Having Push-pull Amplifier Stage Patents (Class 330/255)
  • Patent number: 8148960
    Abstract: It is desired for semiconductor devices to reduce an inrush current and an overshoot. According to the voltage regulator circuit of the present invention, when a power supply is turned on, a switch SW1 is turned on in response to a control signal CTR1, a switch SW2 is turned off, and a reference voltage Vref is input to the first (+IN) and second (?IN) inputs of a differential amplifier AMP1 as a common voltage. When a common voltage is supplied to the first (+IN) and second (?IN) inputs, the current I flows into a smoothing capacitor C1 from the high-voltage power supply (VDD) via the differential amplifier AMP1 is regulated to be small. Namely, an inrush current can be reduced. Further, according to the voltage regulator circuit 30 of the present invention, the increase of the output voltage Vout from the differential amplifier AMP1 is relaxed so that the overshoot can be suppressed.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: April 3, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Fumio Tonomura
  • Patent number: 8143948
    Abstract: An error amplifier expected to exhibit rail-to-rail operation, high bandwidth, and high slew rate, is described, the error amplifier comprising a first stage to receive an input differential voltage and to provide transconductance gain, an intermediate stage to provide current gain, and an output stage to drive a load.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 27, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Farhood Moraveji
  • Patent number: 8139015
    Abstract: An amplification circuit includes: an amplifier apparatus configured to amplify an input signal and outputting the amplified signal from an output terminal; and a boost circuit which, when a difference between a voltage of the input signal and a voltage at the output terminal is greater than a given value, supplies a positive or negative constant electrical current to at least one given part of the amplifier apparatus, thus enhancing output responsiveness of the amplifier apparatus.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 20, 2012
    Assignee: Sony Corporation
    Inventors: Keiko Kawaguchi, Koji Tsukamoto
  • Patent number: 8134408
    Abstract: In order to realize a wider bandwidth of a frequency characteristic of a power amplification circuit, outputs of differential push-pull amplifiers which are matched at respectively different frequencies are combined together by secondary inductors, and the combined signal is outputted.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: March 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsuyoshi Kawakami, Akihiko Furukawa, Satoshi Yamakawa, Tetsuya Iida, Masao Kondo, Yutaka Hoshino
  • Patent number: 8130038
    Abstract: A class AB operational amplifier includes: a first transistor, for generating a first current; a second transistor, where a second source voltage of the second transistor is equal to a first source voltage of the first transistor, for generating an output stage quiescent current; and an output stage quiescent current controller, coupled to a gate and a source of the first transistor, for controlling a first drain-to-source voltage of the first transistor to be equal to a second drain-to-source voltage of the second transistor. A ratio of the output stage quiescent current to the first current is equal to a ratio of a second W/L ratio of the second transistor to a first W/L ratio of the first transistor.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: March 6, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Ming-Hung Chang, Che-Hung Lin
  • Patent number: 8111103
    Abstract: An amplifier circuit with overshoot suppress scheme including an input amplifier, an output amplifier, and a diode is provided. A first and a second input ends of the output amplifier are coupled to a differential output pair of the input amplifier. A first end of the diode is coupled to an output end of the output amplifier. A second end of the diode is coupled to the first input end of the output amplifier. When the voltage difference between the output and the input ends of the output amplifier is greater then the barrier voltage of the diode, the diode is turned on, so that the output end of the output amplifier is coupled to the input end of the output amplifier. In the transient state, it rapidly smoothes the overshoot signal. In the steady state, the diode is cut off to maintain the normal operation of the operational amplifier.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 7, 2012
    Assignee: Novatek Microelectronics Corp.
    Inventors: Chia-Wei Su, Ju-Lin Huang, Keko-Chun Liang
  • Publication number: 20110316630
    Abstract: Several push-pull linear hybrid class H amplifiers are disclosed. A split power rail provides a positive supply rail and a negative supply rail in response to a power supply control voltage. A push-pull amplifier stage is powered by the positive and negative supply rails. The amplifier stage receives an input signal and provides a corresponding amplified output signal. A power supply control circuit provides the power supply control voltage in response to the smaller of the positive and negative supply rails, and the input signal.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 29, 2011
    Inventors: John Barry French, Andrew John Mason
  • Patent number: 8067983
    Abstract: An error amplifier expected to exhibit rail-to-rail operation, high bandwidth, and high slew rate, is described, the error amplifier comprising a first stage to receive an input differential voltage and to provide transconductance gain, an intermediate stage to provide current gain, and an output stage to drive a load.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: November 29, 2011
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Farhood Moraveji
  • Publication number: 20110285465
    Abstract: An operational amplifier that can suppress lowering of the current driving capability while performing a self adjustment of the common mode voltage is disclosed. A common mode voltage adjusting transistor and an auxiliary transistor are connected in parallel with a low-voltage side drive transistor of each of push-pull amplifying circuits that produce first and second amplified difference signals having different polarities in accordance with drive signals obtained by level-shifting a difference signal indicating a difference value of the levels of the first and second input signals by predetermined values. Current drive capabilities during a period of outputting said first and second amplified difference signals and a common mode voltage adjusting period respectively are increased by driving said auxiliary drive transistor by alternately using the drive signal obtained by level-shifting the difference signal and a common mode voltage adjusting signal.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 24, 2011
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Takeshi WAKAMATSU
  • Patent number: 8063702
    Abstract: A folded cascode receiver amplifier with constant gain has inputs coupled to PMOS and NMOS differential transistors pairs with scaled geometries. The transconductance of both PMOS and NMOS transistors is the same whether the common mode input voltage is low or high. In a first version the transconductance of both PMOS and NMOS differential transistor pairs is reduced when the common mode input voltage is at mid-rail. Resistive means between current sources and the sources of the PMOS and NMOS transistor pairs force the current source transistors into the triode region of operation. A second version insures a constant voltage gain through control means which maintain a constant ratio of the transconductance of the output stage transistors versus the PMOS and NMOS differential transistor pairs when active.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: November 22, 2011
    Assignee: Intelligent Design Limited
    Inventor: Hong Sair Lim
  • Patent number: 8054134
    Abstract: A coupling isolation method for preventing a load signal from coupling into an operational amplifier is disclosed. The coupling isolation method includes generating a system signal before the operational amplifier outputs a computation result, switching off a Miller compensation signal path of the operational amplifier at a first time point according to the system signal, and electrically connecting an output end of the operational amplifier and a load at a second time point according to the system signal to output the computation result.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 8, 2011
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Ju-Lin Huang, Chia-Wei Su, Po-Yu Tseng
  • Patent number: 8051343
    Abstract: Example embodiments relate to a method and system of testing a memory module having the process of receiving single ended input signals via differential input terminals through which differential pairs of packet signals may be received from a testing equipment, wherein a number of terminals of the testing equipment may be different from a number of terminals of the memory module, and testing memory chips of the memory module based on the single ended input signals.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: November 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Man Shin, Byung-Se So, Seung-Jin Seo, You-Keun Han
  • Patent number: 8035448
    Abstract: A fully differential amplifier includes an input stage and an output stage. The input stage has two differential pairs of n-type input transistors, and two differential pairs of p-type input transistors. The output stage has a first p-type output transistor and a second n-type output transistor, the first p-type output transistor having its source coupled to a first reference voltage node and having its drain coupled to a first output node for a first component of a differential output signal, and the second n-type output transistor having its drain coupled to the first output node and having its source coupled to a second reference voltage node. A p-type input transistor and an n-type input transistor influence operation of the first p-type output transistor such that current conducted by the p-type input transistor and current conducted by the n-type input transistor contribute to the output current conducted by the first p-type output transistor.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 11, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Guillermo Espinosa Flores-Verdad, Arturo S. Scotto Guzman
  • Patent number: 8022767
    Abstract: A multi-stage Class AB amplifier system includes a first Class AB amplifier circuit configured to receive an input signal. A bias circuit is configured to receive an output of the first Class AB amplifier circuit. A second Class AB amplifier circuit is in communication with the bias circuit. The second Class AB amplifier circuit is configured to generate an output signal. A current mirror circuit is arranged between the first Class AB amplifier circuit and the bias circuit. A common-mode feedback circuit is configured to generate a feedback signal based on the output signal.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 20, 2011
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 8022776
    Abstract: The present disclosure relates to coupled circuits and methods of coupling circuits having a power supply wherein a plurality of transistors are inductively coupled directly to the power supply for providing a single DC supply voltage directly to each of the plurality of transistors, and wherein a plurality of transformers have primary and secondary windings, the primary and secondary windings providing, at least in part, inductive loads for inductively coupling the plurality of transistors to the power supply, the plurality of transformers also providing an AC signal path for coupling neighboring ones of the plurality of transistors together.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: September 20, 2011
    Assignee: The Regents of the University of California
    Inventors: Mau-Chung Frank Chang, Daquan Huang, Tim Richard LaRocca
  • Patent number: 7999618
    Abstract: An error amplifier expected to exhibit rail-to-rail operation, high bandwidth, and high slew rate, is described, the error amplifier comprising a first stage to receive an input differential voltage and to provide transconductance gain, an intermediate stage to provide current gain, and an output stage to drive a load.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 16, 2011
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Farhood Moraveji
  • Patent number: 7999616
    Abstract: The invention provides an operational amplifier. In one embodiment, the operational amplifier includes an input stage circuit, a feedback circuit, a fixed stage circuit, and an output stage circuit. The input stage circuit receives a positive input voltage and a negative input voltage, and amplifies the positive input voltage and the negative input voltage to output a first positive output voltage and a first negative output voltage. The feedback circuit generates a reference positive output voltage equal to the first positive output voltage according to the positive input voltage and the negative input voltage. The fixed stage circuit equally amplifies the first negative output voltage and the reference positive output voltage to generate a second positive output voltage and a second negative output voltage. The output stage circuit generates an output voltage according to a difference voltage between the second positive output voltage and a second negative voltage.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: August 16, 2011
    Assignee: Princeton Technology Corporation
    Inventor: Tsan-Fu Hung
  • Patent number: 7994859
    Abstract: A multi-stage Class AB amplifier system includes a first Class AB amplifier circuit and a second Class AB amplifier circuit. A current mirror circuit is in communication with the first Class AB amplifier circuit. A bias circuit is in communication with the current mirror circuit. A frequency compensation circuit is arranged between the bias circuit and the second Class AB amplifier circuit. A common-mode feedback circuit is in communication with the second Class AB amplifier circuit. The common-mode feedback circuit is configured to generate a feedback signal.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 9, 2011
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7978010
    Abstract: A boost operational amplifier. A boot operational amplifier may include a differential amplifying unit amplifying and/or outputting an inputted differential voltage, a first mirroring unit mirroring a current flowing through a first output terminal of a differential amplifying unit, which may output a mirrored first mirror current, a second mirroring unit mirroring a current flowing through a second output terminal of a differential amplifying unit, which may output a mirrored second mirror current, a pull-up transistor connected between a first power source and an output node, which may switch based on a first and/or a second mirror current, and/or a pull-down transistor connected between a second power source and an output node, which may switch based on a first and/or a second mirror current.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Won-Hyo Lee
  • Patent number: 7974589
    Abstract: Data transmitter embodiments are provided which are particularly useful as interface devices for accurate and reliable transmittal of data from high-speed data system devices such as analog-to-digital converters. Transmitter embodiments have been found to provide excellent fidelity of data transfer at high data rates (e.g., 4 gigabits/second) while consuming only a portion of the power of many conventional transmitters and requiring only a portion of the layout area of these transmitters. Transmitter embodiments provide effective control of transmitter parameters such as matched impedances, data symmetry, common-mode level, data eye and current drain.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: July 5, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Brad Porcher Jeffries, Michael R. Elliott
  • Patent number: 7956690
    Abstract: An operational amplification circuit includes a differential amplification circuit portion that amplifies a differential input, and an output circuit portion that outputs the amplified output using a signal amplified in the differential amplification circuit portion. The differential amplification circuit portion is provided with a pair of first transistors to which signals are differentially input, and second and third transistors which are connected to current paths of the pair of first transistors and which constitute current mirror circuits with respect to each other. The output circuit portion is provided with a fourth transistor, a gate of which is connected to a drain of the second transistor, and an amplified output is output from a drain of the fourth transistor.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 7, 2011
    Assignee: ALPS Electric Co., Ltd.
    Inventor: Kimihiro Nakao
  • Patent number: 7924093
    Abstract: An amplifier arrangement comprises a signal input (Iin+, Iin?) to receive a signal to be amplified, a signal output (Out) to provide an amplified signal, an amplifier stage (AS) coupled between the signal input (Iin+, Iin?) and the signal output (Out), a switchable dynamic biasing stage (DB) with an input coupled to the signal input (Iin+, Iin?), a switchable gain boosting stage (GB) with an input coupled to the signal input (Iin+, Iin?), and a switching device (SD) coupled to the amplifier stage (AS) such that either an output of the switchable dynamic biasing stage (DB) or an output of the switchable gain boosting stage (GB) are coupled to the amplifier stage (AS). In one embodiment, by enabling the switchable dynamic biasing stage (DB) in an initial large-signal phase of amplification and the switchable gain boosting stage (GB) in a latter small-signal phase of amplification by means of the switching device (SD), high gain and low current consumption are simultaneously realised.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: April 12, 2011
    Assignee: austriamicrosystems AG
    Inventor: Vivek Sharma
  • Patent number: 7924056
    Abstract: A low voltage differential signalling driver is provided in which a first output node and a second output node provide a differential signal. First differential steering switch circuitry is switched in dependence on a differential input signal to selectively connect the first output node to a voltage supply via a current source, while second differential steering circuitry is switched in dependence on an inverse version of the differential input signal to connect the second output node to the voltage supply via the current source. Slew control circuitry is provided, configured to establish a current discharge path for the current source during the polarity transition of the differential input signal, thus maintaining a symmetric slew rate of the output signals at the first output node and second output node.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: April 12, 2011
    Assignee: ARM Limited
    Inventors: Nidhir Kumar, Sandeep Dwivedi, Tippana Hari Babu
  • Patent number: 7920024
    Abstract: An amplifier and method of fabricating and operating it are disclosed in which dynamically biased cascode transistors are provided in an output stage along with output transistors which are dynamically biased by differential control circuits to provide an output signal.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: April 5, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Jeffrey Rysinski, Sanjayan Vinayagamoorthy
  • Patent number: 7920025
    Abstract: It was difficult to design an operational amplifier which can cancel an offset to drive a liquid crystal display. An operational amplifier includes: a first differential pair having a first transistor and a second transistor of a first conduction type; a second differential pair having a third transistor and a fourth transistor of a second conduction type; a first floating current source; a second floating current source; and an output stage having a fifth transistor and a sixth transistor, in which, when an input signal is applied to the first and third transistor, an electric current which flows into the fifth transistor and the sixth transistor is set by the first floating current source, and when the input signal is applied to the second and fourth transistor, an electric current which flows into the fifth transistor and the sixth transistor is set by the second floating current source.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 5, 2011
    Assignee: RENESAS Electronics Corporation
    Inventors: Kouichi Nishimura, Kazuo Suzuki
  • Patent number: 7920026
    Abstract: An output stage of an amplifier circuit includes one or more output transistors that are selectively driven by a boosted drive circuit, where the boosted drive circuit is arranged such that the output range of the amplifier circuit is increased while maintaining reduced quiescent current. The drive signal to each output transistor is selectively increased only when demanded by the output load conditions. The threshold for boosting the drive signal can be adjusted for optimized performance. In one example, a class AB output stage includes a separate drive boost circuit for each output transistor. For this example, each drive boost circuit has a separate threshold for boosting each of the drive signals to the output transistors. The boosting can also be adjusted to optimize the differential input stage and current mirror maximum current requirement while maintaining minimum required bias currents.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 5, 2011
    Assignee: National Semiconductor Corporation
    Inventor: Rodney Alan Hughes
  • Patent number: 7907011
    Abstract: A folded cascode operational amplifier having an improved phase margin due to pole-zero cancellation by using a plurality of cascode-connected bias circuits and frequency compensation capacitors.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: March 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyu Young Chung
  • Publication number: 20110050342
    Abstract: A push-pull amplifier including first to third current paths. The first current path includes first transistor allowing first current to flow through the first current path according to input signal. The second current path includes second transistor allowing second current having opposite phase to the first current to flow through the second current path according to the first current; first resistor; and third transistor connected to one end of the first resistor and having control terminal connected to the other end of the first resistor. The third current path includes output terminal; fourth transistor allowing current having the same phase as the first current to flow through the third current path according to the input signal; and fifth transistor allowing current having the same phase as the second current to flow through the third current path according to voltage of first node between the first resistor and the third transistor.
    Type: Application
    Filed: July 21, 2010
    Publication date: March 3, 2011
    Applicant: NEC Electronics Corporation
    Inventor: Tachio Yuasa
  • Patent number: 7898450
    Abstract: An analog signal processing device including a voltage selector selecting a given comparison reference voltage from plural comparison reference voltages, an arithmetic unit arithmetically processing the given comparison reference voltage and an analog input signal, a comparator which has at least one or more judgment points for the plural comparison reference voltages and to which an output of the arithmetic unit is inputted, and a coupling controller controlling connections between the arithmetic unit and the comparator, wherein the arithmetic unit comprises correctable first signal processors, and the number of the first signal processors is more than is necessary for the plural comparison reference voltages by M or larger, and when a set of N of first signal processors are in a correction operation, the coupling controller connects first signal processors which are not in the correction operation in the arithmetic unit to the comparator.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: March 1, 2011
    Assignee: Fujitsu Limited
    Inventor: Sanroku Tsukamoto
  • Patent number: 7898330
    Abstract: The present invention comprises class AB amplifier systems exhibiting low quiescent power, low-voltage operation, high gain, high bandwidth, low noise and low offset, and requiring a small die area. The amplifier systems use a differential first stage and a second stage of two pair of nested current mirrors interconnected in a particular way. Using a low quiescent current, the present invention reduces power consumption almost to a theoretical minimum. Also the circuit will operate at an input of only 1.8V with a threshold voltage of 1V. Various embodiments are disclosed.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 1, 2011
    Assignee: Number 14 B.V.
    Inventors: Rudy G. H. Eschauzier, Nico van Rijn
  • Patent number: 7884671
    Abstract: An amplifier which operates with low power is provided. In the amplifier, a first input unit includes a first control circuit and a second control circuit each including one terminal connected to an output node and the other terminal connected to a respective input transistor from among the plurality of input transistors, and controls the amount of current flowing into the plurality of input transistors or flowing out of the plurality of input transistors according to operating modes of the amplifier, whereby even when an A bias current is increased in order to increase a slew rate of the amplifier, a B bias current a the quiescent current do not increase.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyu-young Chung
  • Patent number: 7868695
    Abstract: A differential amplifier circuit at the input stage is configured with a twin differential type having a first differential amplifier circuit (11) and a second differential amplifier circuit (12), respective outputs of which are received by a first and a second source-grounded amplifier (M5, M10). The second source-grounded amplifier (M10) is connected to a current mirror circuit (M11, M12), which is driven by the drain current of the second source-grounded amplifier (M10). With this configuration, the dynamic range for the upper half portion of an alternating signal output from an output terminal (OUT) is determined by the current supply capability of the first source-grounded amplifier (M5) and the dynamic range for the lower half portion is determined by the current supply capability of the second source-grounded amplifier (M10). This eliminates the need of a constant current circuit of a large current for generating a signal having lower half portion in which the waveform distortion is improved.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: January 11, 2011
    Assignee: Ricoh Co., Ltd.
    Inventors: Kazuhisa Ishiguro, Yoshiaki Takahashi
  • Patent number: 7863981
    Abstract: A rail-to-rail operational amplifier has a pair of input terminals and an output terminal, and includes first and second parallel-connected differential input stages configured to generate a differential output signal OUTN, OUTP in response to a differential input signal VINN, VINP received at the pair of input terminals. Each of the first and second differential input stages in turn includes a pair of source-follower transistors and a pair of bulk-driven transistors. The pair of source-follower transistors are respectively coupled between the pair of input terminals and a bulk terminal of the pair of bulk-driven input transistors. Further, the pair of source-follower transistors in the first differential input stage have a different threshold voltage than the source-follower transistors in the second differential input stage.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: January 4, 2011
    Assignee: Spectra Linear, Inc.
    Inventors: Alexei Shkidt, Omer Fatih Orberk
  • Publication number: 20100321112
    Abstract: Presently many audio chips suffer from pop issues, which is especially serious for single ended audio drivers. An audio pop is a disturbance in the output caused by a sudden transition of chip power, particularly when a chip is powered on or powered off. Furthermore, compensation networks included in the amplifiers on audio chips for stability offer a significant path for transmitting power disturbances to the output. Hence, circuitry is developed to suppress pops in the output stages of an amplifier.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 23, 2010
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Xin Fan, Christian Larsen, Lorenzo Crespi
  • Patent number: 7855600
    Abstract: An operational amplifier includes a differential amplifier including an active load, a current mirror including a first branch and a second branch, a first switch connected between a first power source and an output node and switched in response to a voltage of a first output terminal of the differential amplifier, a first bias circuit to control an amount of a reference current flowing in the first branch in response to a voltage of a second output terminal of the differential amplifier, a second bias circuit to control a voltage of the second branch in which a mirror current flows, in response to a voltage of the first output terminal, a second switch connected between the output node and a second power source and switched in response to a voltage of the second branch, and a capacitor connected between the output node and the first output terminal.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Ho An, Si Wang Sung
  • Patent number: 7847634
    Abstract: Error amplifier structures are provided to generate an error signal in response to the difference between an input signal (e.g., a feedback current) and a reference signal (e.g., a bias current). Amplifier embodiments generally include a reference generator and a differencing amplifier. In at least one embodiment, the error generator is arranged to generate first and second bias voltages that correspond to the bias current. In at least one embodiment, the differencing amplifier is configured to provide a reference current to an output node in response to the first bias voltage, provide a feedback current to the output node in response to the second bias voltage, and generate an error current in response to a voltage at the output node. The error amplifier structures are suited for use in various systems such as negative switching regulators.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: December 7, 2010
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey G. Barrow, A. Paul Brokaw
  • Patent number: 7849373
    Abstract: Example embodiments relate to a method and system of testing a memory module having the process of receiving single ended input signals via differential input terminals through which differential pairs of packet signals may be received from a testing equipment, wherein a number of terminals of the testing equipment may be different from a number of terminals of the memory module, and testing memory chips of the memory module based on the single ended input signals.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Man Shin, Byung-Se So, Seung-Jin Seo, You-Keun Han
  • Patent number: 7834693
    Abstract: An amplifier includes: a class AB input stage, receiving an input signal, for generating an inner signal according to the input signal; class AB output stage, includes: a biasing circuit, for providing a first voltage and a second voltage according to the inner signal; and an output stage, for generating an output signal according to the first voltage and the second voltage; wherein a voltage difference between the first voltage and the second voltage generated by the biasing circuit is corresponding to the input signal.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 16, 2010
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chao-Cheng Lee, Yi-Kuang Chen
  • Patent number: 7834689
    Abstract: An amplifier has an input stage coupled to a current mirror for providing a first control signal. A gain boosting stage has first and second sections, each having first and second inputs and an output. The first input of the first section is coupled to the input stage. The second input of the first section is a first node between a source and a drain of a first pair of series-coupled transistors. The first input of the second section is coupled to the current mirror. The second input of the second section is a second node between a source and a drain of a second pair of series-coupled transistors. A pre-driver stage has inputs coupled to the input stage and the gain boosting stage. The pre-driver stage provides inputs to the gain boosting stage and receives outputs from the gain boosting stage prior to coupling to an output stage.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: November 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stefano Pietri, Chris C. Dao, Alfredo Olmos
  • Patent number: 7830207
    Abstract: A differential amplifier circuit 110 composed of an inverter is connected to the power supply voltage VCC and the ground voltage GND through a NMOS transistor 142 and a PMOS transistor 144 respectively. The NMOS transistor 142 is connected to the control signal terminal PS, and the PMOS transistor 144 is connected to control signal terminal PS through an inverter 150. The NMOS transistor 142 and the PMOS transistor 144 are controlled such that they can be simultaneously cut off by a control signal from the control signal terminal PS. In this way, the power consumption of the amplifier is reduced.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: November 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Jia Chen
  • Patent number: 7825729
    Abstract: An operational amplifier includes an output unit, a voltage drop element and a feedback unit. The output unit is provided for sourcing an output current to an output of the operational amplifier when operating with a power unit for providing a current being multiple times the value of the output current. The voltage drop is provided for generating a voltage drop in accordance with the output current. The feedback unit is controlled with the voltage drop generated by the voltage drop element and controls the output unit and the power unit to regulate the output current in accordance with the voltage drop.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 2, 2010
    Assignee: Himax Analogic, Inc.
    Inventors: Kuan-Jen Tseng, Ching-Wei Hsueh
  • Patent number: 7825727
    Abstract: An input stage of a differential amplifier includes a differential pair formed by an N-channel MOS transistor MN1 having a gate connected to an INM and an N-channel MOS transistor MN2 having a gate connected to an INP, both having sources connected to each other, a constant current source connected to the sources of the MN1 and MN2, and a variable current source connected to the sources of the MN1 and MN2. A subsequent-stage processing circuit having an intermediate stage and an output stage includes a phase compensation capacitor and outputs an output responsive to a change in the differential inputs by charging and discharging the phase compensation capacitor through the constant current source. The variable current source turns ON when the change reaches a level causing a parasitic capacitor at the sources of the differential pair to be discharged, and supplies a current for discharging the parasitic capacitor.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: November 2, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Atsushi Shimatani
  • Patent number: 7821340
    Abstract: An output stage circuit is disclosed, which includes a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, and a second NMOS transistor. By using twin-well CMOS transistors and a specific circuit configuration, the invention supports a HALF AVDD structure, reduces power consumption and saves the cost of triple-well CMOS process.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: October 26, 2010
    Assignee: Orise Technology Co., Ltd.
    Inventors: Kun-Tsung Lin, Kuei-Kai Chang
  • Patent number: 7808320
    Abstract: A buffer amplifier includes an input stage circuit, an output stage circuit and a bias circuit, providing a buffered output signal at an output terminal according to an input signal applied to a first input terminal. The input stage circuit generates four control signals in response to the input signal when the logic level of the buffered output signal is opposite to that of the input signal. The output stage circuit includes four output transistors, wherein the first and second output transistor of a first type are provided for discharge in response to a first control signal and a second control signal, and the third and fourth output transistor of a second type are provided for charge in response to a third control signal and a fourth control signal. The bias circuit is used for determining the first, second, third and fourth control signal.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 5, 2010
    Assignee: Himax Technologies Limited
    Inventor: Hung-Chang Kuo
  • Patent number: 7808317
    Abstract: An electrical circuit includes an amplifier. The amplifier includes an input circuit in communication with an input of the amplifier. A start-up circuit is in communication with the input circuit. The start-up circuit is configured to generate a start-up signal to enable subsequent operation of the amplifier. The start-up circuit turns off when an output of the amplifier reaches a threshold voltage. An output circuit is in communication with each of the outputs of the amplifier, the input circuit, and the start-up circuit.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: October 5, 2010
    Assignee: Marvell International Ltd.
    Inventors: Donghong Cui, Yonghua Song
  • Patent number: 7808278
    Abstract: Described are amplifiers that facilitate high-speed communication with calibrated drive strength and termination impedance. Drivers and termination elements can be divided into a number N of parallel portions, one or more of which can be disabled and updated without interfering with signal (e.g., clock or data) transmission. Some embodiments identify inactive elements by examining incoming signals.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Rambus Inc.
    Inventors: Huy M. Nguyen, Vijay Gadde, Sivakumar Doriaswamy
  • Publication number: 20100244959
    Abstract: An operational amplifier includes a differential amplifier input stage that supplies an operating current to a differential pair, the differential amplifier input stage including a first transistor having a first polarity, a push-pull amplifier output stage that includes a second transistor having the first polarity, and a third transistor having a second polarity, the second transistor and the third transistor being connected in series, and a capacitive element that connects a gate of the first transistor and a gate of the second transistor.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 30, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Masaki Shibuya
  • Patent number: 7795976
    Abstract: An error amplifier can be used to control a power regulator transistor. The error amplifier has a main amplifier, a pull-up auxiliary amplifier, and a pull-down auxiliary amplifier that all drive an output. A compensating capacitor on the output sets a single dominant pole for all amplifiers, increasing stability. High slew rates are provided by increased slew current from the auxiliary amplifiers that turn on when the differential input has an absolute voltage difference larger than an intentional offset. The intentional offset is introduced into the auxiliary amplifiers by adjusting a p-channel to n-channel transistor ratio in a leg of the auxiliary amplifiers. A source degenerated resistor in the main amplifier reduces supply headroom and increases linearity by connecting sources of two differential transistors that receive the differential input. Cascode transistors increase gain and output impedance. Reliability is increased as no positive feedback is used in the amplifiers.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 14, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventors: Yat To William Wong, Chik Wai David Ng, Ho Ming Karen Wan, Kam Chuen Wan, Kwok Kuen David Kwong
  • Patent number: 7795975
    Abstract: An amplifier is disclosed. An input transistor receives an input voltage. An impedance unit is coupled to a first electrode of the input transistor. A current source is coupled to a second electrode of the input transistor. A push-pull output circuit comprises a PMOS transistor and a NMOS transistor electrically connected in series to output an output voltage. The first electrode of the input transistor is coupled to a control terminal of the NMOS transistor. A level shifting unit is coupled between the first electrode of the input transistor and the push-pull output circuit, for shifting a voltage of the first electrode of the input transistor and providing a shifted voltage corresponding to the voltage of the first electrode of the input transistor to the control terminal of the PMOS transistor.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: September 14, 2010
    Assignee: Mediatek Inc.
    Inventors: Yu-Hsin Lin, Hsueh-Kun Liao
  • Patent number: 7795961
    Abstract: In an offset cancellation circuit according to the present invention, a first capacitance is connected to a gate of a first transistor of a first active load, and a second capacitance is connected to a gate of a second transistor of the first active load. A switch sets a first time period and a second time period in connection states between the first and second transistors and the first and second capacitances. The connection states between the first and second transistors and the first and second capacitances are set so that a gate voltage of the first transistor is supplied to the first capacitance, and a gate voltage of the second transistor is supplied to the second capacitance during the first time period; and so that the first and second capacitances can retain charges, and the second time period becomes an output time period of the operational amplifier during the second time period.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Tomokazu Kojima, Makoto Mizuki