Testing Or Calibrating Of Radar System Patents (Class 342/165)
  • Patent number: 8098194
    Abstract: A method for determining characteristics of a RCS test range may include vertically orienting a field probe including an elongated rigid body at a predetermined location within the RCS test range. The method may also include generating incident radar waves at a selected frequency and polarization and pivoting the field probe in a vertical direction broadside to the incident radar waves. The method may additionally include receiving return radar data scattered by the field probe during pivoting of the field probe. The method may further include determining a field distribution along the elongated rigid body of the field probe from the return radar data to determine characteristics of the RCS test range.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: January 17, 2012
    Assignee: The Boeing Company
    Inventors: Pax S. P. Wei, Anthony W. Reed, Craig N. Ericksen, James D. Doty, Robert K. Schuessler
  • Patent number: 8085188
    Abstract: A method of determining a deviation of a path of a projectile from a predetermined path. The method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or path is determined and the deviation determined.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: December 27, 2011
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 8085189
    Abstract: The present invention relates to antenna calibration for active phased array antennas. Specifically, the present invention relates to a built-in apparatus for autonomous antenna calibration. Accordingly, the present invention provides an antenna array comprising: a plurality of antenna elements forming an array face and a plurality of calibration antennas mounted around the array face. The plurality of calibration antennas comprising one or more pairs. The calibration antennas have overlapping coverage areas such that the entire array face of the antenna array is within the coverage area of at least one calibration antenna and each pair of calibration antennas have overlapping coverage areas such that of a common area of the array face is within both coverage areas.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 27, 2011
    Assignee: BAE Systems plc
    Inventor: Michael Andrew Scott
  • Patent number: 8077080
    Abstract: A method of calibrating antenna-position detection associated with a radar system, the radar system including a first gimbal and a first angle sensor configured to detect an angular position of the first gimbal, includes mounting a second angle sensor to the first gimbal configured to detect an angular position of the first gimbal. The first gimbal is rotated through each angular position of a set of the angular positions. A first set of data is generated with the first angle sensor that characterizes a detected angular position of the first gimbal. A second set of data is generated with the second angle sensor that characterizes a detected angular position of the first gimbal. A third data set is determined comprising differences, between the first and second data sets, in detected angular position at each first-gimbal angular position. The third data set is stored in a memory device.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: December 13, 2011
    Assignee: Honeywell International Inc.
    Inventors: David Y. Lam, Walter Niewiadomski, Steve Mowry, Eric Klingler
  • Patent number: 8063812
    Abstract: A radio wave absorber for use in an electromagnetic field probe that measures an electromagnetic field by means of an antenna section provided therewith, the radio wave absorber including: a first end section; a second end section that is located at a position opposite the first end section; and an intermediate section that is located between the first and second end sections, the intermediate section having outer dimension and thickness that increase in accordance with a distance from the first end section toward the second end section.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 22, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Masayuki Hirata, Hiroshi Andou
  • Patent number: 8049662
    Abstract: A method according to an aspect of the present invention includes determining a phase offset by simultaneously providing a calibration signal to a first element of an antenna and a second element of the antenna opposite the first element. The method further includes receiving an intermix signal by a third element of the antenna, measuring an amplitude characteristic for the intermix signal, and determining a phase offset based on the amplitude characteristic. The phase offset can be used to adjust a signal provided to the first element so that signals transmitted from the first element and second element are in phase with each other. This method can account for phase errors due to the construction or design of the antenna, and allows antenna elements to be calibrated without the need for phase detector devices.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: November 1, 2011
    Assignee: Aviation Communication&Surveillance Systems LLC
    Inventor: Gregory T. Stayton
  • Patent number: 8044838
    Abstract: A method for determining a phase constant for a dielectric medium is provided. The method includes deploying a calibration object with a known free-space spectral response within a dielectric medium of interest, determining the spectral response of the calibration object deployed in the dielectric medium, and determining the phase constant for the dielectric medium using a relationship between the free-space spectral response of the calibration object and the spectral response of the calibration object when deployed in the dielectric medium.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: October 25, 2011
    Assignee: The Boeing Company
    Inventors: Samuel Allan Barr, William David Maynard
  • Patent number: 8026844
    Abstract: A method for determining whether a target of interest located within radar resolution cells in a target area of interest is detectable with a radar system from a location and elevation of the radar system is described. The method includes the steps of (a) developing a topographic map of the terrain in the target area of interest; (b) mapping the radar resolution cells onto the topographic map; (c) modeling radar signal propagation to each of the radar resolution cells on the topographic map; and (d) determining, using the results of the modeling, if the radar system has sufficient signal-to-noise (SNR) to detect the target of interest.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Vista Research, Inc.
    Inventors: Philip A. Fox, Joseph W. Maresca, Jr., Dennis M. Hancock, Charles L. Rino
  • Patent number: 8013783
    Abstract: A phased antenna arrangement and a method for estimating the calibration ratio of an active phased antenna having a plurality of phased array antenna elements are described. The phased antenna arrangement includes a plurality of antenna elements, a plurality of receiving channels, an injection unit for injection of calibrating signals into the receiving channels, a point RF-source, located in a far field zone, a distance measurement unit, an amplitude and phase measurement unit and a data processing unit. The method comprises injecting an internal calibrating signal having a known amplitude and phase to each antenna element. An external calibration signal from a stationary RF-source is sequentially injected to all of the phased array antenna elements so that different phases of the external calibration signal arrive at each of the antenna elements.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 6, 2011
    Assignee: Elta Systems Ltd.
    Inventors: Alexander Lomes, Yacov Vagman, Haim Reichman
  • Patent number: 8009085
    Abstract: A level verification system for a radar level gauge utilizes a remotely positionable target. The target is positioned inside of a tank that is subject to level measurement, and stowed at a first position and selectively positionable to a second position to reflect emitted electromagnetic radiation in an amount indicative of a predetermined material level. The verification system can verify a high level alarm will be triggered when the material reaches a high level corresponding to the level of the target, by remotely positioning the target in front of the emitter of the radar gauge. The target reflects electromagnetic energy to the detector at approximately the same intensity that the material reaching the high level would reflect so as to provide an accurate verification.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 30, 2011
    Assignee: GK Tech Star LLC
    Inventors: Kyle Rolf Walter Kuhlow, Craig Lee Longcor
  • Patent number: 8009084
    Abstract: A special purpose decoder and display unit is designed to present special format radar signals for training. Several display formats ease operator workload while acquiring desired radar formats. A reference tone is recorded along with radar signals on a tape and a phase locked oscillator receives the reference tone which has the same fluctuations that the recorded radar signals have. A controlled computer and the phase locked oscillator feed their signals to a frequency synthesizer that creates a fine tuned signal based on the output signals of the phase locked oscillator and the computer. A timing generator is coupled to receive the output of the frequency synthesizer and it generates special purpose timing signals which are fed to a display. A video input receives radar signals coming from the tape, for example, to generate a sense directed, gain controlled video signal.
    Type: Grant
    Filed: May 14, 1984
    Date of Patent: August 30, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Belmont Frisbee, Jr.
  • Patent number: 8004455
    Abstract: A method and apparatus for simulating antenna apparatuses are provided. In an illustrative embodiment, the apparatus comprises a first portion configured to produce a first and third plurality of signals and to receive a second plurality of signals from a transmitter, wherein said first and third plurality of signals are determined by more than one of a plurality of relationships between said transmitter and at least one antenna apparatus adapted to receive signals from said transmitter.
    Type: Grant
    Filed: February 9, 2008
    Date of Patent: August 23, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Buford S. Wright, Joseph Dang
  • Patent number: 8004457
    Abstract: The present invention relates to antenna calibration for active phased array antennas. Specifically, the present invention relates to a built in apparatus for autonomous antenna calibration Accordingly, the present invention provides a method of continuous on-line monitoring of each element in an array antenna comprising the steps of: (i) transmitting known test signals to one or more elements of the array antenna; (ii) monitoring responses of the elements to the test signals; and (iii)comparing the response with expected responses for the elements to determine an operation condition of the elements.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 23, 2011
    Assignee: BAE Systems plc
    Inventor: Michael Andrew Scott
  • Patent number: 8004456
    Abstract: The present invention relates to antenna calibration for active phased array antennas. Specifically, the present invention relates to a built in apparatus for autonomous antenna calibration Accordingly, the present invention provides a method of calibrating an antenna array comprising the steps of: (i) loading a set of correction coefficients for all or a portion of the antenna array; (ii) outputting a known test signal from all or a portion of the antenna array using said correction coefficients; (iii) measuring the performance of all or a portion of the antenna array using a plurality of calibration antennas; and (iv) generating a new set of correction coefficients to correct the performance of all or a portion of the antenna array.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 23, 2011
    Assignee: BAE Systems plc
    Inventor: Michael Andrew Scott
  • Patent number: 8004458
    Abstract: A calibration system for the receiver of a dual polarization radar system has been developed. The system includes a radar transmitter that transmits signals in horizontal and vertical polarizations and a radar receiver that receives the horizontal and vertical polarization signals. The system also includes a test signal generator that generates a continuous wave test signal. A calibration circuit for the radar receiver modifies the test signal to simulate weather conditions by adjusting the attenuation and Doppler phase shift of a continuous wave test signal.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 23, 2011
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 7999726
    Abstract: A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Guertin, David Faulkner, John Treece, Donald Bruyere
  • Patent number: 7990312
    Abstract: The present invention relates to antenna calibration for active phased array antennas. Specifically, the present invention relates to a built in apparatus for autonomous antenna calibration Accordingly, the present invention provides a method of self-calibration of a plurality of calibration antennas comprising the steps of: (i) selecting two calibration antennas to be calibrated that have a common area in range of both calibration antennas; (ii) selecting at least one radiating element within range of the two calibration antennas; (iii) transmitted a known test signal from the one or more selected radiating elements; (iv) measuring a received signal at each of the two calibration antennas; (v) comparing the received signals at each of the two calibration antennas; and (vi) determining a correction coefficient for each calibration antenna based on the received signals at the said calibration antennas.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 2, 2011
    Assignee: BAE Systems plc
    Inventor: Michael Andrew Scott
  • Patent number: 7982664
    Abstract: A radar system with an array antenna includes various signal paths, including beamformers, extending between an exciter, a receiver, and the array antenna. The signal paths are calibrated by a method that includes frequency modulation of the exciter signals that reach the “antenna” and additional amplitude modulation of signals just as they enter the receiver. Leakage paths directly from the exciter to the receiver are unmodulated, those extending from the exciter through the beamformer are amplitude modulated, and only those reaching the “antenna” and returning to the receiver are both amplitude and frequency modulated. The receiver is tuned to receive only the “doubly-modulated” signals, which tends to reject leakage signals.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: July 19, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Michael B. Uscinowicz
  • Patent number: 7982663
    Abstract: The digital signal processor is for correcting a DC output at an output terminal of an internal circuit of an analog circuit device. The digital signal processor includes a digital register for storing a digital value, a D/A converter for converting the digital value stored in the digital register into an analog voltage and applying the converted analog voltage to the output terminal as the DC output, a polarity determining circuit which outputs a first signal when an analog DC voltage at a reference correction point different from the output terminal in the internal circuit is higher than a predetermined threshold value and otherwise outputs a second signal, and an updating function configured to monotonously increase or decrease the digital value stored in the digital register while a predetermined one of the first and second signals is outputted from the polarity determining circuit.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: July 19, 2011
    Assignee: Denso Corporation
    Inventors: Yasuyuki Miyake, Hisanori Uda
  • Patent number: 7978126
    Abstract: A system for testing radar in accordance with one embodiment comprising a target motion platform; a target motion platform controller for controlling motion of the platform; a radar responsive tag and a delay line located on the target motion platform; the radar which is being tested; and a motion measurement simulator for inputting data to the radar electronics assembly to simulate movement of the radar. In some embodiments the system further comprises a radar motion platform, wherein the radar electronics assembly is positioned on the radar motion platform; a radar motion platform controller for controlling the movement of the radar motion platform; and a master controller coupled to the radar motion platform controller and the target motion platform controller.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 12, 2011
    Assignee: General Atomics
    Inventors: Stanley Isamu Tsunoda, Seong-Hwoon Kim, Josh Pine
  • Publication number: 20110163903
    Abstract: An apparatus for interfering with and canceling electromagnetic reflections from a conducting object such as a solid or hollow conducting sphere. The reflection of an incident electromagnetic wave from a conducting sphere can be reduced or cancelled by placing a polyhedral conducting mesh (PCM) around the conducting sphere. The incident EM wave induces electric fields in the region between the conducting mesh and the internal conducting sphere. These induced electric fields may interfere with and in some cases may completely cancel the incident EM wave and thus reduce reflection. The PCM can be tuned to reduce or cancel reflection of incident EM waves at one or more specific frequencies.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 7, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Paul A. Bernhardt
  • Patent number: 7965228
    Abstract: An antenna method and system to implement a quasi-compact range technique/technology in which a reflector antenna is used to produce a test field within a test region at a quasi-compact range, which is within a near-field of the reflector antenna but further from the reflector antenna than a compact range of the reflector antenna.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 21, 2011
    Assignee: The Aerospace Corporation
    Inventors: Robert B. Dybdal, David A. Thompson, Frank A. Pisano, III
  • Patent number: 7965225
    Abstract: A method of adjusting a position of an antenna to reduce a position error comprises receiving first data associated with first returns associated with a first portion of an antenna. The method further comprises receiving second data associated with second returns associated with a second portion of the antenna, wherein the first portion is different than, intersects with, or includes the second portion. The method further comprises determining the angle to the terrain using the first and second data, whereby the angle is used to adjust or compensate for the position error of the antenna.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: June 21, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Charles J. Dickerson, Daniel L. Woodell
  • Patent number: 7948425
    Abstract: A high frequency signal calibration target deployable in outer space includes an expandable and electrically conductive symmetric structure. The structure may mechanically expand from a stowed configuration to a deployed configuration. Scatter of high frequency signal off of a substantially symmetric signal calibration target may be measured to accurately calibrate systems using high frequency signals.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: May 24, 2011
    Assignee: Cornell University
    Inventors: Paul A Bernhardt, Chuck Hoberman, David L. Hysell, Andrew C. Nicholas, Michael W. Nurnberger
  • Patent number: 7936302
    Abstract: A method and apparatus are described for the unwrapping of a set of phase values observed for an incoming signal on a phased array antenna. The difference between values observed on adjacent elements in the array forms a first data set. The differences between adjacent ordinates in the first data set forms a second data set. The values in the second data set are rounded to the nearest whole multiple of one complete cycle before the differencing process is reversed to provide the values (representing a whole number of complete cycles) which are added to the observed phase values to provide the unwrapped phase values.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 3, 2011
    Assignee: Roke Manor Research Limited
    Inventors: David Herbert Brandwood, Michael-Richard Richardson
  • Publication number: 20110084873
    Abstract: A method for determining characteristics of a RCS test range may include vertically orienting a field probe including an elongated rigid body at a predetermined location within the RCS test range. The method may also include generating incident radar waves at a selected frequency and polarization and pivoting the field probe in a vertical direction broadside to the incident radar waves. The method may additionally include receiving return radar data scattered by the field probe during pivoting of the field probe. The method may further include determining a field distribution along the elongated rigid body of the field probe from the return radar data to determine characteristics of the RCS test range.
    Type: Application
    Filed: October 12, 2009
    Publication date: April 14, 2011
    Inventors: PAX S.P. WEI, ANTHONY W. REED, CRAIG N. ERICKSEN, JAMES D. DOTY, ROBERT K. SCHUESSLER
  • Patent number: 7924224
    Abstract: In a network-based Wireless Location System (WLS), geographically distributed Location Measurement Units (LMUs) must be able to detect and use reverse channel (mobile to network) signals across multiple BTS coverage areas. By using Matched Replica correlation processing with the local and reference signals subdivided into discrete segments prior to correlation, the effects of mobile clock drift and Doppler shifts can be mitigated allowing for increased processing gain.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: April 12, 2011
    Assignee: TruePosition, Inc.
    Inventors: Ronald LeFever, Rashidus S. Mia, Robert J. Anderson
  • Patent number: 7925218
    Abstract: Method for planning and/or dimensioning links between several stations in a wireless telecommunication system including the following steps: a) establishing a relation, in logarithmic scale, for each existing link between the ground equivalent radiated power, EIRPground, the signal to noise density ratio required (C/No)req for a link, and a quality indicator QaF, b) determining the quality indicator QaF from the contribution of the first type items (link analysis disturbance) that are linear in EIRPground and the second type items that are non-linear in EIRPground, c) determining the EIRPground from the quality indicator QaF determined in step b).
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 12, 2011
    Assignee: Thales
    Inventor: Patrick Bruas
  • Patent number: 7916067
    Abstract: A system for performing radar cross section measurements of a target may include a radar system and an antenna associated with the radar system to transmit signals and to receive reflected signals from the target and a clutter source. An EM tagging device is locatable proximate to the clutter source to spectrally tag the clutter source by causing changes in an electromagnetic signal reflected by the clutter source when a predetermined radar signal transmitted by the radar system is incident on the target, the clutter source and the EM tagging device. A module may identify a spectrally tagged component of reflected signals received by the radar system from the target, the clutter source and the EM tagging device.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: March 29, 2011
    Assignee: The Boeing Company
    Inventors: John D. Foster, Douglas P. Morgan, Scot J. McLean
  • Patent number: 7913198
    Abstract: A method for designing low signature array antennas using a calculation method. The method proposes a way of improving antenna and signature performance of array antennas. According to the method electromagnetic antenna and signature characteristics are specified, an iterative optimizing method is performed to design the antenna to fulfil the specified characteristics, the iterative method is interrupted when a design fulfils the specified characteristics, and the specified characteristics are readjusted in an iterative optimizing method to follow if the specified characteristics not are fulfilled.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: March 22, 2011
    Assignee: SAAB AB
    Inventor: Henrik Holter
  • Patent number: 7893866
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 22, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Patent number: 7891078
    Abstract: A method of improving efficiency of manufacturing a vacuum electronic device, includes placing sensors on the device's interior during its construction and obtaining a first measured characteristic value; comparing the first measured characteristic value with a desired characteristic value; determining whether the first measured characteristic value is within a predetermined percentage of the desired characteristic value; adjusting a component of the device and measuring the characteristic of the device to obtain a second measured characteristic, comparing the second measured characteristic value with a desired characteristic value, determining whether the second measured characteristic value is within a predetermined percentage of the desired characteristic value; and repeating the previous step until the second measured characteristic value is within the predetermined percentage of the desired characteristic value.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: February 22, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ayax D. Ramirez, Stephen D. Russell
  • Patent number: 7889123
    Abstract: A GPS assembly test system and method for a wireless communications device, such as a mobile telephone, having an integrated GPS receiver. The GPS assembly test can be performed without the requirement of external testing equipment. The GPS assembly test activates the wireless communications device transmitter during testing to increase GPS in-band noise. If the GPS receiver components are installed and operating properly, a change in noise is expected and can be detected. Embodiments include test software to initiate the transmitter during testing. Different methods can be used to detect a change in noise density. For example, an expected automatic reduction in gain control to a low noise amplifier (LNA) can be detected when the transmitter is activated. Another example includes setting LNA gain to a fixed gain and detecting expected changes in data generated an analog-to-digital (A/D) converter in response to the increased noise.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: February 15, 2011
    Assignee: RF Micro Devices, Inc.
    Inventor: Andreas Warloe
  • Patent number: 7884755
    Abstract: A level measuring instrument has a variable transmitting power for measuring a filling level in a tank. The level measuring instrument includes a generator unit generating one of a first oscillator signal and a second oscillator signal. The generator unit generates a transmit signal from one of the first oscillator signal and the second oscillator signal. The level measuring instrument includes further a controller controlling the generator unit. The generator unit generates one of first and second transmitting powers for the transmit signal.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: February 8, 2011
    Assignee: Vega Grieshaber KG
    Inventors: Josef Fehrenbach, Daniel Schultheiss, Christoph Mueller, Bernhard Corbe
  • Publication number: 20110025545
    Abstract: Methods to quantify the amount of radial platform motion of a portable sensor are described. In an exemplary embodiment, the method uses the frequency domain phase data in the range bin corresponding to a large stationary object. A correction factor is computed and applied back into the time domain samples prior to processing by Doppler filters used to measure motion in the scene.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 3, 2011
    Inventors: Carl D. Cook, Scott E. Adcook, Mena J. Ghebranious
  • Patent number: 7880667
    Abstract: Methods and apparatus for preventing spoofing of targets, such as aircraft, in an air traffic control system. In one embodiment, first and second antennas at respective ground stations can be used to receive a signal transmitted by an aircraft from which a phase signal can be generated. A position of the aircraft generate can be generated from peaks and troughs in the phase signal due to movement of the aircraft. The determined position can be compared to a position reported by the aircraft to identify spoofing of the target.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 1, 2011
    Assignee: Raytheon Company
    Inventor: Paul J. Lanzkron
  • Patent number: 7881671
    Abstract: A system supporting data retrieval from a plurality of wireless sensor nodes is defined. The system includes the plurality of wireless sensor nodes and a data retrieval device. The plurality of wireless sensor nodes include a transceiver receiving a first signal and transmitting a second signal. The second signal includes a sensed datum or an encoded statistic based on the sensed datum identified at the plurality of wireless sensor nodes. The data retrieval device includes a plurality of antennas transmitting the first signal toward the plurality of wireless sensor nodes and receiving the second signal from the plurality of wireless sensor nodes, and a processor coupled to receive the received second signal from the plurality of antennas, the processor defining a virtual receive signal from the received second signal for the plurality of antennas and processing the defined virtual receive signal to determine the identified sensed datum.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 1, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Akbar M. Sayeed, Thiagarajan Sivanadyan
  • Patent number: 7880670
    Abstract: A signal measurement system tests an RF component in an RF test facility, such as an RF anechoic chamber. The system includes a repeater which is connected to an exterior antenna disposed outside the chamber and a transmitting antenna disposed inside the chamber. The repeater receives the RF broadcast signal from the exterior antenna and rebroadcasts it as an RF testing signal inside the chamber. The subject antenna receives the RF testing signal, which is then analyzed with a computer. The repeater may also modify the RF testing signal to produce a wide variety of test situations that mimic those available in a traditional field-test.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 1, 2011
    Assignee: AGC Automotive
    Inventors: Wladimiro Villarroel, Argy Petros
  • Patent number: 7876261
    Abstract: A radar system has a phased-array antenna and plural local oscillators for controlling local transmit/receive units. The local oscillators are slaved to a master oscillator. The analog clock signal paths are subject to relative changes in electrical length. The electrical lengths of the signal paths are measured by phase-detecting forward- and reverse-direction clock signal flows. The phase-detected information for each signal path is a measure of the time delay. The radar command processor receives the measure of time delay and corrects the radar operation in response thereto.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Gregory F. Adams
  • Patent number: 7875837
    Abstract: A method for engaging a hostile missile with an interceptor missile includes mathematically dividing an estimated target trajectory into portions, the junction of each portion with the next defining a possible intercept point. The engagement for each possible intercept point is modeled, to generate a probability of lethal object discrimination which is processed to generate a probability of intercept for each of the possible intercept points. The intercept point having the largest probability of intercept defines a selected intercept point from which intercept missile launch time is calculated, interceptor missile guidance is initialized, and the interceptor is launched at the calculated launch time and under the control of the interceptor missile guidance. Also, a method for estimating discrimination performance of a system of sensors includes generating sensor data signal-to-noise ratio and an aspect angle between the sensor and a lethal object.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Renee Szabo, Christian E. Pedersen, Wade E. Cooper
  • Patent number: 7858910
    Abstract: A method and apparatus for remotely sensing the content in a field of view are disclosed. The method includes transmitting a coherent optical signal into a field of view; receiving and detecting a reflection of the optical signal from a portion of the field of view bounded by the platform's boresight; correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the platform's boresight. The apparatus comprises a radome; an optical signal generator; an optical transmission channel; an optical receiver channel; and a plurality of electronics capable of receiving the representative signal and: correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the boresight from the corrected first instance of the reflection.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: December 28, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A Williams
  • Patent number: 7859452
    Abstract: A calibration system for a position determination system, the calibration system includes, in one embodiment, a calibration transmitter producing a calibration signal, a plurality of calibration receivers for receiving the calibration signal, each of the calibration receivers of the plurality of calibration receivers having a respective known calibration receiver position, and each of the calibration receivers of the plurality of calibration receivers including means for receiving a first signal characteristic of said calibration signal, means for receiving a second signal characteristic of said calibration signal, and a comparison unit for comparing said first signal characteristic and said second signal characteristic of said calibration signal to generate a calibration comparison result. In various embodiments, signal comparisons may be differences between electric and magnetic field phase or may utilize signal amplitude differences.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 28, 2010
    Assignee: Q-Track Corporation
    Inventors: Hans Gregory Schantz, David Wesley Langford
  • Patent number: 7852260
    Abstract: This application is directed to a virtual radar target generator and a method of operating thereof. The virtual radar target generator includes a transceiver and a controller coupled to the transceiver. The transceiver includes a transmission antenna and is adapted to receive a signal transmitted from a radar antenna, store signal information representative of the received signal within a digital radio frequency memory, and transmit an output signal representative of a virtual target such that at least a fraction of the output is received by the radar antenna. The transmission antenna and the radar antenna are positioned within a space that is at least partially defined by a radome. The transmission antenna transmits the output signal toward the radome such that at least a fraction of the output signal is reflected toward the radar antenna.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 14, 2010
    Assignee: Israel Aerospace Industries Ltd.
    Inventor: Gideon Sarafian
  • Patent number: 7852258
    Abstract: In a power-loss reducing system, a transmitting unit causes a radar to transmit a measurement radio wave, and a power monitoring unit monitors power of the measurement radio wave transmitted from the radar through a cover while changing a positional relationship between the cover and the radar. An extracting unit extracts a value of the changed positional relationship between the cover and the radar based on a result of the monitoring of the power such that the extracted value of the positional relationship allows reduction of power loss of a radar wave transmitted, through the cover, from the radar located based on the extracted value of the positional relationship.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 14, 2010
    Assignee: Denso Corporation
    Inventors: Yusuke Kato, Yutaka Aoki
  • Patent number: 7853374
    Abstract: In a first embodiment, an apparatus includes a vehicle turning system; a vehicle moving system; a signal transmitting system with transmitters that measure, and generate signals corresponding to, the locations of two portions of the vehicle; a signal receiving system that receives the signals; and a control system that estimates the orientation of the vehicle, and controls the vehicle moving system and vehicle turning system. In a second embodiment, the apparatus includes a vehicle turning system; a laser system including a laser emitting a laser beam, a mirror attached to the vehicle, and a target plate to receive the laser beam from the mirror; an orientation detecting system including a transceiver with sensors attached to the vehicle, that generate signals, and a reflector that reflects the signals; and a control system that determines the orientation of the vehicle, and controls the vehicle turning system based on the orientation.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: December 14, 2010
    Assignee: Hyundai Motor Company
    Inventor: Bong-Chul Ko
  • Patent number: 7847723
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Patent number: 7825852
    Abstract: An apparatus for simultaneous calibration and communication of active arrays of a satellite may include a base transmitter, a satellite receiver, a satellite transmitter, a base receiver, and at least one computer. The apparatus may simultaneously transmit and receive a calibration carrier and a communication carrier at different frequencies in order to calibrate the apparatus using the calibration carrier without interrupting the communication carrier. The use of different frequencies may avoid interference between the calibration and communication carriers.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 2, 2010
    Assignee: The Boeing Company
    Inventors: John J. Wooldridge, Patrick Kevin Bailleul
  • Patent number: 7821442
    Abstract: The present invention provides a method and system of analyzing radar information of a radar system. According to certain embodiments of the invention, the method comprises: providing radar information including at least a portion modified in response to an EWE (electronic-warfare) action; obtaining position data corresponding to at least a position of a target associated with the EW action with respect to the radar system; and analyzing the radar information for comparing it with the position data, thereby allowing to determine at least one effect of the EW action on the radar information.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 26, 2010
    Assignee: Israel Aerospace Industries, Ltd.
    Inventor: Jacob Ilan
  • Patent number: 7808425
    Abstract: The present invention is directed to a space-borne altimetry apparatus having a first receiving antenna, pointing to outer space, for receiving at least one signal emitted by a remote satellite emitter via a direct path; a second receiving antenna, pointing to the Earth, for receiving said signal via an indirect path including a reflection from the Earth surface; and a signal processing means for computing a distance of the apparatus from a specular reflection point of the signal on the Earth surface by cross-correlating the signals received by said first and second antennas; wherein both the first and second receiving antennas are high-gain steerable antennas; and wherein the apparatus may also include antenna control means for steering at least one receiving lobe of the first antenna toward the remote satellite emitter, and at least one receiving lobe of the second antenna toward a specular reflection point on the Earth surface.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 5, 2010
    Assignee: Agence Spatiale Europeenne
    Inventors: Manuel Martin Neira, Salvatore D'Addio
  • Patent number: RE42472
    Abstract: A method for main beam alignment verification includes providing data pertaining to one or more patterns associated with an antenna, measuring power levels of a signal acquired by the antenna, and comparing the measured power levels with the data to determine whether a direction of the signal is incident upon a main beam of the antenna.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: June 21, 2011
    Assignee: The Aerospace Corporation
    Inventors: Robert B. Dybdal, Denny D. Pidhayny