Temperature Compensation Of Semiconductor Patents (Class 323/907)
  • Patent number: 8313034
    Abstract: The present invention provides a reference power supply circuit which does not require trimming and prevents occurrence of deadlock of a band gap reference circuit. An RFID tag chip related to the present invention has a reference power supply including a switch for switching between a band gap reference circuit and a Vth difference reference circuit. A reference potential in band gap reference of the band gap reference circuit and an output of the Vth difference reference circuit are compared by a comparator, and a transistor operating as a switch is controlled, thereby making the reference potential in band gap reference rise, hastening startup of the band gap reference circuit, and preventing occurrence of deadlock in the band gap reference circuit.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: November 20, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Okuda
  • Patent number: 8269467
    Abstract: A dual-mode charger circuit includes a first charge circuit and a second charge circuit connected in parallel between a power source and a battery, to charge the battery under a slow charge mode and a quick charge mode. A central processing unit detects a capacity of the battery and determines whether the detected capacity exceeds a predetermined capacity, and outputs a mode control signal according to the determination. A mode switch circuit switches the second charger circuit on/off according to the mode control signal. When the second charge circuit is off, the battery is charged under the slow charge mode, and when the second charge circuit is on, the battery is charged under the quick charge mode.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: September 18, 2012
    Assignees: Ambit Microsystems (Shanghai) Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Rong Li, Feng-Chang Yan, Jian-Jun Liu
  • Patent number: 8217707
    Abstract: According to one embodiment, a system and method for operating an Integrated Circuit (IC) includes inputting power to the IC in bursts, sensing an IC temperature using a temperature sensor, operating the IC by controlling the power to be outputted by the IC during the burst in dependence on the sensed IC temperature compared to a reference IC temperature using a controller, wherein the IC temperature is obtained at a predetermined moment prior to a start of the burst, and the IC is operated by setting an allowable power to be outputted by the IC prior to the start of the burst.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: July 10, 2012
    Assignee: ST-Ericsson SA
    Inventor: Leonardus C. H. Ruijs
  • Patent number: 8212606
    Abstract: An apparatus is provided that includes a drift trimming stage that includes a first current source providing a current with a first temperature dependency and a second current source providing a current with a second temperature dependency. The first and the second current source are coupled at a first node and configured to have equal currents at a first temperature. There is further a third current source providing a current with a third temperature dependency and a fourth current source providing a current with a fourth temperature dependency. The third current source and the fourth current source are coupled at a second node and configured to have equal currents at the first temperature. There is a first resistor coupled between the first node and a third node, a second resistor coupled between the second node and the third node. The first node and the second node are coupled to provide a combined voltage drop across the first resistor and the second resistor for reducing the offset drift.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 3, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Martijn F. Snoeij, Mikhail V. Invanov
  • Patent number: 8203321
    Abstract: A DrMOS combines a high side power MOSFET, a low side power MOSFET and a driver circuit for driving the power MOSFETs with current balance and thermal balance mechanism and variable phase control circuit on a single chip.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: June 19, 2012
    Assignee: Richtek Technology Corp.
    Inventors: Nai-Yuan Liang, Isaac Y. Chen, Shao-Hung Lu
  • Patent number: 8203324
    Abstract: A temperature compensated low voltage reference circuit can be realized with a reduced operating voltage overhead and reduced spatial requirements This is accomplished in several ways including integrating one or more bipolar junction transistors into a current differencing amplifier and reducing the number of components required to implement various voltage reference circuits. All of the reference circuits may be constructed with various types of transistors including DTMOS transistors.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 19, 2012
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 8154272
    Abstract: A method and apparatus for generating a low reference voltage having low power consumption characteristics is provided. A reference voltage generating apparatus includes a constant current source circuit which generates a reference current. A load circuit is connected to the constant current source circuit and generates a voltage which is proportional to the reference current. A current branch circuit removes a portion of temperature-invariant current components included in the reference current from a connection terminal of the constant current source circuit and the load circuit to a ground terminal through a current branch which is different from a current branch of the load circuit.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 10, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-Rae Kim, Hyo-Sun Kim
  • Patent number: 8111058
    Abstract: A reference voltage generating circuit in a semiconductor memory apparatus comprises a driving control signal generating unit configured to generate a driving control signal according to a temperature variation, wherein the driving control signal generating unit is enabled in response to a power-up signal, a driving unit configured to control a voltage level, which is applied to a voltage transfer node, in response to the power-up signal and the driving control signal, and a reference voltage generating unit configured to generate a reference voltage when a voltage level on the voltage transfer node is higher than a predetermined voltage level.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: February 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dong-Keum Kang
  • Patent number: 8106707
    Abstract: Embodiments of the present invention include systems and methods for generating a curvature compensated bandgap voltage reference. In an embodiment, a curvature compensated bandgap reference voltage is achieved by injecting a temperature dependent current at different points in the bandgap reference voltage circuit. In an embodiment, the temperature dependent current is injected in the proportional to absolute temperature (PTAT) and complementary to absolute temperature (CTAT) current generation block of the bandgap circuit. Alternatively, or additionally, the temperature dependent current is injected at the output stage of the bandgap circuit. In an embodiment, the temperature dependent current is a linear piecewise continuous function of temperature. In another embodiment, the temperature dependent current has opposite dependence on temperature to that of the bandgap voltage reference before curvature compensation.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: January 31, 2012
    Assignee: Broadcom Corporation
    Inventors: Vipul Katyal, Mark Rutherford
  • Patent number: 8093831
    Abstract: A boost DC/DC power converter is disclosed that has a low voltage source, an inductor and a switching device that forms a series loop, a diode in series with a capacitor coupled across the switching device, a voltage divider coupled across the capacitor and a pulse width modulator that is coupled to the voltage divider. The boost converter includes a first push controller coupled across the switching device to provide a first push voltage of sufficient magnitude to turn the switching device on where the low voltage source by itself is not capable of generating a voltage of sufficient magnitude to operate the switching device.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 10, 2012
    Inventor: Qi Deng
  • Patent number: 8072200
    Abstract: A current sensing circuit with AC and DC temperature compensation for sensing current through an output inductor which has an inherent DC resistor with a temperature varying resistance. A first RC circuit is coupled across the output inductor and has a time constant. The first amplifier provides a sense signal indicative of voltage of the first RC circuit. The second RC circuit is coupled to a first correction node and receives the sense signal. The second resistor has a temperature varying resistance so that the second RC circuit has a time constant commensurate with a time constant of the output inductor. The third RC circuit is coupled to a second correction node and has a time constant equal commensurate with the first RC circuit. The second amplifier provides a corrected sense signal based on the correction nodes.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 6, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Weihong Qiu, Shangyang Xiao, Kun Xing
  • Patent number: 8063623
    Abstract: The present disclosure relates to a compensation circuit for providing compensation over PVT variations within an integrated circuit. Using a low voltage reference current source, the compensation circuit generates directly, from an on-chip reference low voltage supply (VDD), a reference current (Iref) that is constant over PVT variations, whereas a detection current (Iz) that is variable over PVT variations is generated by a sensing circuit, which is based on a current conveyor, from a low voltage supply (VDDE?VDD) applied across a single diode-connected transistor (M10) corresponding to a voltage difference between two reference low voltage supplies. Both currents (Iref, Iz) are then compared inside a current mode analog-to-digital converter that outputs a plurality of digital bits. These digital bits can be subsequently used to compensate for PVT variations in an I/O buffer circuit.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 22, 2011
    Assignee: Synopsys, Inc.
    Inventors: Andy Negoi, Michel Zecri
  • Patent number: 8057094
    Abstract: A power semiconductor module with temperature measurement is disclosed. One embodiment provides a conductor having a first end and a second end. The second end is thermally coupled at a substrate. A device including temperature sensor is thermally coupled at the first end and configured to determine a temperature at the second end using the temperature sensor.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 15, 2011
    Assignee: Infineon Technologies AG
    Inventor: Piotr Tomasz Luniewski
  • Patent number: 8022685
    Abstract: A circuit and a method for regulating a voltage supply where the method includes the steps of concurrently measuring temperature, IR drop and frequency response within the circuit, adjusting voltage supplied to the circuit in response to the measured temperature, IR drop and frequency response, and determining a correction value based on the variance of the measured frequency response from an expected frequency response and providing a correction for subsequent predetermined frequency response values. The frequency response measurement is dependent upon the constant bandgap voltage source which may very according to temperature. Upon a determination that corrections may be required for the bandgap voltage source to compensate for temperature variations, the measurement process which uses the bandgap voltage source can be altered to compensate for the temperature variations.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Deepak K. Singh, Francois Ibrahim Atallah
  • Patent number: 8004266
    Abstract: A chopper stabilized bandgap voltage reference circuit comprises current mirror circuitry mirroring first and second currents into first and second networks to generate a forward diode voltage signal and a PTAT (proportional to absolute temperature) component signal, and a third current having a derived temperature coefficient into a third network to generate a reference voltage signal for a regulator. An amplifier amplifies a differential signal of the forward diode voltage signal and the PTAT component signal to output a fourth current to control the first and second currents. According to a chopper clock, a modulator modulates the differential signal to be supplied to the amplifier and a demodulator demodulates the fourth current. A gain loop compensation circuit is coupled to the demodulator to compensate the amplifier, and filter the fourth current for noise components, and a bypass circuit is also provided to the third network for filtering the third current.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: August 23, 2011
    Assignee: Linear Technology Corporation
    Inventor: Kelly Joel Consoer
  • Patent number: 7965527
    Abstract: A device for protecting an electronic converter, e.g. for halogen lamps, includes a comparator having an output as well as non-inverting and inverting inputs for receiving a first input signal indicative of the load applied to the converter and a second input signal indicative of the temperature of the converter. The comparator is in a non-inverting Schmitt-trigger configuration having an input-output characteristic with hysteresis. Consequently, the output is switched from a first value to a second value to switch off the electronic converter as the first input signal exceeds a first threshold value. The output is switched back from the second value to the first value to restart the electronic converter when the first input signal falls below a second threshold value. The second threshold value is lower than the first threshold value, and both threshold values are a function of the signal indicative of the temperature of the converter.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: June 21, 2011
    Assignee: OSRAM Gesellschaft mit beschraenkter Haftung
    Inventor: Marco Faccin
  • Patent number: 7960961
    Abstract: A temperature corrected voltage bandgap circuit is provided. The circuit includes first and second diode connected transistors. A first switched current source is coupled to the one transistor to inject or remove a first current into or from the emitter of that transistor. The first current is selected to correct for curvature in the output voltage of the bandgap circuit at one of hotter or colder temperatures.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 14, 2011
    Assignee: Dolpan Audio, LLC
    Inventor: David Cave
  • Patent number: 7948305
    Abstract: A circuit having a substrate, a generator with a field effect transistor (FET) portion and a heterojunction bipolar transistor (HBT) portion integrated in the substrate, a voltage-to-voltage conveyor integrated in the substrate, a bias circuit, and a power amplifier is disclosed.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 24, 2011
    Assignee: Triquint Semiconductor, Inc.
    Inventors: Mikhail S. Shirokov, Grant A. Small
  • Patent number: 7936204
    Abstract: A temperature sensing circuit includes a temperature-dependent voltage generating block configured to generate a plurality temperature-dependent voltages having voltage levels that are changed according to temperature; and a comparing block configured to compare each voltage level of the temperature-dependent voltages with a voltage level of a predetermined voltage to output thermal codes.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 3, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Man Im
  • Patent number: 7888987
    Abstract: A temperature compensation circuit according to an embodiment includes a bias circuit configured to output a bias current, the bias current having a current value increasing in proportion to absolute temperature, in a low temperature region in which a temperature is lower than a predetermined temperature, and having another current value increasing at a faster rate than the current value increasing in proportion to absolute temperature, in a high temperature region in which the temperature is equal to or greater than the predetermined temperature, and a transistor having a collector connected to a power supply terminal, an emitter which is grounded, and a base supplied with the bias current.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koji Horie
  • Patent number: 7852061
    Abstract: An apparatus comprises a band gap voltage generator circuit for generating a band gap voltage. A temperature invariant current generator is located within the band gap voltage generator circuit for generating a temperature invariant current. A temperature invariant current correction circuit is located within the band gap voltage generator circuit and adjusts the output voltage responsive to the temperature invariant current without altering temperature characteristics of the temperature invariant current.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 14, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Jia-Hau Liu, Alan L. Westwick, Douglas S. Piasecki
  • Patent number: 7834598
    Abstract: In a preferred embodiment for use in step-down (buck) DC-DC converters that may operate, at least part of the time, at high duty cycles (>50%), the power dissipation in the high side switch is effectively monitored and the switching frequency of the converter is lowered as needed to keep the sum of the conduction losses and switching losses in the high side switch substantially constant. In another embodiment, the ideal switching frequency is approximated. In still another embodiment having the switches integrated with the controller, the die temperature is monitored, and switching frequency, output current or both are varied to limit the die temperature.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 16, 2010
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Jason Allen Wortham, Turev Dara Acar
  • Patent number: 7821331
    Abstract: An apparatus and a method to reduce temperature dependence of a reference voltage have been presented. In one embodiment, the method includes generating a reference voltage associated with a difference between a first threshold voltage of a first transistor and a second threshold voltage of a second transistor. The method may further include biasing the first transistor and the second transistor at a predetermined ratio of currents of the first and the second transistors to reduce temperature dependence of the reference voltage.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: October 26, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventor: Radha Krishna
  • Patent number: 7813150
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 12, 2010
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William M. Polivka
  • Patent number: 7768339
    Abstract: Provided is a voltage regulator for limiting a rush current from an output stage transistor. The voltage regulator includes an output current limiting circuit having a low detection current value and an output current limiting circuit having a high detection current value, and is structured so as to enable operation of the output current limiting circuit having a low detection current value during a time period from a state in which an overheat protection circuit detects overheat and an output current is stopped to a state in which an overheat protection is canceled and a predetermined time passes. Accordingly, after the overheat protection is cancelled, an excessive rush current can be limited.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: August 3, 2010
    Assignee: Seiko Instruments Inc.
    Inventor: Teruo Suzuki
  • Patent number: 7737669
    Abstract: A hierarchical control for an integrated voltage regulator may include a voltage regulator circuit with a plurality of parallel voltage cells, with each of the cells having a plurality of phases of interleaved voltage converters, and a feedback control associated with the cells to set identical current references for the phases. A multi-rail embodiment has a plurality of parallel voltage regulator circuits each with a plurality of parallel voltage cells, with each of the cells having a plurality of phases of interleaved voltage converters, and a feedback control associated with the circuits to sense parameters of the circuits and set identical parameter references for the phases.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 15, 2010
    Assignee: Intel Corporation
    Inventor: Rinkle Jain
  • Patent number: 7710096
    Abstract: A reference circuit comprises a first current generator comprising a first transistor operably coupled to a second transistor and having respective base current corresponding to a positive temperature dependence of the reference circuit. A resistance is operably coupled to the first current generator and arranged to provide a second current corresponding to a negative temperature dependence of the reference circuit. A second current generator is operably coupled to the resistance and the first current generator that generates a combined current as a sum of the second current and base current. In this manner, the output voltage of the curvature compensated voltage and/or current reference circuit is substantially linear and substantially independent of the operating temperature of the circuit.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 4, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ivan Kotchkine, Alexandre Makarov
  • Patent number: 7692418
    Abstract: A BGR circuit includes a temperature-proportional current generating part configured to generate a current in proportion to a change in temperature through a plurality of current paths; a temperature-inverse proportional current generating part generates a current in inverse proportion to a change in temperature through a plurality of current paths. An internal voltage reference voltage generating part generates a reference voltage for an internal voltage using the current of the temperature-proportional current generating part and the current of the temperature-inverse proportional current generating part. A temperature voltage output part outputs a voltage corresponding to a change in temperature.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 6, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Chun-Seok Jeong
  • Patent number: 7692476
    Abstract: Provided is a temperature compensating circuit, which conducts a temperature correction having a continuous characteristic, and is small in the circuit scale. An output voltage VOUT at a connection point 14 is determined on the basis of a current Ia2, a current Ib2, and a current Ic2, and an output voltage of a temperature sensor circuit is corrected by the output voltage VOUT with a temperature. As a result, the temperature correction having the continuous characteristic is conducted on the basis of a current change of the current Ia2, the current Ib2, and the current Ic2. Because the plural temperature compensating circuits are not provided, and only one temperature compensating circuit is provided, the circuit scale becomes smaller.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 6, 2010
    Assignee: Seiko Instruments Inc.
    Inventor: Ryoichi Anzai
  • Patent number: 7688054
    Abstract: A temperature corrected voltage bandgap circuit is provided. The circuit includes first and second diode connected transistors. A first switched current source is coupled to the one transistor to inject or remove a first current into or from the emitter of that transistor. The first current is selected to correct for curvature in the output voltage of the bandgap circuit at one of hotter or colder temperatures.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 30, 2010
    Inventor: David Cave
  • Patent number: 7683955
    Abstract: A photocurrent sensing circuit includes a logarithmic compression circuit; a cancellation circuit logarithmically compressing a current substantially equal in temperature coefficient of the photocurrent to convert the same into a voltage, and performing an addition or a subtraction on the converted voltage and a voltage converted from a photocurrent by logarithmically compression; a logarithmic operation circuit logarithmically compressing the voltage received from the cancellation circuit to produce a first voltage, logarithmically compressing a voltage proportional to a thermal voltage of the photocurrent to produce a second voltage, logarithmically compressing a current having thermal dependence of nearly zero to produce a third voltage and performing an addition or a subtraction of each of the second and third voltages with respect to the first voltage to produce a fourth voltage; and an inverse logarithmic transformation circuit performing inverse logarithmic transformation on the fourth voltage to outpu
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 23, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Takayuki Shimizu
  • Patent number: 7659706
    Abstract: A current detector circuit for detecting a load current flowing through a load includes a first series circuit having a first element and the load connected in series, a second series circuit having a second element and a resistor connected in series, the second element having a temperature characteristic equal to the temperature characteristic of the resistance of the first element, a power supply configured to supply voltage to the first series circuit and the second series circuit, and a control circuit configured to control the voltage drop across the second element so that the voltage drop across the second element is equal to the voltage drop across the first element. A current detection signal corresponding to the load current is generated based on a current flowing through the second element.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 9, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Junji Nishida
  • Patent number: 7642759
    Abstract: Circuits and methods for paralleling voltage regulators are provided. Improved current sharing and regulation characteristics are obtained by coupling control terminals of the voltage regulators together which results in precise output voltages and proportional current production. Distributing current generation among multiple paralleled voltage regulators improves heat dissipation and thereby reduces the likelihood that the current produced by the voltage regulators will be temperature limited.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 5, 2010
    Assignee: Linear Technology Corporation
    Inventor: Robert C. Dobkin
  • Patent number: 7629785
    Abstract: A system includes a transistor coupled to a voltage rail, a first resistor coupled in series with the transistor, and a second resistor coupled in series with the first resistor. The system also includes a bandgap reference circuit operable to generate a bandgap reference voltage of less than 1.2 volts (such as one volt) between the first and second resistors. The bandgap reference circuit includes a diode configured to generate a complementary-to-absolute-temperature (CTAT) voltage and a third resistor configured to generate a first proportional-to-absolute-temperature (PTAT) voltage using a first current. The bandgap reference circuit also includes a current source configured to sink a CTAT current from the first current to generate a second current and a fourth resistor configured to generate a second PTAT voltage using the second current. A sum of the CTAT voltage, the first PTAT voltage, and the second PTAT voltage is less than 1.2 volts.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 8, 2009
    Assignee: National Semiconductor Corporation
    Inventor: Stephan Drebinger
  • Patent number: 7609045
    Abstract: The present invention concerns a reference voltage generator (40) that provides a reference voltage (Vref new). The voltage generator (30) is operated at a supply voltage (Vdd) being lower than the Silicon bandgap voltage. It comprises a MOSFET transistor (MN; MN3; MP4; MP7) serving as transconductor (Gptat). An input node for feeding a drain current (Iptat) into the drain of said MOSFET transistor (MN; MN3; MP4; MP7) is provided and an output node is connected to the drain and gate of said MOSFET transistor (MN; MN3; MP4; MP7). A current generator (42) allows the MOSFET transistor (MN; MN3; MP4; MP7) to be operated in a specific mode where the drain current (Iptat) has a positive temperature coefficient (?ptat) and the transconductor (Gptat) has a negative temperature coefficient (?ptat).
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 27, 2009
    Assignee: NXP B.V.
    Inventor: Zhenhua Wang
  • Patent number: 7535735
    Abstract: Techniques to compensate for parameter variations in a feedback circuit are disclosed. In one embodiment, a regulator circuit includes an energy source coupled to output a generated current in response to a control current. A feedback resistor is coupled to an output of the regulator circuit. The feedback resistor is coupled to conduct a feedback current responsive to the output of the regulator circuit. A current amplifier is coupled to the feedback resistor to generate the control current in response to the feedback current. A compensation network is coupled to the current amplifier to adjust the control current in response to an extrinsic parameter of the regulator circuit. The compensation network includes a transistor and first, second and third resistors. The first resistor is coupled between the feedback resistor and a collector of the transistor. The second resistor coupled between the collector and the base of the transistor.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: May 19, 2009
    Assignee: Power Integrations, Inc.
    Inventors: Jason E. Cuadra, Arthur B. Odell, William Michael Polivka
  • Patent number: 7532056
    Abstract: A temperature sensor includes a proportional to absolute temperature (PTAT) current generator configured to generate a first current proportional to temperature, a first complementary to absolute temperature (CTAT) current generator configured to generate a second current inversely proportional to temperature, a second CTAT current generator configured to generate a third current inversely proportional to temperature, and a temperature sensing unit configured to convert the first current, the second current, and the third current into a signal related to the temperature.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: May 12, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Hun Seo
  • Patent number: 7531998
    Abstract: A temperature sensing circuit includes first, second and third proportional to absolute temperature (PTAT) units, and first and second subtracters. The first PTAT unit generates a first output voltage based on a reference current and a current of N times the reference current, where N is an emitter current density ratio. The second PTAT unit generates a second output voltage based on a current of twice the reference current and a current of 2N times the reference current. The third PTAT unit generates a third output voltage based on the reference current and a current of N times the reference current. The first subtracter performs subtraction on the second output voltage and the third output voltage, and the second subtracter performs subtraction on an output voltage of the first subtracter and the first output voltage.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: May 12, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyung-seuk Kim
  • Patent number: 7504813
    Abstract: A power detector having temperature compensation for improved measurement performance includes a pair of rectifier transistors coupled to a differential input signal biased by a first temperature dependent current. An output of the pair of rectifier transistors provides a first component of a differential DC output signal. The first component of the differential DC output signal includes a DC voltage proportional to an amplitude of the differential input signal plus an offset voltage. The power detector further includes a reference transistor biased by a reference current. The reference current includes a second temperature dependent current and a temperature independent offset current for temperature compensation. An output of the reference transistor provides a second component of the differential DC output signal that includes a reference voltage.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: March 17, 2009
    Assignee: Broadcom Corporation
    Inventor: Danilo Manstretta
  • Patent number: 7495426
    Abstract: A temperature setpoint circuit comprises bipolar transistors Q1 and Q2 which receive currents I1 and I2 at their respective collectors and are operated at unequal current densities, with a resistance R1 connected between their bases such that the difference in their base-emitter voltages (?Vbe) appears across R1. An additional PTAT current I3 is maintained in a constant ratio to I1 and I2 and provided to the collector of Q2 while Q2 is off, and is not provided while Q2 is on. The circuit is arranged such that Q2 is turned on and conducts a current equal to Ia when: ?Vbe=(kT/q)ln(NI1/Ia), where Ia=I2+I3, the temperature T at which ?Vbe=(kT/q)ln(NI1/Ia) being the circuit's setpoint temperature, such that the switching of current I3 provides hysteresis for the setpoint temperature which is approximately constant over temperature.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: February 24, 2009
    Assignee: Analog Devices, Inc.
    Inventors: Chau C. Tran, A. Paul Brokaw
  • Patent number: 7486065
    Abstract: The present invention is directed to a device and method for generating a reference voltage. A reference voltage generator comprises a first circuit, a second circuit, and an external device. The first circuit generates a positive temperature coefficient voltage. the second circuit is coupled to the first circuit, biased with a substantially constant current, produces a negative temperature coefficient voltage, and combines the negative temperature coefficient voltage with the positive temperature coefficient voltage as a reference voltage. The external device is coupled to the second circuit, and yields the substantially constant current.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: February 3, 2009
    Assignee: VIA Technologies, Inc.
    Inventors: Jyh-Fong Lin, Pei-Hsiu Huang
  • Patent number: 7472030
    Abstract: In a system for performing a dual mode single temperature trim upon an electronic device to remove combined mismatch and process variation errors, a dynamic element matching control is configured for enabling dynamic element matching of components of the electronic device. A process trim module is configured for performing a process trim to remove a temperature dependant error from the electronic device while the dynamic element matching is enabled within the electronic device. A mismatch trim module is configured for performing a mismatch trim to remove a mismatch error from the electronic device after the process trim has been performed. The mismatch trim is performed on a portion of the electronic device for which the dynamic element matching has been disabled. Additionally, the mismatch trim is performed at substantially an equivalent temperature to a temperature at which the process trim was performed.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 30, 2008
    Assignee: National Semiconductor Corporation
    Inventor: Eric Scheuerlein
  • Patent number: 7469174
    Abstract: A constant-voltage power supply circuit unit that is fed from a vehicle-borne battery via a power switch and generates a predetermined constant-voltage output Vcc includes a power transistor and an output voltage regulating circuit unit. The output voltage regulating circuit unit includes a reference voltage generating circuit, a comparison amplifying circuit, a resistance circuit network, a non-volatile second data memory that selectively continues plural open/close elements provided in the resistance circuit network, and a temperature detector. The quantity of variation of output voltage with respect to ambient temperature detected by the temperature detector is estimated, and a setting voltage is corrected to be approximate to a predetermined output voltage, or conversion correction of AD conversion data is performed on the basis of voltage variation characteristics of an analog sensor.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: December 23, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yuki Iwagami, Manabu Yamashita, Kohji Hashimoto
  • Patent number: 7429719
    Abstract: A self-regulating heater including a semiconductor for converting electrical energy to heat. A temperature sensitive element is used to bias the semiconductor as a function of temperature. The heating element has an advantage that its maximum temperature is limited by the biasing network, yet full power is available just below the limit.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: September 30, 2008
    Assignee: Stellar Systems, Inc.
    Inventor: William L Spetz
  • Patent number: 7411380
    Abstract: A non-linearity compensation circuit and a bandgap reference circuit using the same for compensating non-linear effects of a reference voltage are provided. In the non-linearity compensation circuit, the reference voltage is transformed into a temperature independent current. A current mirror mirrors the temperature independent current for biasing a bipolar junction transistor (BJT). Further, two resistors are used for estimating a non-linear voltage, so as to compensate the reference voltage.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: August 12, 2008
    Assignee: Faraday Technology Corp.
    Inventors: Kuen-Shan Chang, Uei-Shan Uang
  • Patent number: 7405547
    Abstract: A stabilized DC power supply circuit of the present invention includes an output current limiting circuit for limiting an output current of an output transistor, and a correction circuit for correcting variation of restriction in the output current caused by variation in a current amplification factor of the output transistor. The correction circuit includes a correcting transistor that is manufactured in the same manufacturing process as the output transistor and formed so as to have the same tendency of manufacturing process variation in current amplification factor etc. as that of the output transistor.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 29, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Takao Kanzaki
  • Patent number: 7345460
    Abstract: A device and method of providing thermal compensation for integrated circuits, e.g., complementary metal-oxide semiconductor integrated circuits (“IC”) is described. The device is an IC (e.g., digital, analog, and mixed-signal circuits) with a digital voltage control system (“VCS”) having a temperature-adaptive digital DC-to-DC power converter. In one embodiment, the DC-to-DC converter includes a power stage, which converts a voltage of an input power source to a variable supply voltage, a delay-line-based temperature sensing circuit that continuously monitors temperature changes, and adjusts the frequency and process speed of the IC to compensate for any performance degradation caused by thermal effects by adjusting the voltage supplied to the IC to increase or decrease the frequency and process speed of the IC in proportion to any abnormal temperature changes in the IC.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: March 18, 2008
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Dongsheng Ma, Chuang Zhang
  • Patent number: RE40673
    Abstract: Each of stages RS(1), RS(2), . . . of a shift register is constituted by six TFTs. A ratio of a channel width and a channel length (W/L) of each of these TFTs 1 to 6 is set in accordance with a transistor characteristic of each TFT in such a manner that the shift register normally operates for a long time even at a high temperature.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: March 24, 2009
    Assignee: Casio Computer Co., Ltd.
    Inventors: Minoru Kanbara, Kazuhiro Sasaki, Katsuhiko Morosawa
  • Patent number: RE40915
    Abstract: A current-sensing and correction circuit having programmable temperature compensation circuitry that is incorporated into a pulse width modulation controller of a buck mode DC—DC converter. The front end of the controller contains a sense amplifier, having an input coupled via a current feedback resistor to a common output node of the converter. The impedance of a MOSFET, the current through which is sampled by a sample and hold circuit is controlled by the sense amplifier unit. A sensed current correction circuit is coupled between the sample and hold circuit and the controller, and is operative to supply to the controller a correction current having a deterministic temperature-compensating relationship to the sensed current. The ratio of correction current to sensed current equals to value of one at a predetermined temperature, and has other values at temperatures other than at that temperature.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: September 15, 2009
    Assignee: Intersil Americas Inc.
    Inventor: Robert Haynes Isham
  • Patent number: RE42037
    Abstract: A current-sensing and correction circuit having programmable temperature compensation circuitry that is incorporated into a pulse width modulation controller of a buck mode DC—DC converter. The front end of the controller contains a sense amplifier, having an input coupled via a current feedback resistor to a common output node of the converter. The impedance of a MOSFET, the current through which is sampled by a sample and hold circuit is controlled by the sense amplifier unit. A sensed current correction circuit is coupled between the sample and hold circuit and the controller, and is operative to supply to the controller a correction current having a deterministic temperature-compensating relationship to the sensed current. The ratio of correction current to sensed current equals a value of one at a predetermined temperature, and has other values at temperatures other than at that temperature.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: January 18, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Robert Haynes Isham