Digital Processing Patents (Class 342/195)
  • Patent number: 8115668
    Abstract: An object candidate position detecting apparatus which detects a position of an object candidate includes a unifying mechanism which unifies a plurality of object candidates detected within a predetermined unified range into a single group. Where the relative positions of the object candidates stored in a unified information storage device changes such that the single group splits into a plurality of groups, a tracking mechanism judges whether any object candidate forming the group before the split continuously remains to be detected in a running lane in which a subject vehicle runs and which is estimated by a running lane estimator. Where any object candidate forming the group before the split is determined as continuously remaining to be detected in the running lane, the tracking mechanism determines that there is continuity between a group after the split including the thus-determined object candidate and the group before the split.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 14, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kazuhiko Mochizuki
  • Patent number: 8106813
    Abstract: An radar apparatus including a first transmitter, a second transmitter, a first receiver, a second receiver, and a control device. The control device is programmed to use both the characteristics of a first transmit signal from the first transmitter and a second transmit signal from the second transmitter to determine a first control signal for applying to the first receiver to determine its impulse response characteristics, and to determine a second control signal for applying to the second receiver to determine its impulse response characteristics which differ from the first receiver. These control signals have the ability to separate out the first transmit signal and the second transmit signal from their combined sum that appears at the input of the receiver. The procedure can be generalized to include any number of transmit signals and a corresponding number of control signals to separate out the transmit signals from their combined form.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 31, 2012
    Inventor: Unnikrishna Sreedharan Pillai
  • Patent number: 8102310
    Abstract: A process for detecting and discriminating a particular target, such as an ambulating human, amidst an environment crowded with other objects or humans having similar doppler profiles to the desired target. A method according to one embodiment includes generating an initial radar image corresponding to a received doppler profile of a target, and generating a matched filter signal corresponding to the received doppler profile. The matched filter signal is correlated with subsequently received radar images to detect and discriminate the target.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 24, 2012
    Assignee: Raytheon Company
    Inventors: Kapriel Krikorian, Robert Rosen, Mary Krikorian
  • Patent number: 8102298
    Abstract: Embodiments of the disclosed technology comprise a ground penetrating radio device and methods of use for obtaining greater resolution. This is achieved by measuring the composition/reflection off a homogeneous material (e.g., metal plate), determining coefficients to correct the measured/reflection in order to make the measurements look like an idealized reference signal, and then using these coefficients in a digital filter to correct measurements/a reflection off a heterogeneous material, such as a road surface. In this manner, the composition of the heterogeneous material is determined with greater accuracy.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 24, 2012
    Assignee: Geophysical Survey Systems, Inc.
    Inventors: Jeffrey R Feigin, Alan E Schutz
  • Patent number: 8098196
    Abstract: The time compression processor coding methodology gives rise to an exceedingly fast clutter covariance processor compressor (CCPC). The CCPC includes a look up memory containing a very small number of predicted clutter covariances (PCCs) that are suitably designed off-line (e.g., in advance) using a discrete number of clutter to noise ratios (CNRs) and shifted antenna patterns (SAPs), where the SAPs are mathematical computational artifices not physically implemented. The on-line selection of the best PCC is achieved by investigating for each case, e.g., each range bin, the actual CNR, as well as the clutter cell centroid (CCC), which conveys information about the best SAP to select. The advanced CCPC is a ‘lossy’ processor coder that inherently arises from a novel practical and theoretical foundation for signal processing, namely, processor coding, that is the time compression signal processing dual of space compression source coding.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: January 17, 2012
    Assignee: Research Foundation of the City University of New York
    Inventor: Erlan H. Feria
  • Patent number: 8098191
    Abstract: An apparatus and method for protecting against incoming projectiles comprising transmitting two radar waveforms, the first waveform comprising a pulsed continuous wave waveform, and the second waveform comprising a pulsed linear chirp waveform over a bandwidth, and based on returned radar data, causing deployment of a defense mechanism to intercept a detected incoming projectile.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: January 17, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Albert N. Pergande, Lloyd Dan Griffin, Jr., Steven G. Gray, Hung Q. Le, Steve T. Nicholas
  • Publication number: 20120007773
    Abstract: In certain embodiments, an apparatus comprises range matched filters and a Doppler-acceleration matched filter system. The matched filters are configured to receive radar return signals detected by an antenna and range match filter the radar return signals to place the radar return signals into range cells. The Doppler-acceleration matched filter system is configured to Doppler-acceleration process the radar return signals in the range cells to facilitate identification of one or more targets.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: Raytheon Company
    Inventor: Winthrop W. Smith
  • Patent number: 8089390
    Abstract: A movable platform has a front end, a back end, a longitudinal axis, and at least one axle oriented generally transverse to the longitudinal axis and located between the front and back ends for supporting wheels of the platform. A position sensor is affixed on the platform at a location other than at a location defined by a plane passing through the axle and normal to the longitudinal axis. The position sensor provides position data as the platform traverses a path. A sensor arrangement is supported by the platform and configured to provide subsurface sensor data as the platform traverses the path. A processor is configured to associate the position data with the sensor data relative to a reference frame and in a manner that accounts for dynamic motion of the platform.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: January 3, 2012
    Assignee: Underground Imaging Technologies, Inc.
    Inventors: Ross Peter Jones, Peter John Kelly
  • Patent number: 8089393
    Abstract: An exemplary system and method are for tracking a target in a decentralised network having a plurality of sensing nodes. Each node makes observations of a target, performs a multiple models tracking algorithm based on the observations, and updates tracking information stored therein. Each node communicates the updated track information to selected other nodes in the network. In response to receiving track information from another node, each node fuses the receiving track information with local track information.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 3, 2012
    Assignee: BAE Systems PLC
    Inventors: Eric William Nettleton, Christopher Mark Lloyd
  • Patent number: 8085186
    Abstract: A computer-implemented method for probabilistically classifying an occurrence of an event, a change in the state of a target, includes measuring feature data of the target simultaneously processing the measured feature data through first and second filters. The first filter is suited for a situation in which the target is in a first state and generates a first residual and a first residual covariance for the measured feature data. The second filter is suited for a situation in which the target is in a second state and generates a second residual and a second residual covariance for the feature data. By determining a probability of the occurrence of the event and the probability of the non-occurrence of the event and comparing the two probabilities with at least one threshold value the occurrence or non-occurrence of the event is determined.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: December 27, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Christopher J. Dahmen, Sabrina M. Chowdhury
  • Patent number: 8085188
    Abstract: A method of determining a deviation of a path of a projectile from a predetermined path. The method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or path is determined and the deviation determined.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: December 27, 2011
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 8081105
    Abstract: An embodiment of the invention includes a step of transmitting an OFDM waveform including several frequency carrier signals transmitted simultaneously, the frequency carrier signals being coded in order to improve the Doppler response. An embodiment of the invention includes a step of receiving the echoed waveform from the target. The initial phase of each frequency carrier signal is recovered from the echoed waveform. The recovered initial phase of each frequency carrier signal is cyclically shifted in order to compensate for the Doppler effect and subsequently decoded. A compressed pulse is synthesized from the decoded initial phases.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: December 20, 2011
    Assignee: Thales Nederland B.V.
    Inventors: Recep Firat Tigrek, Wilhelmus Johannes De Heij
  • Patent number: 8077075
    Abstract: In an object verification method for use in radar systems for motor vehicles, the distances and relative velocities of located objects are determined on the basis of received radar echoes. The signature of multiple reflections is searched for in the received radar echoes to verify real objects.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: December 13, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Martin Randler, Ruediger Jordan
  • Patent number: 8077074
    Abstract: Certain embodiments provide a network waveform system that can include multiple radars disposed at different geographical positions within an environment. The multiple radars may be configured to transmit a network waveform. The network waveform may include multiple radar waveforms. Each radar waveform of the multiple waveforms may be transmitted by a specific radar of the multiple radars. The system can also include a computer system coupled with the multiple radars that can include a processor and a memory. The memory may be configured to store information including data received from the multiple radars, data processed by the processor, and processing code executable by the processor. The processing code may include instructions to receive output data from the multiple radars resulting from the transmitted network waveform instructions to jointly process the output data from the multiple radars to determine a measurement of the environment based on the network waveform.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: December 13, 2011
    Assignee: Colorado State University Research Foundation
    Inventors: Chandrasekaran Venkatachalam, Nitin Bharadwaj
  • Patent number: 8077078
    Abstract: A method of and system for determining the altitude of an aircraft can use a relative altitude estimate using information from an onboard radar. The altitude can be referenced to a runway for landing operations. The radar can produce relative altitude information from the range to the landing point and a precision estimation of the vertical angle to the landing point. The vertical angle estimate can be made with a phase processing antenna/radar system.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 13, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8077081
    Abstract: Radar return processing systems and methods are operable to process radar information when an installation vehicle is operating in proximity to a surface area of interest. An exemplary embodiment reduces energy of an output pulse emitted from a radar system; receives a plurality of radar returns from a plurality of objects that reflect the reduced energy output pulses emitted from the radar system; determines a surface area of interest based upon at least a current location of the installation vehicle; and filters the radar returns generated by objects that are located outside of the surface area of interest. Optionally, some systems and methods may reduce a sweep range of an antenna from which the reduced energy output pulses are emitted.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 13, 2011
    Assignee: Honeywell International Inc.
    Inventors: C. Don Bateman, John J. Poe, John H. Glover
  • Patent number: 8072367
    Abstract: A movement detection system includes a microwave antenna able to transmit microwave frequency signals into a space. An electronics controller is connected to the microwave antenna, and is configured to continually measure the impedance of the microwave antenna while it transmits microwave frequency signals into the space. An interpretive device is connected to receive impedance measurements from the electronics controller, and is configured to interpret and report changes in the magnitude and phase angles of individual impedance measurements as the passing of things and their direction through the space.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: December 6, 2011
    Assignee: Stolar, Inc.
    Inventors: Igor Bausov, Gerald Stolarczyk, Larry G. Stolarczyk
  • Patent number: 8063347
    Abstract: A method for engaging a target uses sensors to generate target track(s). The tracks are projected forward in time and associated with a track quality measure. The maximum seeker look angle and beamwidth, acceleration, and net radar sensitivity characteristics are listed for each type of interceptor. A plurality of target intercept times are generated for each interceptor type. The probability that the interceptor can acquire the target is determined from the projected target tracks, the quality measure, and the characteristics. The probability of hitting the target is determined from the probability of acquisition and acceleration of the interceptor type. The probabilities of acquisition and of hitting the target are aggregated, and the type of interceptor to use is the type having (a) an extreme value of the aggregation or (b) the earliest intercept time from among the interceptors having an aggregation value above a threshold value.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: November 22, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Leonardo F. Urbano, Gregory F. Bock, Ivy T. Moffett
  • Patent number: 8063817
    Abstract: Methods and apparatus for enhancing the resolution of a radar image in the cross-range direction. An example method includes receiving a plurality of received power samples in the cross-range dimension as the radar antenna scans and calculating a window function from the antenna beam response pattern. Then for each of a plurality of positions of the window function along the azimuth axis, multiplying the received response pattern by the window function at that position, yielding a product function for each position. Finally, the method includes calculating an estimated azimuth bin offset, resulting estimated target location, and a reflected power value corresponding to the integral of the product function from the product function of each position. A reconstructed azimuth bin array developed from the estimated target locations and reflected power values is substituted for the original received cross-range received power values, yielding a resolution-enhanced map image.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 22, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8059025
    Abstract: An altimetry method comprising: providing a signal receiver (RX) on a first platform (S1) flying above a portion of the Earth surface (ES), for receiving a temporal series of signals emitted by a second flying platform (S2) and scattered by said portion of the Earth surface; and computing altimetry waveforms, indicative of an elevation profile of said portion of the Earth surface, by processing the received signals; characterized in that said step of computing altimetry waveforms comprises: cross-correlating the received signals with a plurality of locally-generated frequency-shifted replicas of the emitted signals; introducing a frequency-dependent temporal shift to the correlation waveforms in order to compensate for range delay curvature; and incoherently summing the temporally shifted correlation waveforms (CXC) corresponding to signals scattered by a same region of the Earth surface at different times during motion of said first platform.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 15, 2011
    Assignee: Agence Spatiale Europeenne
    Inventor: Salvatore D'Addio
  • Patent number: 8054216
    Abstract: A radar device has a plurality of receiving antennas which receive, as a reception wave, a radar wave sent in a predetermined reference direction and reflected by a target; a phase difference detection unit which detects a first phase difference of the reception wave received by a first receiving antenna pair that is spaced by a first gap, and a second phase difference of the reception wave received by a second receiving antenna pair that is spaced by a second gap smaller than the first gap; and an angle detection unit which performs a first process of determining, as a detection angle, an angle of the target relative to the reference direction being a mutually coincident angle from among a plurality of first angles corresponding to the first phase difference and a plurality of second angles corresponding to the second phase difference. The radar device allows expanding an angle detection range without reducing the resolution of the angle corresponding to the second phase difference.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 8, 2011
    Assignees: Fujitsu Ten Limited, Toyota Jidosha Kabushiki Kaisha
    Inventors: Motohide Kinoshita, Hisateru Asanuma, Jun Tsunekawa, Motomi Iyoda, Tomoya Kawasaki
  • Patent number: 8054217
    Abstract: A detection system and method. The inventive system includes an arrangement for receiving a frame of image data; an arrangement for performing a rate of change of variance calculation with respect to at least one pixel in said frame of image data; and an arrangement for comparing said calculated rate of change of variance with a predetermined threshold to provide output data. In the illustrative embodiment, the frame of image data includes a range/Doppler matrix of N down range samples and M cross range samples. In this embodiment, the arrangement for performing a rate of change of variance calculation includes an arrangement for calculating a rate of change of variance over an N×M window within the range/Doppler matrix. The arrangement for performing a rate of change of variance calculation includes an arrangement for identifying a change in a standard deviation of a small, localized sampling of cells.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 8, 2011
    Assignee: Raytheon Company
    Inventors: Donald P. Bruyere, Ivan S. Ashcraft, John B. Treece
  • Patent number: 8054181
    Abstract: An exclusion zone compliance circuit comprises a terrestrial radio signal reception component for receiving a terrestrial radio signal comprising a unique identification of a transmission source. A non-volatile memory component of the circuit stores an encrypted data set describing boundaries of an exclusion zone. A navigation data deriving component of the circuit accesses a data set and compares the unique identification with a station identification of the transmission source and the geographic position of the transmission source. The navigation data deriving component derives a geographic position of the exclusion zone compliance circuit and determines whether the exclusion zone compliance circuit is located within an exclusion zone. A data blocking component of the circuit accesses the encrypted data set. A data control component of the exclusion zone compliance circuit blocks output of a signal in response to an indication that the circuit is located within an exclusion zone.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 8, 2011
    Assignee: Trimble Navigation Limited
    Inventors: Peter Van Wyck Loomis, James M. Janky, Bruce Riter
  • Patent number: 8044841
    Abstract: A method of selecting a sub-set of a plurality of available sensors to guide an interceptor to a target is described. The method includes characterizing a quality of position estimate received from each of the plurality of available sensors, projecting the positioning errors of the sensors onto a plane normal to a line-of-sight of the interceptor, and selecting the sub-set of the plurality of available sensors based on the projection of positioning errors.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: October 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan Alan Boardman, Naresh Raman Patel, Jeffrey Bruce Boka
  • Patent number: 8044843
    Abstract: Method and apparatus for determining the thickness of material layers of a container-held substance comprising a first material disposed in an upper layer and a second material disposed in a lower layer, by transmitting a radio signal through the substance towards a container portion; receiving reflected signals from a surface of the upper layer, a surface of the second layer, and the container portion; varying the frequency of the transmitted signal to determine phase displacement between transmitted and reflected signals; determining optical distances to the surfaces and the container portion, dependent on the phase displacements; determining the thickness of one of said layers dependent on phase displacement through and index of refraction of that layer; and determining the thickness of the other layer dependent on the thickness of said one of said layers.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: October 25, 2011
    Assignee: Agellis Group AB
    Inventor: Lars Bååth
  • Patent number: 8044846
    Abstract: A method for displaying information relating to the range and Doppler of a remote target includes transmitting electromagnetic energy toward the target, and receiving reflected signals defining a two-dimensional (range-Doppler) radar image. The reflected signals are matched-filtered, which tends to blur the image. The image is deblurred while the features of thermal noise enhancement and irregularity of the deconvolved output are constrained to produce a single point deblurring output.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: October 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Harry Urkowitz, Jeff D. Cammerata
  • Publication number: 20110254728
    Abstract: A new spatially variant apodization (SVA) algorithm that uses a 3/4 filled aperture prior to two dimensional discrete Fourier transform (2-D DFT) to form the image. The algorithm can be used, for example, to improve contrast and resolution on synthetic aperture radar (SAR) imagery, with a lower degree of oversampling (and thus, fewer pixels) than other algorithms require. This can translate into more efficient use of radar displays and processor memory. Additional efficiencies of memory and computing power may be realized when Automatic Target Recognition (ATR) algorithms operate on this imagery. Embodiments of this invention use convolution kernels at two different spacings, which are better tuned to the local phase relationships of mainlobe and sidelobes with a 3/4 filled aperture. As such, these embodiments suppress sidelobes without sacrificing resolution, at an aperture-filling ratio of 3/4, rather than 1/2, as is usually used.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Inventor: Timothy T. Peterson
  • Patent number: 8040273
    Abstract: According to one embodiment, a radar includes multiple antenna elements coupled to an image processing application. The antenna elements have a differing vertical spatial separation relative to one another and are configured to transmit a radio-frequency signal toward a stationary object and receive multiple reflected radio-frequency signals from one or more internal features of the building. The image processing application receives the reflected radio-frequency signals as the antenna elements are moved horizontally with respect to the stationary object. From these reflected radio-frequency signals, the image processing application generates imagery of the stationary object according to phase variations in the plurality of received radio-frequency signals. The imagery depicting vertical characteristics of the one or more internal features of the building.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: John L. Tomich, Raymond Samaniego, Jerry M. Grimm
  • Patent number: 8040533
    Abstract: Techniques are provided for performing font subsetting. One or more font subsetting parameters are received. The one or more font subsetting parameters indicate a granularity level for which font subsetting is performed for portions of a data container. The font subsetting parameters indicate a font subsetting granularity level other than an entire document associated with the data container. A first portion of the data container is determined in accordance with the font subsetting granularity level. A subset of font data for at least one font family is determined in accordance with what font data for the at least one font family is actually used by the first portion. The subset of font data is embedded in an output for a consumer.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 18, 2011
    Assignee: Microsoft Corporation
    Inventors: Brian S. Adelberg, Khaled S. Sedky, Mahmood A. Dhalla, Oliver H. Foehr, Clifton Kerr
  • Patent number: 8035547
    Abstract: A system and method of providing aerial navigation. Techniques are described for receiving global positioning system data, receiving local positioning system data such as instrument landing system data, generating a virtual target flight path using the global positioning system data and the local positioning system data, and presenting a virtual target flight path indicator corresponding to the virtual target flight path. In one implementation, the system includes a user interface, a global positioning component, a local positioning component, and a processing system.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 11, 2011
    Assignee: Garmin Switzerland GmbH
    Inventors: Daniel Keegan Flanigan, Jay R. Flatland, Merlin R. James, Eric D. Schlef
  • Patent number: 8035549
    Abstract: A method for calculating a drop track time for a radar system includes receiving characteristics of the radar system as an input, determining in a computer process the characteristics of a target being tracked by the radar system, calculating in a computer process a target track drop time for the target based on the characteristics of the radar system and the target, determining in a computer process whether a value associated with the target being tracked has been updated within the target track drop time, and discontinuing the tracking of the target if a value associated with the target being tracked is not updated within the target track drop time.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 11, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Stephen J. Salvatore
  • Patent number: 8026840
    Abstract: A biometric radar system and method for identifying a person's positional state are generally described herein. The biometric radar may phase adjust a sequence of radar return signals received through two or more receive antennas to remove at least some phase noise due to the stationary objects. The biometric radar may also segment the phase adjusted radar return signals into a plurality of multi-resolutional Doppler components. Each multi-resolutional Doppler component may be associated with one of a plurality of biometric features. The biometric radar system may also combine and weight the segmented radar returns for each biometric feature to generate weighted classifications for a feature extraction process.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 27, 2011
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Patent number: 8026841
    Abstract: Disclosed is a method, means for and computer program for enhancing range and azimuth resolution in a two-dimensional (2D) image generated by a frequency modulated continuous-wave (FMCW) radar for providing enhanced situational awareness in autonomous approach and landing guidance (AALG) system by forming and displaying a two-dimensional (2D) model of landing conditions from received range and azimuth real beam radar (RBR) signals by rendering one or more target locations and amplitudes in both range and azimuth, selecting a region of interest from the displayed 2D model to enhance the one or more target locations in the selected region of interest, selectively applying range and azimuth resolution enhancement using a first and second beamforming approach or applying azimuth only resolution enhancement by using just the second beamforming approach to obtain an one or more accurate target location estimations and combining the enhanced one or more target locations to render an enhanced 2D image.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 27, 2011
    Assignee: BAE SYSTEMS Controls Inc.
    Inventors: Guoqing Liu, Ken Yang
  • Patent number: 8026844
    Abstract: A method for determining whether a target of interest located within radar resolution cells in a target area of interest is detectable with a radar system from a location and elevation of the radar system is described. The method includes the steps of (a) developing a topographic map of the terrain in the target area of interest; (b) mapping the radar resolution cells onto the topographic map; (c) modeling radar signal propagation to each of the radar resolution cells on the topographic map; and (d) determining, using the results of the modeling, if the radar system has sufficient signal-to-noise (SNR) to detect the target of interest.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Vista Research, Inc.
    Inventors: Philip A. Fox, Joseph W. Maresca, Jr., Dennis M. Hancock, Charles L. Rino
  • Publication number: 20110227784
    Abstract: A DDS based system, such as a radar, includes means for generating a plurality of transmission signals using a DDS, and means for integrating signals derived therefrom, such as received signals. The system further includes means for varying the relative starting phase of the plurality of transmission signals, or adjusting the DDS input clock whilst maintaining similar primary output frequency characteristics of the transmission signals. The approach has the effect of changing the location of unwanted frequency spurs in each of the transmission signals, and hence the effects of these are decreased in the integration process. An improvement in the sensitivity of the system results. Although primarily suited to radar applications the invention may find utility in other systems such as sonar or lidar systems.
    Type: Application
    Filed: November 19, 2009
    Publication date: September 22, 2011
    Applicant: QINETIQ LIMITED
    Inventors: Patrick David Lawrence Beasley, Robert David Hodges, David George Hodges
  • Patent number: 8022864
    Abstract: Signal processing is used to detect transient signals in the presence of noise. Two embodiments are disclosed. In both embodiments, the time series from a remote sensor is broken into a number of short time series. The power spectrum of each short time series are then calculated along with the mean noise level. The moments of each peak in every power spectrum are calculated and the peak with the largest power selected from each power spectrum. A histogram of the moments from these selected peaks is generated and normalized to become a measured PDF. In addition, a pre-determined PDF is derived, in the same method as above, from theoretically calculated noise, numerically simulated noise, or measured noise. Comparison between the measured and pre-determined PDF's establish the detection of a transient signal. The first embodiment compares the area between the measured and pre-determined PDF's against a threshold to determine detection.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: James Ronald Jordan, James Harwood Churnside, Paul Ernest Johnston
  • Patent number: 8022861
    Abstract: The radar includes a PCB having a top surface and a bottom surface, and a processor mounted on the bottom surface of the PCB. The radar includes a second liquid crystal polymer layer formed on the top surface of the printed circuit board, a second microstrip array printed on the second liquid crystal polymer layer, the second microstrip array having a patch, a first liquid crystal polymer layer formed on the second liquid crystal polymer layer, a first microstrip array printed on the first liquid crystal polymer layer, the first microstrip array having a perforated patch, an antenna positioned underneath the patch and connected to the second microstrip array, and a transmit/receive module connected to a bottom surface of the second liquid crystal polymer layer and configured to transmit a first frequency signal to the first microstrip array and a second frequency signal to the second microstrip array.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: September 20, 2011
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Alexandros Margomenos
  • Patent number: 8022860
    Abstract: An Advanced Focal Plane Array (“AFPA”) for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ryan Mukai, Victor A. Vilnrotter
  • Patent number: 8022863
    Abstract: A method includes correlating a plurality of samples of a waveform into a correlation domain to provide a mainlobe defined by a first subset of a plurality of pulse-compressed samples and a plurality of sidelobes defined by a second subset of the plurality of pulse-compressed samples. A weight is calculated for at least one of the pulse-compressed samples, and one of a plurality of SVA filter values is selected to apply to the at least one pulse-compressed sample based on the calculated weight of the at least one pulse-compressed sample. The SVA filter values include one, one minus a quotient of one-half divided by the calculated weight of the at least one sample, and a scale factor having a value greater than zero and less than or equal to one. The selected SVA filter values are applied to the at least one pulse-compressed sample.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Rao Nuthalapati
  • Publication number: 20110221630
    Abstract: A system, apparatus, and method are disclosed for a super-resolution imaging radar (SRIR). The SRIR employs a pulse signal generator that propagates bursts of radio frequency (RF) energy. Each burst contains a number of pulses. One pulse of each burst is an ancilla pulse, and the remaining pulses are propagated towards an object. An array bucket detector (ABD) collects pulses that are reflected from the object. Also, the ancilla pulses are propagated through a virtual lens. A virtual scanning detector detects the virtual ancilla electric field. A processor calculates a virtual ancilla electric field, which would be present at the scanning detector. Further, a coincidence circuit calculates a cross-time correlation function of the electric fields of the reflected pulses that are collected by the ABD and the virtual ancilla electric field. The coincidence circuit uses cross-time correlation function results to generate pixels of an image of the object.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Barbara A. Capron, Claudio Gilbert Parazzoli, Minas H. Tanielian
  • Patent number: 8018374
    Abstract: A radar having a high time and high spatial resolution and being capable of performing volume scanning with an inexpensive and simple structure, while enabling reduction is size and weight. A radar (50) is provided with an antenna unit (51) including a radio wave lens antenna device, which has a spherical transmission radio wave lens (2), a spherical reception radio wave lens (3), a primary radiator (4) arranged at a focal point of the radio wave lens (2), and a primary radiator (5) arranged at a focal point of the radio wave lens (3). The primary radiators (4, 5) pivot in an elevation direction about an axis connecting center points of the radio wave lenses (2, 3) and pivot in an azimuthal direction about an axis orthogonal to the axis connecting the center points of the radio wave lenses (2, 3).
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 13, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyuki Imai, Tomoo Ushio
  • Patent number: 8018371
    Abstract: A passive proximity detection system and method are provided. A transmitted signal, such as a communication signal, is sampled and placed in memory. A version of the transmitted signal, reflected by a target in the vicinity of the transmitting antenna, is sampled and compared to the stored reference sample. Correlation between the reference and reflected samples indicates the presence of a target in the vicinity of the transmitting antenna. Processing of the signals can include frequency shifts to account for Doppler shifts in the reflected energy as a result of a non-zero relative radial velocity of the target. Multiple antennas for receiving reflected energy can be provided to enhance the coverage area of the system, and/or to provide information regarding the relative location of a target. In addition, signals from multiple transmitting antennas can be used as sources of energy for probing the vicinity of those antennas for targets.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: Dean A. Paschen, William G. Newhall, Mark C. Leifer
  • Patent number: 8013781
    Abstract: In a radar system using a radar clutter map comprising a plurality of range-azimuth cells containing parameter data values indicative of time averaged echo returns for affecting alarm threshold levels at range-azimuth locations scanned by the radar system antenna, a method for detecting comprising the steps of obtaining from the radar clutter map a first parameter data value associated with a given cell under test (CUT); determining a second parameter data value using parameter data values of other cells from the plurality of range-azimuth cells from the radar clutter map; comparing the first parameter data value associated with the CUT with the second parameter data value; and generating a signal indicative of a target detection when the first parameter data value exceeds the second parameter data value by a given threshold corresponding to a target false alarm rate.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: September 6, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Peter H. Stockmann
  • Patent number: 8004458
    Abstract: A calibration system for the receiver of a dual polarization radar system has been developed. The system includes a radar transmitter that transmits signals in horizontal and vertical polarizations and a radar receiver that receives the horizontal and vertical polarization signals. The system also includes a test signal generator that generates a continuous wave test signal. A calibration circuit for the radar receiver modifies the test signal to simulate weather conditions by adjusting the attenuation and Doppler phase shift of a continuous wave test signal.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 23, 2011
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 8004454
    Abstract: The present invention is directed towards method, apparatus, and computer product for obtaining additional information in relation to a target in the vicinity of a mobile electronic device as well as such a mobile electronic device. The device includes a radar unit for operation in a certain frequency range including a pulse generating unit, a transmitting and receiving antenna, an echo detecting unit, a timing unit for timing the generation and transmission of pulses and providing an echo detection window for the echo detecting unit to detect echoes of said pulses when being reflected by a target, and a signal processing unit configured to process received echo pulses.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 23, 2011
    Assignee: Sony Ericsson Mobile Communications AB
    Inventors: Mats Eric Gustav Lindoff, Magnus Blomkvist
  • Patent number: 7999726
    Abstract: A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Guertin, David Faulkner, John Treece, Donald Bruyere
  • Patent number: 7999212
    Abstract: A guidance system for actively guiding a projectile, such as a bullet after it has been fired from a gun. The guidance system includes a radar unit that includes a plurality of receiver arrays. An optical scope is also mounted to the gun for optically sighting a target. An inertial measurement unit provided on the gun locks onto the target after it has been sighted by the scope, and provides a reference location at the center of the receiver arrays from which the bullet can be directed. The receiver arrays receive radar monopulse beacon signals from the bullet. The signals from the bullet are used to identify the position of the bullet and the roll of the bullet. The signals sent to the bullet provide flight correction information that is processed on the bullet, and used to control actuators that move steering devices on the bullet.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: August 16, 2011
    Assignee: EMAG Technologies, Inc.
    Inventors: Jack H. Thiesen, Karl F. Brakora
  • Patent number: 7999721
    Abstract: A GPS enabled radar detector dynamically handles radar sources based upon previously-stored geographically-referenced information on such sources and data from the GPS receiver. The detector includes technology for determining the location of the detector, and comparing this location to the locations of known stationary sources, to improve the handling of such detections. The detector may ignore detections received in an area known to contain a stationary source, or may only ignore specific frequencies or may handle frequencies differently based upon historic trends of spurious police radar signals at each frequency. Notification of the driver will take on a variety of forms depending on the stored information, current operating modes, and vehicle speed. The detector may be also incorporated within a general purpose navigation device.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 16, 2011
    Assignee: Escort Inc.
    Inventor: Steve K. Orr
  • Patent number: 7990311
    Abstract: A time sequence of raw radar data for a region of space is subdivided into a plurality of processing frames. The processing frames are subdivided into a plurality of processing cells and iteratively processed by selecting a single processing cell for processing, transforming the radar data of the processing cell to form transformed radar data in either the time domain or the Fourier domain. The transformed data is converted to a Power Spectrum Density Matrix in the case of the Fourier domain and a Time Space Correlation Matrix in the case of the time domain. This is smoothed and thresholded and then the clutter for the processing cell is estimated. Estimated local non-speckle clutter is estimated and removed from the transformed radar data, with the cleaned transformed radar data converted back to the time domain if required.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: August 2, 2011
    Assignee: Raytheon Applied Signal Technology, Inc.
    Inventors: Mark D. Pauli, Jason Blind
  • Patent number: RE42708
    Abstract: A field unit for warning of a danger of collision between an aircraft and an obstacle, in particular a topographical ground obstacle or an obstacle formed by a mast, building or aerial cable structure, comprises a multi-part tubular mast having devices for fixing a solar panel and a radar antenna; an elongate radar antenna in an environment-protective casing, which, with an electronics unit, forms a radar system for synthesized radar detection of an aircraft in a radar coverage area; a central processing unit for identifying on the basis of information from the radar system an aircraft which is in a zone of the radar coverage area and which on the basis of radar information such as direction, distance and/or speed computes a collision danger area; and a high-intensity light system and radio transmitter system that can be activated by the central processing unit upon detection of an aircraft in a collision danger area.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 20, 2011
    Assignee: OCAS AS
    Inventors: Morten Mark, Rolf Bakken