensional object location and guidance to allow robotic manipulation of an object with variable position and orientation using a sensor array which is a collection of one or more sensors capable of forming a single image.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 10, 2012
    Assignee: RoboticVISIONTech LLC
    Inventors: Babak Habibi, Simona Pescaru, Mohammad Sameti, Remus Florinel Boca
  • Patent number: 8090474
    Abstract: An apparatus and a method for controlling at least one machine, such as an industrial robot, having drives, safety peripheral components and a controller for a machine, and also having a safety controller. In this arrangement, the safety controller has superordinate access over the respective machine controller both to the machine drives and to the safety peripherals. This achieves the most easily configurable integration of the safety control loop into the operating control loops.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: January 3, 2012
    Assignee: KUKA Laboratories GmbH
    Inventor: Bernd Fiebiger
  • Patent number: 8055383
    Abstract: A path generating device 1 has a constraint mid-configuration generator 10. The constraint mid-configuration generator 10 defines a constraint surface in a joint angle space. The path generating device 1 probabilistically generates a mid-configuration in the joint angle space. The constraint mid-configuration generator 10 projects the probabilistically generated mid-configuration onto the constraint surface to generate a projected mid-configuration. Projected mid-configurations generated in this manner are joined to generate a path that does not interfere with any obstacle (environmental object) in a work space.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 8, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shintaro Yoshizawa
  • Patent number: 8041447
    Abstract: A numerical controller controlling a 5-axis machine tool compensates setting error that arises when a workpiece is set on the table. Error in the three linear axes and the two rotation axes are compensated using preset error amounts to keep the calculated tool position and tool direction in a command coordinate system. If a trigonometric function used for error compensation has a plurality of solution sets, the solution set closest to the tool direction in the command coordinate system is selected from the plurality of solution sets and used as the positions of the two rotation axes compensated in the above error compensation.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: October 18, 2011
    Assignee: FANUC Ltd
    Inventors: Toshiaki Otsuki, Soichiro Ide, Takafumi Sasaki
  • Patent number: 8032253
    Abstract: In an automatic machine system comprising a mechanism unit (1) including at least one driving mechanism, a controller (2) for controlling a driving operation of the mechanism unit (1), and a teaching unit (3) for operating the mechanism unit (1), the teaching unit (3) includes a teaching unit communicating portion for carrying out a wireless communication with the controller (2) and a first field intensity monitoring portion (13) for monitoring a field intensity of communication data in the teaching unit communicating portion, and the controller (2) includes a controller communicating portion for carrying out a wireless communication with the teaching unit (3), a second field intensity monitoring portion (26) for monitoring a field intensity of communication data in the controller communicating portion, and a driving portion for driving the mechanism unit (1) based on an operation signal sent from the teaching unit (3) in the controller communicating portion.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hideo Nagata, Michiharu Tanaka
  • Patent number: 8024070
    Abstract: The present disclosure provides a fixed point stabilization device for a legged mobile body having a generating mechanism for generating a fixed point. The present disclosure also provides a fixed point stabilization device for a legged mobile body comprising a stabilizing device for stabilizing the fixed point in accordance with a leg grounding position of the legged mobile body. The fixed point is generated by inputting a predetermined constant torque to a joint of a leg of the legged mobile body on the basis of the energy balance in the legged mobile body, leg switching, and a leg swinging motion. The fixed point is stabilized globally by keeping the leg grounding position of the legged mobile body constant using a stopper.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: September 20, 2011
    Assignee: Nagoya Institute of Technology
    Inventors: Akihito Sano, Hideo Fujimoto, Yoshito Ikemata
  • Patent number: 8014897
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: September 6, 2011
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 8014898
    Abstract: A robot controller (7) controlling a robot (1) used combined with a machine tool (5, 6) provided with a communication unit (9) connecting the robot controller to a machine tool, a detection unit (52) detecting through the communication unit a type and number of machine tools, and a setting unit (55) setting the robot controller based on the type and number of machine tools detected by the detection unit. Due to this, machine tool and robot startup work can be simply and easily performed without requiring skill or increasing the startup man-hours. The setting unit selects one setting file from among a plurality of setting files for the robot controller, stored in the robot controller, based on the type and number of machine tools detected by the detection unit.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: September 6, 2011
    Assignee: Fanuc Ltd
    Inventors: Hiroji Nishi, Yoshitaka Ikeda
  • Patent number: 7863849
    Abstract: A fan driver circuit for powering a fan with a linear voltage may be designed using digital design techniques, resulting in a testable, accurate circuit on a smaller die size. The fan driver circuit may be configured to receive a digital control signal, which may be a sequence of numeric values, e.g. multiple-bit binary numbers, each indicative of a desired present rotational speed of the fan. The fan driver circuit may be implemented using a digital modulator, e.g. a delta-sigma modulator, with a simple low-pass filter, e.g. an RC-filter at the output, and may use oversampling based on a system clock, to shift in-band noise to out-of-band frequencies, and digital interpolation to filter out unwanted images from the upsampled digital control signal. The delta-sigma modulator may be constructed as a first-order delta-sigma modulator using an error-feedback structure to reduce die size.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: January 4, 2011
    Assignee: Standard Microsystems Corporation
    Inventors: Scott C. McLeod, Chao-Ming Tsai
  • Patent number: 7747348
    Abstract: Provided is a method of using a rotational movement amount of a mobile device including obtaining images at two different points on a path along which the mobile device moves, searching for matching points with respect to the obtained images and obtaining an image coordinate value of each of the matching points, sensing linear movement of the mobile device and obtaining a linear movement amount using a result of sensing, and obtaining the rotational movement amount using the image coordinate values and the linear movement amount.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 29, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-bo Shim, Kyung-shik Roh, Woo-sup Han, Woong Kwon
  • Patent number: 7747336
    Abstract: One element is taken from a machined shape. When the element is a straight line element, whether or not the distance D between the start point and the end point of the element in a direction orthogonal to the axis of rotation of the workpiece is equal to or greater than a preset value Ds is determined. In addition, whether or not an angle A that the straight line element makes with the Z-axis is equal to or greater than a preset angle Aa is determined. When the distance D is equal to or greater than the preset value Ds and the angle A is equal to or greater than the preset angle Aa, a program is created with the cutting direction reversed from the profile direction.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 29, 2010
    Assignee: FANUC Ltd.
    Inventors: Hideaki Maeda, Shinya Nakamura, Akira Horiuchi
  • Patent number: 7734358
    Abstract: A data processing apparatus for processing data described in a welding operation program of an arc welding robot system.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: June 8, 2010
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Yoshiharu Nagatsuka, Toshiya Takeda
  • Patent number: 7664570
    Abstract: The safety in robotic operations is enhanced and the floor space in a factory or the like is effectively utilized. A virtual safety barrier 50 including the trajectory of movement of a work or tool 7 mounted on a wrist 5 of a robot 1 in operation is defined in a memory. At least two three-dimensional spatial regions S (S1 to S3) including a part of the robot including the work or tool are defined. Predicted positions of the defined three-dimensional spatial regions obtained by trajectory calculations are matched with the virtual safety barrier 50, and if the predicted position of any one of the defined three-dimensional spatial regions based on trajectory calculations is included in the virtual safety barrier 50, a control is effected to stop the movement of the robot arms 3 and 4.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 16, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazutsugu Suita, Morihiko Okura
  • Patent number: 7605558
    Abstract: The present invention provides a safe robot system adapted to always and clearly indicate a worker whether an emergency stop operation can be performed by an emergency stop operation section in an unwired portable teaching operation section, thereby to prevent occurrence of a misconception. A portable teaching operation portion 3 includes a display section (13) configured to indicate whether an emergency stop operation to be conducted by an emergency stop operation section (9) can be performed.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: October 20, 2009
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Kenji Matsukuma, Michiharu Tanaka, Yasuyuki Inoue
  • Patent number: 7457686
    Abstract: A method for aligning the position of a movable arm includes: providing an alignment element on the apparatus projecting a distance above the apparatus in the z-direction and having a surface lying in a plane formed by an x and y axis; providing a movable arm having a tool at the free end; positioning the object such that the surface of the element faces the tool; moving the tool in a direction towards the surface of the element; sensing when the tool reaches a predetermined point on or above the surface of the element, whereby the position of the tool in the z-direction is determined based on the relationship between the measured response of the tool and the height of the tool above the surface of the alignment element; placing the tool on or at a distance in the z-direction from the surface; moving the tool in the x-direction while sensing the surface of the element; moving the tool in the x-direction until an edge of the element is sensed; determining the center in the x-direction based on the known distan
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: November 25, 2008
    Assignee: Ortho—Clinical Diagnostics, Inc.
    Inventors: Zhong Ding, Ed Graham
  • Patent number: 7421314
    Abstract: A method for controlling a robot during an interpolation of a trajectory or motion to any prescribed position, comprises the steps of a) ignoring at least one of the three originally prescribed or interpolated tool center point orientation values; b) finding new tool center point orientation values that place the wrist center point of the robot closest to its base while c) maintaining the originally prescribed or interpolated tool center point location values and d) maintaining the original prescribed or interpolated tool center point orientation values not ignored. Said method can preferably be used for carrying a load with a plurality of robots. Its main advantage is an increase of the available working volume.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: September 2, 2008
    Assignee: KUKA Roboter GmbH
    Inventors: Kenneth A. Stoddard, David Martin
  • Patent number: 7330776
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 12, 2008
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 7313458
    Abstract: The NC device of the machining center has the data memory for storing exchange history and data concerning a tool therein when the tool has been manually exchanged. When the data concerning the tool is updated, the data memory also stores update history. The main control unit determines whether the tool is changed on the basis of at least either of the exchange history and the update history. On the basis of a determination result, the main control unit controls the spindle head moving unit to stop the tool as well as allows a caution about the tool to be displayed on the display unit.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 25, 2007
    Assignee: Yamazaki Mazak Corporation
    Inventors: Hiroshi Itoh, Yasuharu Sumida, Kazuhiro Kikata
  • Patent number: 7248012
    Abstract: Set the first temporary attitude of an end effector for a plurality of work points (step S3). Determine the attitude of an articulated robot at one-end first work point out of a plurality of work points (step S4). Determine the attitude of an articulated robot at the other-end final work point out of a plurality of work points (step S5). Set the second temporary attitudes of an end effector respectively for the other work points so that the attitude of an end effector gradually changes from the first work point toward the final work point (step S6). Correct the first temporary attitude with the second temporary attitude (step S7).
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: July 24, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koji Takahashi, Shinji Aoki, Yutaka Mitsuhashi
  • Patent number: 7221999
    Abstract: When an operator attempts to move a robot from a current position to a desired position, she/he operates a manipulator lever (26) corresponding to a desired direction of a manipulator (23) of a remote control device (22), for example, a number of times corresponding to a predetermined moving amount in the moving direction. At this point, the moving amount for each moving direction depending on this number of operations is set, and a leg of the robot is actuated according to a setting value of the moving amount for each moving direction to move the robot. The moving amount that can be set by the operation of the manipulator lever (26) has a relatively small moving amount that the robot may be moved by performing a lifting/landing action once for each of the legs of the robot, and a relatively large moving amount requiring multiple walking steps of the lifting/landing action for each leg of the robot.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: May 22, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Shigeo Sano
  • Patent number: 7193384
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: March 20, 2007
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 7191036
    Abstract: A model's ZMP (full-model's ZMP) is calculated using a dynamic model (inverse full-model) 100c2 that expresses a relationship between a robot movement and floor reaction, a ZMP-converted value of full model's corrected moment about a desired ZMP is calculated or determined based on a difference (full-model ZMP's error) between the calculated model's ZMP and the desired ZMP, whilst a corrected desired body position is calculated or determined. Since the robot posture is corrected by the calculated ZMP-converted value and the corrected desired body position, the corrected gait can satisfy the dynamic equilibrium condition accurately.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: March 13, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Tadaaki Hasegawa
  • Patent number: 7145305
    Abstract: A system for estimating an acceleration of a motion of an accelerometer itself that is generated by a motion of a robot 1, using amounts of motional states of the robot, including a desired motion of a desired gait, a detected value of a displacement of a joint, and a desired value of the displacement of the joint of the robot 1 having a gyro sensor (angular velocity sensor) and an accelerometer installed on a body 3 or the like thereof, and for estimating an actual posture of a predetermined part, such as the body 3, on the basis of the acceleration of the motion, the detected acceleration value of the accelerometer, and the angular velocity detected value of the angular velocity sensor.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: December 5, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto
  • Patent number: 7120518
    Abstract: A model's ZMP (full-model's ZMP) is calculated using a dynamic model (inverse full-model) 100c2 that expresses a relationship between a robot movement and floor reaction, a ZMP-converted value of full model's corrected moment about a desired ZMP is calculated or determined based on a difference (full-model ZMP's error) between the calculated model's ZMP and the desired ZMP, whilst a corrected desired body position is calculated or determined. Since the robot posture is corrected by the calculated ZMP-converted value and the corrected desired body position, the corrected gait can satisfy the dynamic equilibrium condition accurately.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: October 10, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Tadaaki Hasegawa
  • Patent number: 7076334
    Abstract: A main robot apparatus generates a sound scale command at a command generating state (ST2) to enter into a state of waiting for a reaction of a slave robot apparatus (ST3). When the slave robot apparatus outputs a emotion expressing sound responsive to a sound scale command issued by the main robot apparatus, the main robot apparatus recognizes this emotion expressing sound to output the same emotion expressing sound. In a state of the reaction action (ST4), the main robot apparatus selects an action (NumResponse), depending on the value of the variable NumResponse which has counted the number of times of the reactions to output the action.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: July 11, 2006
    Assignee: Sony Corporation
    Inventors: Kohtaro Sabe, Kazuo Ishii
  • Patent number: 7076338
    Abstract: A predetermined action sequence is generated by using basic motion units which include time-sequential motion of each joint and compound motion units in which basic motion units are combined. Motion natterns of a robot including walking are classified into motion units, each motion unit servins as a unit of motion, and one or more motion units are combined to generate various complex motions. Dynamic motion units are defined on the basis of basic dynamic attitudes, and a desired action sequence can be generated by using the dynamic motion units. This is a basic control method necessary for a robot to autonomously perform a continuous motion, a series of continuous motions, or motions which are chanaed in real-time by commands.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: July 11, 2006
    Assignees: Sony Corporation
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi