With Color Transmitting Filter Patents (Class 356/414)
  • Patent number: 11899030
    Abstract: A plate changer includes a casing that stores a sample plate and one or a plurality of first rack plates that each support the sample plate. One or a plurality of plate supporters that respectively support the one or plurality of first rack plates at different heights are provided in the casing. Each first rack plate is configured to be supportable on and removable from any of the one or plurality of plate supporters. The plate changer further includes a detector that detects whether the first rack plate is supported on each plate supporter.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 13, 2024
    Assignee: SHIMADZU CORPORATION
    Inventors: Kodai Imaeda, Takuya Sawada
  • Patent number: 11826545
    Abstract: The present invention relates to an optical blood detector system that rapidly detects the presence of blood due to a blood leak in a system. The blood detector system contains a reusable blood sensor that is able to accurately detect the presence of blood in, for example, an extracorporeal blood treatment system by optically sensing light from a sensing region and determining if the light came from a leaked blood. The blood sensor may be responsive to reflected light or light emitted from blood due to bio-fluorescence excited by a light source in the blood detector system. The blood detector system can be placed against absorbent material adjacent to an intravenous needle injection site and quickly detect any blood wicked into the absorbent material. The blood detector system can eliminate the need for medical personnel to continuously inspect numerous patients visually for potentially fatal blood leaks due to needle dislodgement.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 28, 2023
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Philip Scott James
  • Patent number: 11828707
    Abstract: Methods and apparatus for measuring light intensity are disclosed. The methods and apparatus can be used to verify an article, such as a reaction chamber. Exemplary apparatus include a first arm, a light source coupled to the first arm, a second arm, and a sensor coupled to the second arm. The sensor can receive light from the light source that is transmitted through at least a portion of the article.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 28, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Shiva K. T. Rajavelu Muralidhar, Youness Alvandi-Tabrizi, John DiSanto, Sam Kim
  • Patent number: 11771851
    Abstract: The invention provides a method of testing an inhaler based on performing an optical analysis of a dry powder medicament plume discharged from the inhaler upon actuation. More particularly, embodiments of the invention comprise illuminating the dry powder plume with a source of electromagnetic radiation and capturing one or more images of a pattern of radiation reflected or diffracted by the illuminated plume. The images are subsequently processed to determine and/or analyse one or more geometric and/or dynamic characteristics of the plume.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: October 3, 2023
    Assignee: NORTON (WATERFORD) LIMITED
    Inventors: Denis Henry O'Sullivan, Daniel R Buck
  • Patent number: 11614238
    Abstract: An electric composite heat oven provided with a sight window of a transparent planar heating element is provided. Since the electric composite heat oven has a structure in which a heater heating element is installed, being lower than the upper end of a cooking container, on the front and rear sidewalls of a cooking chamber of an enclosure and a transparent planar heating element is installed over an opening of the cooking chamber of the enclosure, radiant heat may actively control various disturbances that occur during cooking depending on a place where the oven is installed and a change in temperature, whereby there is an effect of providing the optimum heat power depending on a cooking material and also shortening cooking time.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: March 28, 2023
    Inventor: Ik-No Lee
  • Patent number: 11585800
    Abstract: This device and method can be used for monitoring and control of the milk quality, monitoring and control of the health of dairy animal and herd management and decision-making. The device for milk analysis is composed of tanks for water and reagent, a milk probe, a unit for analysis and management and a unit for transfer and monitoring with software applications. The samples are mixed in a mixing flask, previously subjected to an ultrasonic and temperature measurement as well as a measurement of conductivity. The movement of the fluid through the system is performed by peristaltic pumps. The actual measurement takes place at the outflow of the measured sample in one of two funnels with elongated ends with integrated capillary of the ends of each. To the funnels are mounted a pair of motion sensors.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: February 21, 2023
    Assignee: BULTEH—2000 LTD
    Inventors: Wouter Vandevelde, Todor Tonchev Todorov, Milena Ivanova Ivanova, Teodora Teneva Urumova, Stoyan Genchev Zagorov, Georgi Dimitrov Ivanov
  • Patent number: 11207715
    Abstract: Techniques herein pertain to apparatus embodiments and methods for treating the surface of a microelectronic substrate, and in particular for removing objects from the microelectronic substrate using fluid treatment sprays such as cryogenic fluid sprays. The apparatus embodiments and methods described herein further include techniques for monitoring and/or controlling treatment processes for removing particles from surfaces of a microelectronic substrate. The techniques allow using image analysis techniques to monitor characteristics of spray nozzle(s) (e.g., frost formation on the nozzle surface) and using the resultant image information of the nozzle to take corrective action if frost or another nozzle condition is detected.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 28, 2021
    Assignee: TEL MANUFACTURING AND ENGINEERING OF AMERICA, INC.
    Inventors: Jeffery W. Butterbaugh, Christina Ann Rathman, Alan Dee Rose
  • Patent number: 11112420
    Abstract: A device for separating a reagent from a reactor includes a collecting means, provided with a liquid receiving port and a solid receiving port, a holding component disposed above the collecting means and used for placing the reactor, and a rotating mechanism for driving the holding component to rotate. The liquid receiving port and the solid receiving port are arranged at different positions in the circumferential direction of rotation of the holding component, when the holding component passes over the liquid receiving port, reagent in the reactor falls into the liquid receiving port, when the rotating mechanism continues rotating in the original direction until the holding component passes over the solid receiving port, the reactor falls into the solid receiving port from the holding component.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 7, 2021
    Assignee: SHENZHEN YHLO BIOTECH CO., LTD.
    Inventors: Kunhui Hu, Yujin Xiao, Fuxing Zhang, Benqing Wu, Yongbo Song
  • Patent number: 11054577
    Abstract: The present application is applicable to the fiber optics field and provides a hybrid fiber coupler including a lead-in single mode fiber, a coreless fiber, a hollow glass tube and a lead-out single mode fiber fusion-spliced sequentially. Both the lead-in single mode fiber and the lead-out single mode fiber include cores and claddings. Cores of the lead-in single mode fiber and the lead-out single mode fiber are not in the same horizontal direction. A curved waveguide is inscribed inside the coreless fiber and the hollow glass tube and cores of the lead-in single mode fiber and the lead-out single mode fiber are connected with said curved waveguide. The hollow glass tube has a micro-channel at either end thereof, and the two micro-channels form a microfluidic channel with the center of the hollow glass tube for allowing the analytical liquid to access the hollow glass tube.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 6, 2021
    Assignee: SHENZHEN UNIVERSITY
    Inventors: Changrui Liao, Yiping Wang, Chupao Lin, Yunfang Zhang
  • Patent number: 10626359
    Abstract: A method and apparatus are disclosed for the collection of light scattered from a liquid sample contained within a multiwell plate for which evaporation from the wells is mitigated by the application of a barrier between the liquid sample and the environment. A vertical thermal gradient is applied across the vessel so that condensation is inhibited from forming on the interior surface of the barrier, thus permitting clear illumination of the sample for visual imaging, fluorescence studies and light scattering detection.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: April 21, 2020
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventors: Steven P. Trainoff, Shiva Ramini
  • Patent number: 10591500
    Abstract: A sample analyzer includes: a reagent container holder including a reagent container holder body configured to hold a reagent container, and a tilt changing part configured to change a tilt of the reagent container holder body; a reagent dispenser configured to aspirate a reagent contained in the reagent container held in the reagent container holder body; a detector configured to detect a signal for analysis from a measurement specimen containing a sample and the reagent dispensed by the reagent dispenser; and a controller that analyzes the sample on the basis of the signal detected by the detector.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 17, 2020
    Assignee: SYSMEX CORPORATION
    Inventors: Takuya Fujii, Hironori Katsumi, Akio Toyoda
  • Patent number: 10260033
    Abstract: A method and apparatus are disclosed for the collection of light scattered from a liquid sample contained within a multiwell plate for which evaporation from the wells is mitigated by the application of a barrier between the liquid sample and the environment. A vertical thermal gradient is applied across the vessel so that condensation is inhibited from forming on the interior surface of the barrier, thus permitting clear illumination of the sample for visual imaging, fluorescence studies and light scattering detection.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: April 16, 2019
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventors: Steven P. Trainoff, Shiva Ramini
  • Patent number: 10145178
    Abstract: A method and apparatus for determining the effectiveness of bearing seals in a roller cone drill bit. The bit includes a sensor in optical communication with the bearing lubricant. The sensor includes a light source, an optical filter, and an optical detector arranged so that light interacts with the lubricant, is filtered, and detected, wherein the detected light is indicative of the amount of contaminant within the lubricant. The optical filter is preferably an integrated computing element that filters preselected orthogonal components from the light.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 4, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Shilin Chen, Micheal Burl Crawford
  • Patent number: 9976192
    Abstract: The invention provides methods and devices for generating optical pulses in one or more waveguides using a spatially scanning light source. A detection system, methods of use thereof and kits for detecting a biologically active analyte molecule are also provided. The system includes a scanning light source, a substrate comprising a plurality of waveguides and a plurality of optical sensing sites in optical communication with one or more waveguide of the substrate, a detector that is coupled to and in optical communication with the substrate, and means for spatially translating a light beam emitted from said scanning light source such that the light beam is coupled to and in optical communication with the waveguides of the substrate at some point along its scanning path. The use of a scanning light source allows the coupling of light into the waveguides of the substrate in a simple and cost-effective manner.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: May 22, 2018
    Assignee: LDIP, LLC
    Inventors: Reuven Duer, Yun-Pei Chang, Ashutosh Shastry
  • Patent number: 9782175
    Abstract: A surgical evaluation and guidance system for use in extravacular evaluation and guidance of fluid vessel surgeries, includes an optical coherence tomography engine; a vessel probe optically coupled to the optical coherence tomography engine; and a signal processing and display system adapted to communicate with the optical coherence tomography engine to receive imaging signals therefrom. An optical coherence tomography vessel probe for use in extravacular evaluation and guidance of fluid vessel surgeries, includes a probe body having a proximal end and a distal end; an optical relay system disposed within the probe body; and a vessel adapter at least one of attached to or integral with the probe body at the distal end of the probe body, wherein the vessel adapter defines a groove that is configured to accept one of a fluid vessel and a lymphaticovenous vessel.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 10, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jin U. Kang, Yong Huang, Gerald Brandacher, Zuhaib Ibrahim
  • Patent number: 9702862
    Abstract: A method for measuring fuel contamination in oil that uses a material in contact with oil whereby fuel intrusion into the oil will change the electrical, mechanical, and/or chemical properties of the material as compared to the same electrical, mechanical, and/or chemical properties of the material when in contact only with mineral or synthetic oil only.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: July 11, 2017
    Assignee: Voelker Sensors, Inc.
    Inventor: Joe D. Hedges
  • Patent number: 9702815
    Abstract: A sampling device including a Near-Infrared Spectroscopy (NIRS) fiber optic probe and methods of using the device are provided. The sampling device performs both NIRS data collection and physical sample collection. The sampling device operates by inserting the device into a powder or blend to be sampled, collecting a sample within the sample chamber in the device, and performing NIRS analysis of the sample within the sample chamber.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: July 11, 2017
    Assignee: BOEHRINGER INGELHEIM ROXANE, INC.
    Inventors: Atish Dalal, Daniel Hill
  • Patent number: 9664702
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: May 30, 2017
    Assignee: Theranos, Inc.
    Inventors: Elizabeth Holmes, Joy Roy
  • Patent number: 9504120
    Abstract: A system includes a plurality of light-emitting devices electrically coupled together. A temperature of each of the light-emitting devices is correlated with a voltage of said light-emitting device. The system includes a current driver configured to control an amount of current through at least a subset of the light-emitting devices. The system includes electronic circuitry that is electrically coupled to the subset of the light-emitting devices. The electronic circuitry is configured to: measure a voltage of the subset of the light-emitting devices while the light-emitting devices are in operation; determine, based on the measured voltage, whether the subset of the light-emitting devices is hotter than an acceptable temperature threshold; and instruct the current driver to reduce the amount of current through the subset of the light-emitting devices if the subset of the light-emitting devices has been determined to be hotter than the acceptable temperature threshold.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: November 22, 2016
    Assignee: EPISTAR CORPORATION
    Inventor: Wei-Yu Yeh
  • Patent number: 9296019
    Abstract: The invention concerns a method for discerning and sorting suitable products in a product flow having a certain concentration of a component versus anomalous products having this component in an anomalous concentration, whereby a beam of light strikes these products, and the absorption of this beam of light by said component in the products is detected by measuring the intensity of the light reflected by the products at least at a wavelength or in at least a wavelength band which is situated between 900 nm and 2500 nm in order to generate a detection signal on the basis of said absorption, whereby a product will be identified as an anomalous product if said detection signal exceeds a threshold value.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 29, 2016
    Assignee: TOMRA SORTING NV
    Inventors: Paul Berghmans, Christiaan Fivez, Johan Speybrouck
  • Patent number: 9075228
    Abstract: A filter wheel assembly includes a filter wheel and an optical assembly. The filter wheel includes a plurality of viewing openings. The optical assembly includes an optical element secured within an aperture of a housing. The optical assembly is securable to the filter wheel at a viewing opening by a magnetic force. An optical apparatus includes an optical assembly receiver and first and second optical assemblies. The first optical assembly is securable to the optical assembly receiver and the second optical assembly is securable to the first optical assembly by a magnetic force to align the optical assembly receiver and the optical assemblies. Methods of aligning apertures of optical assemblies with viewing openings of a filter wheel or an optical assembly receiver and securing the optical assemblies to the filter wheel or the optical assembly receiver using a magnetic force.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: July 7, 2015
    Assignee: CELLOMICS, INC.
    Inventors: Dirk John Vandenberg, III, Keith R. Heffley
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8709356
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 29, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8697008
    Abstract: A method and device for periodically perturbing the flow field within a microfluidic device to provide regular droplet formation at high speed.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Eastman Kodak Company
    Inventors: Andrew Clarke, Nicholas J. Dartnell, Christopher B. Rider
  • Patent number: 8603772
    Abstract: This invention provides a novel methods and devices for measurement of particle concentration or changes in particle concentration over a wide linear range. The invention comprises one or more radiation sources and one or more detectors contained in a housing which is interfaced to a medium containing particulate matter. The one or more radiation sources are directed into the medium, scattered or transmitted by the particulate matter, and then some portion of the radiation is detected by the one or more detectors. Methods for confining the measurement to a specific volume within the medium are described. Algorithms are provided for combining the signals generated by multiple source-detector pairs in a manner that results in a wide linear range of response to changes in particle concentration. In one embodiment the sensor provides non-invasive measurements of biomass in a bioreactor. In another embodiment an immersible probe design is described, which may be suited for one-time use.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: December 10, 2013
    Assignee: Bug Lab LLC
    Inventors: Martin P. Debreczeny, Jaime Romero, Ethan Petersen
  • Patent number: 8062900
    Abstract: A microplate for use within an interrogation system and a method of using the microplate are disclosed. The microplate contains within the bottom of each well, an optical waveguide grating based sensor. Approximate to each sensor is a mask having an aperture of predetermined size. The aperture regulates the light that enters and exits the sensor upon successive scans and ensures repeatable readings from the sensor. In an extended embodiment, a method of detection is disclosed that utilizes a launch and receive system while employing the aforementioned microplate.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventor: Robert A. Modavis
  • Patent number: 8064061
    Abstract: A sample analyzer is disclosed that comprising: a light source section for emitting light; a first optical information acquiring section for illuminating a sample with the light emitted by the light source section, and for acquiring first optical information; and a second optical information acquiring section for illuminating a measurement specimen, to be prepared by adding a reagent to the sample, with the light emitted by the light source section, and for and acquiring second optical information. A sample analyzing method, intended for use in an automated sample analyzer, is also described.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 22, 2011
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Naohiko Matsuo, Takashi Yamato
  • Patent number: 7817277
    Abstract: A fiber-optic probe includes first and second optical fibers disposed in a body, a liquid sampling region between ends of the fibers and a reflector, and apertures communicating with the sampling region. The probe may be inserted in media in a vessel. Optical signals are transmitted through the first fiber, the sampling region and second fiber. The sampling region is offset from other parts of the probe so that bubbles or particulates flow out from the sampling region without being obstructed by the probe.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 19, 2010
    Assignee: Varian, Inc.
    Inventors: George Bryan Crist, C. J. Anthony Fernando
  • Patent number: 7733488
    Abstract: An optical reader having an array of differing-color light sources and a controller for controlling the light sources and acquisition of optical data. The light sources are arranged, and the controller is configured, to allow rapid acquisition of optical data regarding individual sample wells of a cluster of such wells. In some embodiments, multiple ones of the differing-color light sources are illuminated simultaneously for acquiring optical data on a corresponding number of sample wells. Depending on the configuration of the array and number of differing-color light sources illuminated simultaneously, the optical reader can acquire optical data for several wavelengths in a fraction of the time of conventional optical readers. Other embodiments include one or more non-contact temperature sensors for acquiring temperature data substantially simultaneously with the optical data.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 8, 2010
    Assignee: Revolution Optics, LLC
    Inventor: Lyle C. Johnson
  • Patent number: 7561271
    Abstract: A low cost calorimeter wherein a linear taper potentiometer proportions the current through sample and reference solid state light sources in a near logarithmic fashion. The position of the potentiometer slider is proportional to the absorbance of the solution in the sample path when the light intensity of the two paths is balanced. The light intensity may be balanced visually or with a simple electronic comparator.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: July 14, 2009
    Inventor: James E. Davis
  • Patent number: 7468796
    Abstract: An absorption detection system is provided. The system includes a plurality of monochromatic light sources and a separator for separating the light from the plurality of monochromatic light sources into a plurality of wavelengths. A plurality of detectors, receives light of a single wavelength to measure absorption of light in a biological sample.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: December 23, 2008
    Assignee: CompuCyte Corporation
    Inventors: Edgar A. Luther, Bruce Miller
  • Patent number: 7423751
    Abstract: The invention provides systems and methods for detecting aerosols. The systems and methods can be used to detect harmful aerosols, such as, bio-aerosols.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: September 9, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Peter P. Hairston, Carl B. Freidhoff
  • Patent number: 7414724
    Abstract: An apparatus for photometrically testing several specimens each irradiated by a light source, the light altered by the specimens being detected by an optical device and analyzed, the apparatus including a light source, a plurality of sample holders configured adjacent to one another on a support, a detector that receives altered light from sample within the sample holders, the detector including a filter for eliminating interfering light, a sensor having a sensor face and a diffusing optical member located between the filter and the sensor, wherein light is diffused and shines on a greater portion of the sensor surface, and with a more homogeneous brightness as compared to when the light is not diffused.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 19, 2008
    Assignee: Eppendorf AG
    Inventors: Gerd Eckert, Lutz Timmann, Markus Lapczyna, Arne Schafrinski
  • Patent number: 7321428
    Abstract: A process photometer which includes an insulated and a non-insulated compartment. The insulated compartment is maintained at a relatively constant, elevated temperature. The radiation source, a rotatable filter wheel, a radiation detector, and a means for converting analog output to a digital signal are among the components within the insulated compartment. The non-insulated compartment houses a power supply.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: January 22, 2008
    Assignee: Bayer MaterialScience LLC
    Inventors: Robert N. Hunt, Atul Khettry, Matthew R. Vila
  • Publication number: 20070229830
    Abstract: A sample analyzer is disclosed that comprising: a light source section for emitting light; a first optical information acquiring section for illuminating a sample with the light emitted by the light source section, and for acquiring first optical information; and a second optical information acquiring section for illuminating a measurement specimen, to be prepared by adding a reagent to the sample, with the light emitted by the light source section, and for and acquiring second optical information. A sample analyzing method, intended for use in an automated sample analyzer, is also described.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 4, 2007
    Applicant: SYSMEX CORPORATION
    Inventors: Norimasa Yamamoto, Naohiko Matsuo, Takashi Yamato
  • Patent number: 7277175
    Abstract: A system for measuring properties of small volume liquid samples, where the system includes wavelength selective filters.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: October 2, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Judith A. Thompson, John C. Kralik
  • Patent number: 7251032
    Abstract: An optical monitoring system for determining the constituents of a sample or specimen. An absorption spectrum is obtained from a sample and is passed through one or more filters having a specified absorption spectrum defined by a single atom or a compound. If the filter's absorption spectrum is included in the sample's absorption spectrum, then the sample contains that atom or compound. The apparatus includes a switching assembly that sequentially places one or more filters into the light path to determine if the subject atom or compound is contained in the sample.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: July 31, 2007
    Assignees: Neptec Optical Solutions, Inc., The University of Kentucky Research Foundation
    Inventors: Robert A. Lodder, John Carberry
  • Patent number: 6785400
    Abstract: A spray data acquisition system includes a pumping device responsive to an applied force to generate an aerosol spray plume along a spray axis. The system further includes a spray pump actuator that is capable of controlling the pumping force and the duration of the aerosol spray plume produced by the pumping device. The system also includes an illumination device that illuminates the aerosol spray plume along at least one first geometric plane that intersects the aerosol spray plume. The system further includes an imaging device that acquires data representative of an interaction between the illumination and the aerosol spray plume along at least one geometric plane.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: August 31, 2004
    Assignee: Image Therm Engineering, Inc.
    Inventor: Dino J. Farina
  • Patent number: 6561010
    Abstract: The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: May 13, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Bary W. Wilson, Timothy J. Peters, Chester L. Shepard, James H. Reeves
  • Publication number: 20030053064
    Abstract: There are disclosed a wavelength detector capable of accurately detecting the wavelength of an entered light beam by a simple configuration without needing any highly accurate fine-adjustments, and an optical transmitter equipped with the wavelength detector.
    Type: Application
    Filed: March 15, 2002
    Publication date: March 20, 2003
    Inventors: Yasunori Nishimura, Shinichi Takagi, Masao Imaki, Yoshihito Hirano
  • Patent number: 6372184
    Abstract: A system for detecting chemical warfare agents is disclosed. The system uses a detector paper that stains upon contact with liquid chemical agent droplets and spectrophotometry technology, in cooperation with a spectral filter wheel, and a processor, to analyze the stain and determine if the stain is created by a chemical warfare agent.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: April 16, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Diane M. LaMoy, Michael A. Pompeii, Gregory P. Johnson, Jonathan A. Byrne, H. Stuart Brooks, Marc R. Carlson, Michael T. Duckett
  • Patent number: 6313917
    Abstract: A produce data collector with minimal spectral distortion. The produce data collector includes a light pipe having entrance and exit ends through which a portion of light reflected from a produce item travels, and a spectrometer adjacent the exit end of the light pipe which splits the portion of light into a plurality of wavelengths and which produces signals associated with the wavelengths for identifying the produce item.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: November 6, 2001
    Assignee: NCR Corporation
    Inventors: Hong Tang, Yeming Gu
  • Patent number: 5949549
    Abstract: A colorimeter for measuring colour of process medium comprising two light sources and two detectors both light sources being arranged to emit a beam through the process medium and the windows adjoining the process medium to both detectors. In order to achieve a solution functioning reliably the windows adjoining the process medium at both light sources are formed from a triangular prism, the two surfaces of which being at an angle to each other, are arranged to divide the beam arriving from the light source into two beams travelling in different directions so that both beams proceed to the process medium through the same part of the window surface formed by a third surface of the prism. Mirror surfaces arranged to gather radiation arriving form both light sources to a sensor of the detector are formed at both detectors.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: September 7, 1999
    Assignee: Janesko Oy
    Inventor: Ville Voipio
  • Patent number: 5825478
    Abstract: A photometer for measuring electromagnetic radiation absorption of a sample utilizing a source of the electromagnetic radiation. Electromagnetic radiation is conducted from the source, to a sample sensor or sensors, and is passed through or scattered from, the sample utilizing a sample cell. The electromagnetic radiation is then directed to a detection system which determines absorbance of electromagnetic radiation by the sample at the sample cell. The detection system includes a beam splitter which receives the electromagnetic radiation and outputs first and second beams. A first detector having a first wavelength filter and a second detector having a second wavelength filter receives the two beams from the splitters. One detector may be employed to produce a reference signal. The remaining detector or detectors produce an output signal which is a representation of a characteristic, such as absorbance of the sample.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: October 20, 1998
    Inventors: Steven Wilcox, Don S. Goldman
  • Patent number: 5822071
    Abstract: A system for normalizing measurements obtained from spectrometers to correct for measurement biases in individual spectrometers. The normalization system is adapted for use in spectrometers having an optical assembly for obtaining characteristic data from a test sample. A normalization factor is obtained in each spectrometer by placing a holographic dispersion filter between the light source and detector in the position normally occupied by the test sample, the filter having been encoded with a symbol representing a nominal value of light expected to pass through the filter. The spectrometer determines the value of light passing through the filter and calculates a normalization factor based on the ratio between the nominal value of the filter and the actual value obtained by the spectrometer. The normalization factor is stored in system memory and the filter removed so that the spectrometer may thereafter be used to evaluate a plurality of test samples.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: October 13, 1998
    Assignee: Bayer Corporation
    Inventors: Andrew J. Dosmann, Christine D. Nelson
  • Patent number: 5818575
    Abstract: Two detectors are effectively positioned at a predetermined lateral position in a rectangular illumination field at a wafer plane. The ratio of the signals from the two detectors is calculated. This ratio is indicative of the quality of the illumination field and any lamp instability which may effect the illumination field, and therefore image quality. In a photolithographic device, a short arc mercury xenon lamp provides illumination for projecting the image of a reticle onto a photosensitive resist covered substrate or wafer. The desired illumination intensity profile is sensitive to lamp instability. This instability may alter the desired illumination intensity profile which may adversely effect image quality, and therefore the resulting product. The ratio of the signals received from predetermined locations laterally along the illumination intensity profile improves the detection of unstable lamps.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: October 6, 1998
    Assignee: SVG Lithography Systems, Inc.
    Inventor: Michael A. Creighton
  • Patent number: 5754298
    Abstract: A radiant energy point source (10) generates radiant energy, and a mechanism (12, 15, 16) focuses the radiant energy generated by the point source onto a target (18) and scans the target with the focused radiant energy. A collector (16, 14) collects the focused radiant energy that is scattered from the target and a splitter (22) splits the collected radiant energy into two paths. Each of the two paths of the collected radiant energy is focused onto separate focal spots by a focusing mechanism (24). A pair of spatial filters (26, 28) filter the collected radiant energy at the focal spots. The spatial filters are offset from each other along the path of the focused radiant energy. Detectors (30, 32) separately detect the focused radiant energy which passes through each of the spatial filters and produce signals proportional to the quantity of detected focused radiant energy present.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: May 19, 1998
    Assignee: OptoMetrix, Inc.
    Inventor: Robert Aaron Falk
  • Patent number: 5739916
    Abstract: An instrument and a method are provided for determining the concentration of at least one species in a substance. The instrument and method can be used to identify and distinguish among various degrees of contamination of motor oil, diesel fuel, and hydraulic fluid by water, ethylene glycol, wear particles, and loss of anti-oxidants. The instrument includes a broad band light source, such as a tungsten filament incandescent lamp, which is very inexpensive and reliable. A fiber optic link is provided to a detector that receives and discriminates among optical spectral transmissions through the fiber optic. Discrimination circuitry is provided for evaluating the transmission and providing a readout that indicates the quality of the fluid. The instrument is suitable for in situ determination of oil quality.
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: April 14, 1998
    Assignee: University of Alabama at Huntsville
    Inventor: Darell E. Englehaupt
  • Patent number: 5694206
    Abstract: A spectrophotometric system uses an immersible spectrophotometric probe that can be directly interfaced to a pH/ISE meter for calibration and read-out. The probe contains a light source, a photodetector, and interface circuitry for converting the signal from the photodetector to an output voltage within a predetermined range suitable for the pH/ISE meter (e.g., 0-1.8 volts). The probe housing can also include a sample chamber to provide a predefined optical path from the light source through a portion of the sample fluid to the photodetector. An optical filter can be included in the optical path to allow measurements within a selected wavelength range. The pH/ISE meter receives the output voltage from the probe, applies a calibration function, and displays the resulting value. In the preferred embodiment, the probe is designed as a unitary structure that is plug-compatible with most conventional pH/ISE meters.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: December 2, 1997
    Assignee: Analytical Spectral Devices, Inc.
    Inventor: Brian Curtiss
  • Patent number: 5680220
    Abstract: A first embodiment of the invention includes a light source (1) lighting two parallel optical branches (b1, b2) controlled respectively by two optical shutters (4, 6), one comprising a transparent cell (3) containing a substance to be studied, and the other being used to divert the light from the source. The light coming successively from one and from the other branch is applied selectively to three color filters (F1-F3) filtering three wavelengths selected according to the substance to be studied. The successive luminous intensities which have crossed each of the filters are measured through three detectors (D1 to D3) and the measurings are combined by means of a control (0). Analogous measuring sequences may be achieved with an embodiment comprising three light sources and a single detector. The device can be used for determination of the pH value of a substance.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: October 21, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Robert Delignieres, Christian Durand