Methods Patents (Class 355/77)
  • Publication number: 20150131076
    Abstract: A lithographic apparatus is disclosed. The lithographic apparatus includes a scatterometer configured to measure a property of the substrate. The scatterometer includes a radiation source configured to produce a radiated spot on a target on the substrate, where the radiated spot includes positions on the target. The scatterometer further includes a detector configured to generate measurement signals that correspond to respective ones of the positions of the radiated spot and a processor configured to output, based on the measurement signals, a single value that is representative of the property of the substrate.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Applicant: ASML Netherlands B.V.
    Inventors: Henricus Petrus Maria PELLEMANS, Arie Jeffrey DEN BOEF
  • Publication number: 20150131075
    Abstract: A drawing apparatus includes: a blanker; a deflector; a stage configured to hold the substrate and to be movable; and a controller configured to control the deflector and the stage so as to perform drawing by scanning the charged particle beam on the substrate by causing the deflector to deflect the charged particle beam in a first direction and moving the stage in a second direction. The controller is configured to cause the stage moving in the second direction to move in the first direction based on a pattern to be drawn and to control a scan width of the charged particle beam in the first direction by the deflector based on a moving amount of the stage in the first direction and the pattern.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 14, 2015
    Inventors: Tatsuro KATO, Tomoyuki MORITA
  • Publication number: 20150131077
    Abstract: An embodiment of a method of lithography includes generating a beam of electrons. A first pixel and a second pixel are each configured to pattern the beam. Using time domain multiplex loading, the first and second pixels are controlled such that the beam is patterned. The patterning includes receiving a first clock signal and using the first clock signal to generate a second clock signal and a third clock signal. The second clock signal is sent to the first pixel and sending the third clock signal is sent to the second pixel.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Ming-Zhang Kuo, Ping-Lin Yang, Cheng-Chung Lin, Osamu Takahashi, Sang Hoo Dhong
  • Publication number: 20150131074
    Abstract: The invention relates to a method for the construction of a shaped body from photopolymerizable material by using lithography-based generative production (rapid prototyping), in which a layer of liquid photopolymerizable material is defined on a production platform (1, 2, 3, 4), the layer is polymerized in an exposure region having a predetermined contour by exposure, a further layer of photopolymerizable material is defined on the polymerized layer, the layer defined last is polymerized by exposure in an exposure region having a predetermined contour for the layer defined last, and the latter two steps are repeated until a shaped body having a predetermined shape has been formed by the sequence of cured layers with contours predetermined layer by layer, wherein ink is applied onto at least one layer inside the predetermined contour, wherein the production platform is suspended moveably and wherein the production platform is brought, after the polymerization of a layer in a processing station for polymerizing
    Type: Application
    Filed: June 4, 2013
    Publication date: May 14, 2015
    Applicant: Ivoclar Vivadent AG
    Inventors: Jörg Ebert, Wolfgang Wachter, Gottfried Rohner, Jürgen Stampfl
  • Publication number: 20150124236
    Abstract: A light exposure system includes a light source device, a shutter device and a control device. The light source device is capable of emitting a light to an assembly liquid crystal cell. The shutter device is located on an optical path of the light. The control device controls the light source device or the shutter device to control the illuminance on the assembly liquid crystal cell. The control device makes the assembly liquid crystal cell have a plurality of first exposure times receiving a first illuminance and a plurality of second exposure times receiving a second illuminance during the light exposure process. The first exposure times and the second exposure times are arranged alternately. The sum of the first exposure times and the second exposure times is substantially equal to the default continuous exposure time.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Cheng-Jui LIN, Yu-Ju CHEN, Chen-Kuan KAO, Chu-Chun CHENG
  • Patent number: 9025137
    Abstract: A method of structuring a photosensitive material is disclosed. The method includes illuminating a first object structure and projecting a pattern of the first object structure onto a photosensitive material such that the projected pattern of the first object structure is focussed at a first focus position with respect to the photosensitive material. The method also includes illuminating a second object structure and projecting a pattern of the second object structure onto the photosensitive material such that the projected pattern of the second object structure is focussed at a second focus position with respect to the photosensitive material. The respective patterns are projected in the same projection direction.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Aksel Goehnermeier
  • Patent number: 9025136
    Abstract: System and method for manufacturing three-dimensional integrated circuits are disclosed. In one embodiment, the method includes providing an imaging writer system that includes a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays, receiving mask data to be written to one or more layers of the three-dimensional integrated circuit, processing the mask data to form a plurality of partitioned mask data patterns corresponding to the one or more layers of the three-dimensional integrated circuit, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, and controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the one or more layers of the three-dimensional integrated circuits in parallel. The method of assigning performs at least one of scaling, alignment, inter-ocular displacement, rotational factor, or substrate deformation correction.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Patent number: 9025130
    Abstract: A method includes directing a beam of radiation along an optical axis toward a workpiece support, measuring a spectrum of the beam at a first time to obtain a first profile, measuring the spectrum of the beam at a second time to obtain a second profile, determining a spectral difference between the two profiles, and adjusting a position of the workpiece support along the optical axis based on the difference. A different aspect involves an apparatus having a workpiece support, beam directing structure that directs a beam of radiation along an optical axis toward the workpiece support, spectrum measuring structure that measures a spectrum of the beam at first and second times to obtain respective first and second profiles, processing structure that determines a difference between the two profiles, and support adjusting structure that adjusts a position of the workpiece support along the optical axis based on the difference.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Tsun Hsieh, Fu-Jye Liang, Tzung-Chi Fu, Li-Jui Chen, Chih-Ming Ke
  • Patent number: 9025135
    Abstract: Provided is a method to load a patterning device (1010) onto a reticle stage (RS) of a lithography system, a Rapid Exchange Device (RED) configured to load a patterning device (1010) onto a reticle stage (RS) of a lithography system, and a system for manufacturing a semiconductor device lithographically. The method involves sharing compliance among six degree of freedom between the reticle stage (RS) and the RED. The RED complies in only a first three degrees of freedom and the reticle stage (RS) in only a second three degrees of freedom until the reticle stage (RS) and patterning device (1010) are substantially in contact and coplanar.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 5, 2015
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Richard John Johnson, Frits Van Der Meulen, Eric Bernard Westphal, Jeremy Rex Heaston
  • Patent number: 9023982
    Abstract: A method is provided for purifying a resin for photolithography wherein, from an insufficiently purified resin (also referred to as “crude resin”), low molecular weight impurities such as an unreacted monomer and a polymerization initiator, which cause a development defect of a resist pattern or deterioration of the storage stability of the resin for photolithography can be removed more effectively. The method for purifying a resin for photolithography includes an operation (a) wherein a slurry in which a resin is dispersed in a solution containing a good solvent and a poor solvent is stirred, and then an operation (b) wherein, to said slurry, a poor solvent is added to lower the ratio of the good solvent to the poor solvent, and then, the resin is separated from the solution.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 5, 2015
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventor: Tomo Oikawa
  • Patent number: 9025126
    Abstract: An adjusting method that adjusts an immersion exposure apparatus that comprises a first holder, which holds a substrate, and a second holder, which holds the substrate before the substrate is held by the first holder, and that exposes the substrate, which is held by the first holder, through a liquid. The adjusting method comprises: holding a thermometer with the first holder; holding the thermometer with the second holder; and adjusting the temperature of at least one of the first holder and the second holder based on the detection result of the thermometer held by the first holder and the detection result of the thermometer held by the second holder.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: May 5, 2015
    Assignee: Nikon Corporation
    Inventors: Yosuke Shirata, Yoshiki Kida
  • Publication number: 20150116681
    Abstract: The present invention provides a computer-readable storage medium which stores a program for causing a computer to generate time-series data of an electric current to be supplied to a motor in order to cause, a control system, including the motor configured to drive an object, to transit from a first state to a second state, the program causing the computer to generate the time-series data so as to satisfy a constraint including a condition to constrain an upper limit value of dispersion of a plurality of state quantities respectively obtained from a plurality of models each of which estimates, from the time-series data, a state quantity of a specific mode of a vibration mode and motion mode of the object, and so that a value of an evaluation function for evaluating the time-series data falls within a tolerance.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 30, 2015
    Inventor: Shinji UEDA
  • Publication number: 20150116690
    Abstract: A method is disclosed that includes forming at least one substrate alignment mark and at least one lithography alignment mark in a substrate; forming a seed layer on the substrate; and forming a guide pattern and at least one guide pattern alignment mark in the seed layer, where the at least one guide pattern alignment mark is formed over the at least one substrate alignment mark. The method further includes determining an alignment error of the at least one guide pattern alignment mark relative to the at least one substrate alignment mark; and patterning features on at least one region of the substrate, where the features are positioned on the substrate based on the at least one lithography alignment mark and the alignment error.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: HongYing Wang, Kim Y Lee, Yautzong Hsu, Nobuo Kurataka, Gennady Gauzner, Shuaigang Xiao
  • Publication number: 20150116688
    Abstract: A measuring apparatus measures a position of each of shot regions formed on a substrate. The apparatus includes a detector configured to detect a mark formed with respect to a shot region on the substrate, and a processor configured to obtain a position of each of the shot regions based on an output of the detector. The processor is configured to obtain a coefficient of a regression equation for obtaining a position of each of the shot regions, based on an output of the detector with respect to each of a plurality of sample shot regions on the substrate, and obtain, if the coefficient satisfies a tolerable condition for a discrepancy between the coefficient and a reference value thereof, the position of each of the shot regions using each offset amount that is obtained beforehand to correct the position of each of the shot regions obtained based on the regression equation.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: Masatoshi Endo, Takanori Morooka
  • Patent number: 9019467
    Abstract: An exposure apparatus exposes a substrate by projecting a pattern image onto the substrate through a liquid. The exposure apparatus includes a projection optical system by which the pattern image is projected onto the substrate, and a movable member which is movable relative to the projection optical system. A liquid-repellent member, at least a part of a surface of which is liquid-repellent, is provided detachably on the movable member, the liquid-repellent member being different from the substrate.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 28, 2015
    Assignee: Nikon Corporation
    Inventors: Soichi Owa, Nobutaka Magome, Shigeru Hirukawa, Yoshihiko Kudo, Jiro Inoue, Hirotaka Kohno, Masahiro Nei, Motokatsu Imai, Hiroyuki Nagasaka, Kenichi Shiraishi, Yasufumi Nishii, Hiroaki Takaiwa
  • Patent number: 9019475
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 28, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 9019471
    Abstract: Disclosed herein are a maskless exposure apparatus configured to perform exposure by tilting a beam spot array with respect to a scan direction (Y-axis direction) thus preventing stitching stripes and a stitching method using the same. A step distance, in which exposure dose uniformity in a stitching area is within a tolerance range, is calculated using actual position data of beam spots constituting the beam spot array on an exposure plane, and if necessary, using beam power data and/or beam size data. As exposure is performed based on image data conforming to the step distance, the stitching area has a uniform exposure dose, enabling exposure without stitching stripes.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 28, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Min Kim, Sang Don Jang, Sang Woo Bae
  • Patent number: 9019468
    Abstract: An exemplary embodiment of the present invention provides an interference projection exposure system comprising a beam-providing subsystem and an objective lens subsystem that can provide a plurality of light beams which intersect and interfere at an image plane to produce a high spatial frequency periodic optical-intensity distribution. The interference projection system can further comprise a pattern mask that can alter the periodic optical-intensity distribution so as to incorporate functional elements within the periodic optical-intensity distribution. The beam providing subsystem can comprise a beam generating subsystem, a beam conditioning subsystem and a beam directing subsystem. Another exemplary embodiment of the present invention provides for a method of producing a high spatial frequency periodic optical-intensity distribution using a interference projection exposure system.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 28, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Guy Matthew Burrow, Thomas K. Gaylord
  • Patent number: 9013684
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 21, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 9013680
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a beam deflection array including a number beam deflection elements, for example mirrors. Each beam deflection element is adapted to deflect an impinging light beam by a deflection angle that is variable in response to control signals. The light beams reflected from the beam deflection elements produce spots in a system pupil surface. The number of spots illuminated in the system pupil surface during an exposure process, during which a mask is imaged on a light sensitive surface, is greater than the number of beam deflection elements. This may be accomplished with the help of a beam multiplier unit that multiplies the light beams reflected from the beam deflection elements. In another embodiment the beam deflecting elements are controlled such that the irradiance distribution produced in the system pupil surface changes between two consecutive light pulses of an exposure process.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 21, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Ralf Mueller, Andras G. Major
  • Patent number: 9013682
    Abstract: The present invention relates to a clamping device configured to clamp an object (20, 120) on a support (1, 101). The clamping device comprises: a first device configured to force the object and the support away from each other using a first force, and a second device configured to force the object and the support towards each other using a second force. The first device and second device are configured to simultaneously exert the first force and the second force respectively to shape the object to a desired shape before completing the clamping of the object on the support.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 21, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Rene Theodorus Petrus Compen, Johannes Henricus Wilhelmus Jacobs, Martinus Hendrikus Antonius Leenders, Joost Jeroen Ottens, Martin Frans Pierre Smeets
  • Patent number: 9013681
    Abstract: On the +X and ?X sides of a projection unit, a plurality of Y heads are arranged in parallel to the X-axis by a predetermined distance half or less than half the effective width of the scale, so that two heads each constantly form a pair and face a pair of Y scales. Similarly, on the +Y and ?Y sides of the projection unit, a plurality of X heads are arranged in parallel to the Y-axis by the predetermined distance described above, so that two heads each constantly form a pair and face a pair of X scales. Of the pair of heads consisting of two heads which simultaneously face the scale, measurement values of a priority head is used, and when abnormality occurs in the measurement values of the priority head due to malfunction of the head, measurement values of the other head is used. Then, by using the measurement values of the two pairs of Y heads and the pair of X heads, a position of a stage within a two-dimensional plane is measured in a stable manner and with high precision.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 21, 2015
    Assignee: Nikon Corporation
    Inventor: Yuho Kanaya
  • Patent number: 9013676
    Abstract: An individual mirror is used to construct a facet mirror. A mirror body of the individual mirror is configured to be tiltable relative to a rigid carrier body about at least one tilting axis of a tilting joint. The tilting joint is configured as a solid-body joint. The solid-body joint, perpendicular to the tilting axis, has a joint thickness S and, along the tilting axis, a joint length L. The following applies: L/S>50. The result is an individual mirror to construct a facet mirror, which can be reproduced and is precisely adjustable and simultaneously ensures adequate heat removal, in particular, heat produced by residually absorbed useful radiation, which is reflected by the individual mirror, by dissipation of the heat by the mirror body.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 21, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Armin Werber, Norbert Muehlberger, Florian Bach
  • Patent number: 9013673
    Abstract: An immersion lithographic apparatus is provided having a table configured to support a substrate; a sensor or target for a sensor is provided on a surface of the table and a cover is provided extending from an edge of the table; in addition, a liquid displacement device is provided including a gas outlet configured to direct a localized gas flow towards the sensor or target so as to displace liquid from the sensor or target over the cover and off the table.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 21, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Jeroen Gerard Gosen, Koen Cuypers
  • Patent number: 9013674
    Abstract: According to example embodiments, a method of operating an exposure apparatus including a stage having a plurality of beam measurement devices, and an exposure head unit having a first set of exposure heads and a second set of exposure heads includes measuring a position of a first exposure head of the first set of exposure heads by moving the stage to coincide a first beam measurement device of the plurality of beam measurement devices with the first exposure head, setting the measured position of the first exposure head as a reference position, and measuring positions of the second set of exposure heads with respect to the reference position.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Hyun Park, Sang Don Jang, Hi Kuk Lee
  • Patent number: 9013672
    Abstract: An immersion lithographic projection apparatus having a megasonic transducer configured to clean a surface and a method of using megasonic waves through a liquid to clean a surface of an immersion lithographic projection apparatus are disclosed. A flow, desirably a radial flow, is induced in the liquid.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 21, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Anthonius Martinus Cornelis Petrus De Jong, Hans Jansen, Marco Koert Stavenga, Peter Franciscus Wanten, Bauke Jansen, Johannes Wilhelmus Jacobus Leonardus Cuijpers, Raymond Gerardus Marius Beeren, Kornelis Tijmen Hoekerd
  • Publication number: 20150102530
    Abstract: A method for producing a thin film lithium battery is provided, comprising applying a cathode current collector, a cathode material, an anode current collector, and an electrolyte layer separating the cathode material from the anode current collector to a substrate, wherein at least one of the layers contains lithiated compounds that is patterned at least in part by a photolithography operation comprising removal of a photoresist material from the layer containing lithiated compounds by a process including a wet chemical treatment. Additionally, a method and apparatus for making lithium batteries by providing a first sheet that includes a substrate having a cathode material, an anode material, and a LiPON barrier/electrolyte layer separating the cathode material from the anode material; and removing a subset of first material to separate a plurality of cells from the first sheet.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 16, 2015
    Inventors: Mark A. Wallace, Jody J. Klaassen, Jeffrey J. Sather, Stuart K. Shakespeare
  • Publication number: 20150103329
    Abstract: Provided is a stage apparatus that includes a first movable unit; a linear motor that includes a stator coil array arranged over a stroke range in a predetermined direction of the first movable unit and a mover magnet fixed to the first movable unit; a second movable unit that is arranged to face the first movable unit via a space and relatively moves with respect to the first movable unit in the predetermined direction; and a switch unit that forms a closed circuit including coils in the stator coil array and a resistance during operation of a dynamic brake, wherein the resistance value of a first coil located at a center region of the stroke range in the stator coil array is larger than that of a second coil located toward an end side of the stroke range rather than the center region in the stator coil array.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Inventor: Hayato HOSHINO
  • Patent number: 9007567
    Abstract: In a method of aligning a wafer stage, the wafer stage may be moved in an X-axis direction. A first coordinate of the wafer stage may be measured from a first measurement position inclined to the X-axis. The wafer stage may be moved in a Y-axis direction. A second coordinate of the wafer stage may be measured from a second measurement position inclined to the Y-axis. Thus, a movement distance of the wafer stage may be increased, so that the interferometers may accurately measure the position of the wafer stage.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Jin Park, Cheol-Hong Kim
  • Patent number: 9007564
    Abstract: An exposure apparatus includes an irradiating part which irradiates light, a light blocking member including a light condensing part at a side of the light blocking member, where the light condensing part condenses the light, a mask which is spaced apart from the light blocking member by a first distance, and a transporting part which transports a target substrate in a first direction.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: April 14, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chang-Hoon Kim, Kab-Jong Seo, Hi-Kuk Lee, Tsunemitsu Torigoe
  • Patent number: 9001309
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 9001304
    Abstract: A projection exposure system (10) for microlithography which includes: a mask holding device (14) holding a mask (18) with mask structures (20) disposed on the mask, a substrate holding device (36) holding a substrate (30), projection optics (26) imaging the mask structures (20) onto the substrate (30) during an exposure process, and a measurement structure (48) disposed in a defined position with respect to a reference element (16) of the projection exposure system (10), which defined position is mechanically uncoupled from the position of the mask holding device (14). The projection exposure system (10) also includes a detector (52) arranged to record an image of the measurement structure (48) imaged by the projection optics (26). The projection exposure system (10) is configured such that during operation of the projection exposure system (10) the imaging of the mask structures (20) and the imaging of the measurement structure (48) take place at the same time by the projection optics (26.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 7, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Mueller, Joachim Stuehler, Oswald Gromer, Rolf Freimann, Paul Kaufmann, Bernhard Geuppert
  • Patent number: 9001310
    Abstract: A lithographic system includes a projection system for projecting an object field through a projection system's pupil onto an image field. The projection system includes an optical element located at the projection system's pupil. The projection system's pupil is manipulable with respect to normalized pupil heights by the optical element. Related processes are also disclosed.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 7, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Dirk Juergens
  • Patent number: 9000403
    Abstract: A method and apparatus for controlling the seed laser in a laser produced plasma (LPP) extreme ultraviolet (EUV) light system are disclosed. In one embodiment, a seed laser generates both pre-pulses and main pulses which are amplified and irradiate a target material. The widths of the main pulses are adjusted, for example by the use of an EOM or other optical switch, without adjusting the widths of the pre-pulses, to keep the EUV output energy at a desired level. Only if the main pulse widths are longer or shorter than a desired range is the duty cycle of the laser amplifier adjusted, to keep the main pulse widths in the desired range. Adjusting the main pulse widths in this way before adjusting the pump RF duty cycle allows for less adjustment of the duty cycle, thus causing less adjustment to the pre-pulses.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 7, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: James Crouch, Matthew Graham, Robert J. Rafac, Daniel Jason Riggs
  • Publication number: 20150092175
    Abstract: An apparatus includes a conductive holding part configured to hold an insulating material, and a capacitance sensor configured to generate an electric field between the capacitance sensor and the holding part. The apparatus determines a surface position of a surface of the insulating material based on information of an output value of the capacitance sensor obtained in a case where the insulating material is located in the electric field and information associated with capacitance of the insulating material, and then adjusts the surface position of the insulating material at a pattern formation position.
    Type: Application
    Filed: September 23, 2014
    Publication date: April 2, 2015
    Inventor: Shinji Ohishi
  • Patent number: 8994922
    Abstract: Provided is a barrel support device for supporting a lens barrel. The barrel support device may include a guide frame configured to laterally support the lens barrel and tilt with the lens barrel, a rotation guide on a first end of the guide frame, the rotation guide being ring shaped and configured attach the lens barrel to the guide frame, and a ring-shaped tilting frame configured to support a second end of the guide frame and tilt the guide frame, wherein the guide frame, the rotation guide, and the tilting frame are configured to allow the lens barrel to pass therethrough.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Hyun Park, Sang Joon Hong, Sang Don Jang, Oui Serg Kim, Dong Seok Baek
  • Patent number: 8994921
    Abstract: A scatterometer for measuring a property of a substrate includes a focus sensing arrangement including an arrangement (65) that directs a first beam of radiation onto a focusing arrangement, to be detected by a focus sensor arrangement (61). A focus controller (67) provides control signals representative of the relative positions of the focusing arrangement (15, 69) and the substrate (W), which are required to focus the first beam of radiation on the substrate. An actuator arrangement adjusts the position of the focusing arrangement dependent on the control signals. An irradiation arrangement directs a second beam of radiation onto the substrate using the focusing arrangement, a measurement detector (18) detecting the second radiation beam after reflection from the substrate. A focus offset arrangement adjusts the focus produced by the focusing arrangement to compensate for an offset between the focusing of the first beam of radiation and the second beam of radiation.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: March 31, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Johan Maria Van Boxmeer, Nicolass Antonius Allegondus Johannes Van Asten, Arnold Sinke, Marnix Aldert Tas, Johannes Cornelis Maria Timmermans, Jascha Van Pommeren
  • Patent number: 8994917
    Abstract: An article support is constructed to support an article. The article support includes a back fill structure constructed to supply and extract a thermal buffering fluid to and from the article support. The back fill structure is connected to an extraction duct that is constructed and arranged to extract at least a gas phase of the thermal buffering fluid from the back fill structure. The back fill structure is connected to a supply duct, constructed and arranged to supply a liquid phase of the thermal buffering fluid to the back fill structure. The back fill structure is arranged to have the thermal buffering fluid brought in a combined liquid and gas phase to thermally connect with the article.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: March 31, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Joost Jeroen Ottens, Johannes Henricus Wilhelmus Jacobs
  • Patent number: 8994916
    Abstract: A double-sided maskless exposure system and method consists of light sources which includes two light wavelength segments, maskless optical engines in which a 2D spatial light modulation (spatial light modulator) device, such as DMD, is generating a plurality of pixel array of the pattern, vision system, moving substrate and computer control system. The double-sided maskless exposure system at least includes two maskless optical engines with auto-calibration function which can correct any alignment error in-line. Each optical engine is for each side of the substrate. The optical engines are aligned each other in pairs and are simultaneously patterning on each side of the moving substrate. The system also includes a manipulator for moving, stepping or scanning the optical engines, relative to the substrate so that it can create a contiguous whole image on the both sides of the subject.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: March 31, 2015
    Inventors: Wenhui Mei, Weichong Du, Lujie Qu
  • Publication number: 20150085270
    Abstract: A reflective imaging optical system which forms, on a second plane, an image of a pattern arranged on a first plane and illuminated with light from an illumination optical system includes a plurality of reflecting mirrors including first and second reflecting mirrors by which the light reflected by the first plane is reflected first, second, respectively. An area on the first plane illuminated with the light from the illumination optical system is an illumination objective area, the illumination objective area is positioned on a predetermined side of an optical axis of the reflecting mirrors, and reflection areas of the first and second reflecting mirrors are positioned on the predetermined side of the optical axis of the reflecting mirrors; and the first and second reflecting mirrors are arranged so that an optical path of the light from the illumination optical system is positioned between the first and second reflecting mirrors.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 26, 2015
    Inventor: Yoshio KAWABE
  • Publication number: 20150085269
    Abstract: The invention relates to a method for locally deforming an optical element for photolithography in accordance with a predefined deformation form comprising: (a) generating at least one laser pulse having at least one laser beam parameter; and (b) directing the at least one laser pulse onto the optical element, wherein the at least one laser beam parameter of the laser pulse is selected to yield the predefined deformation form.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 26, 2015
    Inventors: Vladimir Dmitriev, Uri Stern
  • Patent number: 8988652
    Abstract: A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shu-Hao Chang, Tsiao-Chen Wu, Chia-Hao Hsu, Chia-Chen Chen, Ying-Yu Chen, Tzu-Li Lee, Shang-Chieh Chien, Jeng-Horng Chen, Anthony Yen
  • Patent number: 8988653
    Abstract: The invention relates to a lithographic apparatus arranged to transfer a pattern from a patterning device onto a substrate, wherein apparatus is operable to measure higher-order distortions and/or image plane deviations of the patterning device, apparatus comprising: a device for transmission image detection; and a processor configured and arranged to model higher-order distortions of the patterning device using signals received from the device for transmission image detection; wherein patterning device has a main imaging field, and a perimeter and apparatus is operable to model higher-order distortions using signals resultant from alignment structures comprised in perimeter and/or in the imaging field.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 24, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Marcus Adrianus Van De Kerkhof, Robertus Cornelis Martinus De Kruif
  • Patent number: 8988658
    Abstract: The invention relates to detecting targets located within patterns. The invention operates in the pupil plane by filtering the fourier transform from the surrounding pattern. In particular the method includes performing a fourier transform on reflected radiation data to form fourier transform data; removing portions of the fourier transform data which correspond to the target to form reduced fourier transform data; interpolating the portions of the reduced fourier transform data which were removed, to form product fourier transform data; and subtracting the product fourier transform data from the fourier transform data.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 24, 2015
    Assignee: ASML Netherlands B.V.
    Inventor: Marcus Adrianus Van De Kerkhof
  • Publication number: 20150077731
    Abstract: The present disclosure provides a lithography system comprising a radiation source and an exposure tool including a plurality of exposure columns densely packed in a first direction. Each exposure column includes an exposure area configured to pass the radiation source. The system also includes a wafer carrier configured to secure and move one or more wafers along a second direction that is perpendicular to the first direction, so that the one or more wafers are exposed by the exposure tool to form patterns along the second direction. The one or more wafers are covered with resist layer and aligned in the second direction on the wafer carrier.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Inventors: Burn Jeng Lin, Shy-Jay Lin, Jaw-Jung Shin, Wen-Chuan Wang
  • Patent number: 8982315
    Abstract: An exposure apparatus which includes a plurality of units to be temperature-regulated, and transfers a pattern of a reticle onto a substrate while activating the plurality of units is disclosed. The exposure apparatus comprising a plurality of flow passages which run parallel to each other and through which a fluid to temperature-regulate the plurality of units flows, a bypass line which runs parallel to the plurality of flow passages so as to bypass the plurality of flow passages, and a flow rate controller configured to control a flow rate of fluid flowing through the bypass line, so that a total flow rate of the fluid flowing through the plurality of flow passages and the bypass line becomes a target flow rate.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shintaro Aichi
  • Patent number: 8982325
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 17, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Totzeck, Aksel Goehnermeier, Wolfgang Singer, Helmut Beierl, Heiko Feldmann, Hans-Juergen Mann, Jochen Hetzler
  • Patent number: 8982322
    Abstract: An exposure apparatus provided with an optical system that has one optical element to which at least two of three or more exposure lights are guided, and that is capable of irradiating three or more exposure lights onto exposure fields that respectively correspond to the exposure lights, with the exposure apparatus multiply exposing a predetermined field on a substrate with images of a plurality of patterns that are formed based on the three or more exposure lights that are respectively irradiated onto the three or more exposure fields.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: March 17, 2015
    Assignee: Nikon Corporation
    Inventor: Hiroyuki Nagasaka
  • Patent number: 8982316
    Abstract: A lithographic projection apparatus is disclosed that comprises a substrate table, a projection system, a liquid confinement structure and a thermal measurement system. The substrate table is configured to support a substrate. The projection system is configured to direct a patterned beam of radiation on to a target portion of the substrate. The liquid confinement structure is configured to at least partly confine an immersion liquid to a space between the projection system and the substrate, the substrate table, or both. The thermal measurement system comprises a thermally sensitive coating. The thermal measurement system is configured to detect the temperature of the immersion liquid in contact with the coating. Also disclosed is a thermal measurement system, a metrology system comprising the thermal measurement system and a dummy wafer for the thermal measurement system.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 17, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Axel Sebastiaan Lexmond, Sjoerd Nicolaas Lambertus Donders, Johannes Henricus Wilhelmus Jacobs, Leonard Ferdinand Gerard Geers
  • Patent number: 8982319
    Abstract: A detector to measure a property of radiation is disclosed. The detector comprises first and second luminescent uniaxial crystals each having an optic axis, the optic axis of the first uniaxial crystal being arranged such that it is substantially perpendicular to the optic axis of the second uniaxial crystal.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: March 17, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Roland Pieter Stolk, Paul Van Der Veen