Imaging Patents (Class 356/456)
  • Patent number: 9234799
    Abstract: The invention relates according to a first aspect to an interferometric inversion method for measuring a characteristic variable of a radiation source and/or of a medium through which the radiation passes between the source and an interferometer, the interferometer being capable of generating an interferogram of the radiation by creating a finite number of optical step differences between two rays that have followed the same path between the source and the interferometer, characterized by the implementation of the steps whereby a quantity characterizing an improvement in the inversion is determined, step differences that contribute mainly to optimizing the quantity characterizing an improvement in the inversion are selected without sampling regularity constraints, and a free interferogram is generated using only the selected step differences. According to a second aspect, the invention provides an interferometer for implementing the method according to the first aspect of the invention.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: January 12, 2016
    Assignee: CENTRE NATIONAL D'ETUDES SPATIALES
    Inventors: Alain Rosak, Clémence Pierangelo
  • Patent number: 9229126
    Abstract: A spatial heterodyne spectrometer may employ an integrated computational element (ICE) to obtain a measure of one or more fluid properties without requiring any moving parts, making it particularly suitable for use in a downhole environment. One illustrative method embodiment includes: directing light from a light source to illuminate a sample; transforming light from the sample into spatial fringe patterns using a dispersive two-beam interferometer; adjusting a spectral weighting of the spatial fringe patterns using an integrated computation element (ICE); focusing spectral-weight-adjusted spatial fringe patterns into combined fringe intensities; detecting the combined fringe intensities; and deriving at least one property of the sample.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 5, 2016
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventor: David L. Perkins
  • Patent number: 9200961
    Abstract: The present subject matter is directed to a device for spectroscopy. The device includes an excitation source and a first spatial heterodyne spectrometer configured to receive wavelengths from the excitation source and filter the wavelengths to produce fringes on a sample. The device also includes a second heterodyne spectrometer configured to receive Raman wavelengths from the sample.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: December 1, 2015
    Assignee: University of South Carolina
    Inventors: Stanley Michael Angel, Jerry Chance Carter
  • Patent number: 9147228
    Abstract: A system for processing a multiband image, including digital computer memory for storing a multiband image having multiple bands of image data; and processing circuitry for processing the multiband image, wherein the processing circuitry (a) determines pixel locations in the bands of the multiband image having values above the band-specific white value threshold for each of the bands of the multiband image, (b) determines a band-specific correction factor for each of plural bands of the multiband image based on the determined pixel locations, and (c) applies the corresponding band-specific correction factor to the respective plural bands of the multiband image to produce a corrected image.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: September 29, 2015
    Assignee: Exelis Inc.
    Inventors: Sharon Lunt, Michael Vaughn, Stacey Casella
  • Patent number: 9140605
    Abstract: An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: September 22, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Ian S. Robinson, John D. Bloomer
  • Patent number: 9134175
    Abstract: A spectrometry device includes a wavelength-tunable interference filter that is provided with a stationary reflection film, a movable reflection film and an electrostatic actuator which changes a gap dimension between the stationary reflection film and the movable reflection film; a detector that receives incident light; a filter control unit that sets the gap dimension between the stationary reflection film and the movable reflection film to be a first dimension corresponding to light having a first wavelength which is smaller than that of a measurement target wavelength region; a cutoff filter that cuts off the light having a wavelength which is smaller than that of the measurement target wavelength region; and a light quantity acquisition unit that acquires the light quantity of stray light received by the detector when the gap dimension is changed to be the first dimension.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: September 15, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Tomonori Matsushita
  • Patent number: 9103726
    Abstract: The stimulated Raman scattering detection apparatus includes first and second light pulse generators (1, 2) respectively generating first and second light pulses with first and second pulse periods, an optical system combining the first and second light pulses and focusing the combined light pulses onto a sample, and a detector (10) detecting the second light pulses intensity-modulated by stimulated Raman scattering generated by focusing of the combined light pulses onto the sample. The second light pulse generator divides each raw light pulse emitted with the second pulse period into two light pulses, delays one of the two light pulse with respect to the other thereof and combines the one light pulse divided from one raw light pulse and delayed, with the other light pulse divided from another raw light pulse emitted after the one raw light pulse, to generate the second light pulse.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: August 11, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yasuyuki Ozeki, Kazuyoshi Itoh, Keisuke Nose
  • Patent number: 9068928
    Abstract: Snapshot imaging polarimeters comprise Sagnac interferometers that include diffraction gratings situated to produce shear between counter-propagating optical fluxes produced by a polarizing beam splitter. The counter-propagating, sheared optical fluxes are focused onto a focal plane array to produce fringe patterns. The fringe patterns correspond to a scene polarization distribution modulated onto a spatial carrier frequency associated with a diffraction order. Multi-blazed gratings can be used so that modulations at a plurality of spatial frequencies are produced, with each spatial frequency corresponding to a spectral component of an input optical flux. Modulated fringe patterns can be demodulated to obtain scene Stokes parameter distributions.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 30, 2015
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Michael W. Kudenov
  • Patent number: 9046422
    Abstract: Snapshot imaging Fourier transform spectrometers include a lens array that produces sub-images that are directed through a birefringent interferometer in orthogonal polarization eigenstates that acquire an optical path difference. Interference patterns based on this OPD can be Fourier transformed to obtain a spectral image. In some examples, polarizing gratings provide a spatial heterodyne frequency and offset the spectra.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 2, 2015
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Michael W. Kudenov
  • Patent number: 9042414
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 26, 2015
    Assignee: Spectral Sciences, Inc.
    Inventors: Pajo Vukovic-Cvijin, Neil Goldstein
  • Publication number: 20150124259
    Abstract: Systems and methods for imaging small (˜1 mm thick) living biological specimen is provided to enable the generation of functional 3D images of living tissue for evaluating the effect of an external perturbation on the health of the specimen. A fluctuation power spectrum is constructed for each pixel of a holographic 3D image of the specimen over time and subject to the external perturbation. A normalized spectrum of dynamic intensity as a function of frequency is generated for each pixel. The normalized spectra for each pixel is filtered according to a selected frequency range from among characteristic frequencies corresponding to dynamic activity of naturally occurring biological events within the specimen to provide data corresponding only to the dynamic activity associated with the selected frequency range.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 7, 2015
    Inventors: Ran An, David D. Nolte, John J. Turek
  • Publication number: 20150062586
    Abstract: A system for performing optical spectroscopy measurements includes a light source for generating an input optical beam and an interferometer. The interferometer includes a beam splitter that splits the input optical beam into first and second light beams; a first light path that directs the first light beam through a sample containing an analyte to a first output port; and a second light path that directs the second light beam to the first output port. At least one of the first and second light paths adjusts a relative phase of a corresponding one of the first and second light beams, so that the first and second light beams are out of phase at the first output port, substantially canceling background light and outputting sample light corresponding to a portion of the first light signal absorbed by the sample in the sample cell. A detection system detects the output sample light.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Miao Zhu, Adam Kleczewski, Robert C. Taber
  • Patent number: 8964187
    Abstract: A micro-machined optical measuring device including: a set of photosensitive detector elements situated on a given face of a first support; a second support, assembled to the first support, forming a prism and including a first face through which a visible radiation is intended to penetrate and a second face, forming a non-zero angle ? with the first face and a non-zero angle ? with the given face of the first support, the second face being semi-reflective, the first support and the second support being positioned such that an interferometric cavity is made between the second face and the given face, the distance between the given face of the first support and the second face of the second support varying regularly.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: February 24, 2015
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Manuel Fendler, Gilles Lafargues, Nicolas Guerineau, Sylvain Rommeluere, Florence De La Barriere
  • Publication number: 20150043001
    Abstract: The present invention causes measurement light, emitted from an object and to be measured, to enter a fixed mirror and a movable mirror forming interfering light between the measurement light reflected by the fixed mirror and measurement light reflected by the movable mirror. Change to the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, acquiring the interferogram of measurement light. Reference light of a narrow wavelength band included in a wavelength band of the measurement light enters the fixed mirror and the movable mirror, forming interference light of the reference light. The movable mirror is moved to correct the interferogram of measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventor: Ichiro Ishimaru
  • Patent number: 8928887
    Abstract: Methods mapping a characteristic parameter of a specimen, such as a scattering mean free path and a scattering anisotropy factor, based on a quantitative phase shift measurement. The methods have steps of using spatial light interference microscopy (SLIM) to determine a quantitative phase shift as a function of position in a sample, and applying a generalized scatter-phase transformation to derive at least one of a scattering mean free path (MFP), a scattering anisotropy factor, and a thickness-independent parameter as a function of position in the sample. In some cases, the sample may be a slice of tissue or a cell.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: January 6, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Gabriel Popescu, Huafeng Ding, Zhuo Wang
  • Patent number: 8922882
    Abstract: Imaging systems are provided allowing examination of different object regions spaced apart in a depth direction by visual microscopy and by optical coherence tomography. An axial field of view and a lateral resolution is varied depending on which object region is examined by the imaging system. The proposed imaging systems are in particular applicable for thorough examination of the human eye.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 30, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Christoph Hauger, Markus Seesselberg, Martin Hacker, Keith O'Hara
  • Publication number: 20140368811
    Abstract: Briefly, embodiments of methods and/or systems for tomographic imaging are disclosed.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 18, 2014
    Inventor: Andrew D. Yablon
  • Patent number: 8913149
    Abstract: Disclosed are systems and methods for synthesizing a high resolution image associated with a large imaging aperture using an optical imaging apparatus having a smaller aperture. In certain implementations, introduction of a coherent homodyne reference beam to a coherent imaging of an object can result in formation of a Fourier space side lobe that includes information about a portion of a spectrum representative of the object's Fourier spectrum. Images can be obtained at a number of different orientations to yield a number of such side lobe images so as to allow construction of the object's spectrum. A synthesized image corresponding to such a constructed spectrum can have an improved resolution that exceeds the performance limit imposed by the aperture of the optical imaging apparatus.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: December 16, 2014
    Assignee: Integrity Applications Incorporated
    Inventor: James A. Georges, III
  • Patent number: 8908186
    Abstract: An apparatus for the absolute measurement of a two dimensional optical path distribution comprising: a light source (4) for illuminating an object (26) with light having a plurality of wavelengths: an interferometer (12) for forming an image of at least part of the object, which image comprises a broad band interferogram; a hyperspectral imager (30) in optical communication with the interferometer for spectrally separating the broad band interferogram into a plurality of narrow band two dimensional interferograms (72, 74, 76); a register (38) for spatially registering the narrow band interferograms; an extractor for extracting one dimensional intensity signals from corresponding pixels in each narrow band interferogram; and a calculator (100) for calculating the frequency for each point on the object from a one dimensional intensity signal associated with that point.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 9, 2014
    Assignee: Loughborough University
    Inventors: Jonathan Mark Huntley, Pablo Daniel Ruiz, Taufiq Widjanarko
  • Publication number: 20140355000
    Abstract: A drive control method of an SD-OCT system which includes a light source including an SLD, which is a superluminescent diode, and a drive control unit that drive-controls the SLD, and a spectroscope including a linear sensor, and performs a spectroscopic process on returned light, which is emitted from the light source and passes through a reference optical system and an irradiation optical system, by using the spectroscope and obtains an optical coherence tomographic image based on spectrum information of light obtained by the spectroscopic process. When the drive control unit generates a drive waveform having three or more current values and periodically changes the drive waveform to one of the current values, the period is set to an integer multiple of a period in which the linear sensor acquires the spectrum information and a spectral shape is controlled to be a shape required by the SD-OCT system.
    Type: Application
    Filed: November 26, 2012
    Publication date: December 4, 2014
    Inventor: Takeshi Uchida
  • Publication number: 20140354999
    Abstract: Techniques for hyperspectral imaging, including a device for hyperspectral imaging including at least one tunable interferometer including a thin layer of material disposed between two or more broadband mirrors. Electrodes placed on either side of the tunable interferometer can be coupled to a voltage control circuit, and upon application of a voltage across the tunable interferometer, the distance between the mirrors can be modulated by physically altering the dimensions of the thin layer of material, which can uniformly load the broadband mirrors. Physically altering the dimensions of the thin layer of material can include one or more of deformation of a soft material, piezostrictrive actuation of a piezostrictrive material, or electrostrictive actuation of an electrostrictive material.
    Type: Application
    Filed: April 15, 2014
    Publication date: December 4, 2014
    Applicant: The Trustees of Columbia University In The City of New York
    Inventors: Dirk R. Englund, Chaitanya Rastogi
  • Patent number: 8902430
    Abstract: An apparatus includes a system configured to split a light emitted from a light source into reference light and subject light, cause the subject light to enter into an object, and combine the subject light reflected by the object with the reference light, a detection unit configured to detect coherent light between the combined subject and reference lights, an element, provided within a light path of the reference light or the subject light, configured to change a path length difference between the reference light and the subject light and a relative position between the reference light and the subject light in a light receiving surface of the detection unit, and a position-variable mechanism configured to cause a position of the optical element to be changeable, wherein, by changing a position of the element, the optical path length difference and the relative position are independently adjusted.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: December 2, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Wataru Yamaguchi, Ryo Sasaki, Takahiro Matsumoto
  • Patent number: 8885163
    Abstract: Various systems and methods for performing optical analysis downhole with an interferogram (a light beam having frequency components with a time variation that identifies those frequency components. The interferogram is produced by introducing an interferometer into the light path, with the two arms of the interferometer having a propagation time difference that varies as a function of time. Before or after the interferometer, the light encounters a material to be analyzed, such as a fluid sample from the formation, a borehole fluid sample, a core sample, or a portion of the borehole wall. The spectral characteristics of the material are imprinted on the light beam and can be readily analyzed by processing electronics that perform a Fourier Transform to obtain the spectrum or that enable a comparison with one or more templates. An interferometer designed to perform well in the hostile environments downhole is expected to enable laboratory-quality measurements.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 11, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Marian L. Morys, Steve Zannoni, Christopher M. Jones
  • Patent number: 8885150
    Abstract: A scatterometer, configured to measure a property of a substrate, includes a radiation source which produces a radiation spot on a target formed on the surface of the substrate, the size of the radiation spot being smaller than the target in one direction along the target, the position of the radiation spot being moved along the surface in a series of discrete steps. A detector detects a spectrum of the radiation beam reflected from the target and produces measurement signals representative of the spectrum corresponding to each position of the radiation spot. A processor processes the measurement signals produced by the detector corresponding to each position of the radiation spot and derives a single value for the property.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: November 11, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Henricus Petrus Maria Pellemans, Arie Jeffrey Den Boef
  • Patent number: 8868158
    Abstract: An optical analyzer performing analysis excellent in spatial resolution and in invasion depth is provided.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takemi Hasegawa
  • Patent number: 8860945
    Abstract: Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: October 14, 2014
    Assignee: Duke University
    Inventors: Adam Wax, John W. Pyhtila
  • Patent number: 8848271
    Abstract: Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: September 30, 2014
    Assignee: Dimensional Photonics, Inc.
    Inventors: Robert F. Dillon, Neil H. K. Judell, Timothy I. Fillion, Gurpreet Singh, Nathan E. Wallace
  • Patent number: 8836762
    Abstract: The invention relates to an optronic system for identifying an object including a photosensitive sensor, communication means and a computerized processing means making it possible to reconstruct the object in three dimensions on the basis of the images captured by the sensor and to identify the object on the basis of the reconstruction. The photosensitive sensor is able to record images of the object representing the intensity levels of an electromagnetic radiation reflected by the surface of the object captured from several observation angles around the object and the communication means are able to transmit the said images to the computerized processing means to reconstruct the object in three dimensions by means of a tomography function configured to process the images of the object representing the intensity levels of an electromagnetic radiation reflected by the surface of the object.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 16, 2014
    Assignee: Thales
    Inventors: Gérard Berginc, Michel Jouffroy
  • Publication number: 20140253924
    Abstract: A spectrometer includes: a wavelength-variable interference filter that can change a wavelength of selected light and disperses light from a measurement target; an imaging unit that receives light components with a plurality of wavelengths which are dispersed by the wavelength-variable interference filter and acquires a plurality of spectral images; a positional deviation amount detection unit that selects a standard image from the plurality of spectral images acquired by the imaging unit and detects a positional deviation amount of a pixel position which receives light from a predetermined position of the measurement target between the standard image and at least one of the spectral images other than the standard image; and a position correction unit that positions the spectral images other than the standard image on the basis of the detected positional deviation amount.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Akira Sano
  • Publication number: 20140233035
    Abstract: An optical system for use in an imaging procedure includes one or more semiconductor diodes configured to generate an input signal beam with a wavelength shorter than 2.5 microns that is amplified and communicated through optical fiber(s) to a nonlinear element configured to broaden the spectral width to at least 50 nm through a nonlinear effect. A subsystem includes lenses or mirrors to deliver an output beam having a broadened spectrum to an Optical Coherence Tomography apparatus with a sample and reference arm to perform imaging for characterizing the sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
    Type: Application
    Filed: November 5, 2013
    Publication date: August 21, 2014
    Applicant: Cheetah Omni, LLC
    Inventor: Mohammed N. ISLAM
  • Patent number: 8804133
    Abstract: A method of imaging at least a part of an object. The method comprises splitting electro-magnetic radiation to first and second portions, propagating the first and second portions, spectrally dispersing the first portion toward the part and the second portion toward a reference element, combining between reflections of the spectrally dispersed first and second portions to produce an interference signal, capturing an image of the part from the interference, and adjusting at least one of a tilt of said image plane and a curvature of the image by changing a deviation between the phase of at least one spectral component of the first portion and the phase of at least one spectral component of the second portion.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: August 12, 2014
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Dvir Yelin, Michal Merman
  • Patent number: 8792102
    Abstract: A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Abhijit Vishwas Patil, Sandip Maity, Veera Venkata Lakshmi Rajesh Langoju, Anusha Rammohan, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20140204386
    Abstract: [Problem] Image artifacts caused by noises in clock signals are suppressed. [Solution] An image measuring method according to an embodiment comprises a clock generating step, a noise reducing step, a data acquisition step, a digital data generating step and an image data generating step. In the clock generating step, clock signals are generated. In the noise reducing step, the noise of the generated clock signals is reduced to a predetermined threshold or lower. In the data acquisition step, analog data indicating the inner morphology of an object is acquired. In the digital data generating step, digital data is generated by sampling the analog data based on the clock signals with reduced noise. In the image data generating step, image data of the object is generated by performing data processing including Fourier transform on the generated digital data.
    Type: Application
    Filed: September 19, 2013
    Publication date: July 24, 2014
    Applicant: KABUSHIKI KAISHA TOPCON
    Inventors: Zhenguo WANG, Zhijia YUAN, Kinpui CHAN
  • Patent number: 8760662
    Abstract: An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: June 24, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Arno Jan Bleeker, Youri Johannes Laurentius Maria Van Dommelen, Mircea Dusa, Antoine Gaston Marie Kiers, Paul Frank Luehrmann, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Cédric Désiré Grouwstra, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 8760664
    Abstract: Provided is an imaging apparatus using Fourier-domain optical coherence tomography, the imaging apparatus removing noises caused by the autocorrelation component of returning light to obtain a high-resolution tomographic image. A first switching unit 17 switches a first state in which returning light 12 is combined with reference light (a state in which the returning light 12 is conducted to a combining unit 22) and a second state different from the first state (a state in which the light path of the returning light 12 is blocked or changed). A controlling unit 18 controls the switching unit 17 to change the first and the second state. A interferometric information acquiring unit 19 acquires interferometric information on the returning light 12 and the reference light 14 using the reference light 14 or the returning light 12 detected by the detecting unit 16 in the second state and the combined light 15.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuhito Suehira
  • Patent number: 8742351
    Abstract: When a system is powered on and becomes ready for a measurement, it automatically begins to acquire an interferogram (IFG). When a new IFG is acquired, if a background (BKG) IFG is present in a memory but there is no sample IFG (S2 and S4), the new IFG is compared with the BKG-IFG and, if the two IFGs are identical, the new IFG is added to the BKG-IFG (S5, S6 and S7). When an operator sets a sample in a sample chamber and the new IFG shows a change, the IFG is stored as a sample IFG (S8). Then, a sample measurement is initiated. After that, when a new IFG is found to be identical to the sample IFG stored in the memory (S9 and S10), the new IFG is added to the sample IFG (S13). The sample measurement is completed when the number of sample IFGs stored in the memory has reached a predetermined accumulation number. Thus, the sample measurement is automatically performed, for which the operator only needs to set a sample.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: June 3, 2014
    Assignee: Shimadzu Corporation
    Inventor: Hisato Fukuda
  • Publication number: 20140139840
    Abstract: Spatial frequency swept interference (SFSI) illumination and imaging methods and devices that interfere two collimated coherent beams to generate an interference pattern of a plurality of illuminating sheets with sweeping spatial frequency.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: California Institute of Technology
    Inventors: Benjamin Judkewitz, Changhuei Yang
  • Publication number: 20140125985
    Abstract: A sensor suite comprising a first electronic imaging element such as an LWIR imager element and a second imaging element such as a visible imager element. The transmitter operates with a plurality of selectable beam-forming optics or a tilt-tip element. The optics for the system may be configured in a Cassegrain-type configuration in cooperation with a plurality of beam-splitting elements to permit different ranges of the received optical input to be provided respectively to the first and second electronic imagers. One or a plurality of laser illuminator analysis spectrometers are provided for the detection and characterizing of incoming laser illumination from an external source which may be in the form of a micro-lamellar spectrometer element.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Inventors: James Justice, Medhat Azzazy, David Ludwig, Ying Hsu
  • Patent number: 8711360
    Abstract: A spectral measurement device includes: an optical band-pass filter section that has first to n-th wavelengths (n is an integer of 2 or more) having a predetermined wavelength width as a spectral band thereof; a correction operation section that corrects a reception signal based on an output optical signal from the optical band-pass filter section; and a signal processing section that executes predetermined signal processing based on the reception signal corrected by the correction operation section that corrects the reception signal based on the change in the spectral distribution of the reception signal.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: April 29, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Tatsuaki Funamoto
  • Publication number: 20140111791
    Abstract: Systems and methods are provided which derive target characteristics from interferometry images taken at multiple phase differences between target beams and reference beams yielding the interferometry images. The illumination of the target and the reference has a coherence length of less than 30 microns to enable scanning the phase through the coherence length of the illumination. The interferometry images are taken at the pupil plane and/or in the field plane to combine angular and spectroscopic scatterometry data that characterize and correct target topography and enhance the performance of metrology systems.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Inventors: Amnon Manassen, Ohad Bachar, Daria Negri, Boris Golovanevsky, Barak Bringoltz, Daniel Kandel, Yoel Feler, Noam Sapiens, Paykin Irina, Alexander Svizher, Meir Aloni, Guy Ben Dov, Hadar Shalmoni, Vladimir Levinski
  • Patent number: 8705042
    Abstract: A microscopy system and a microscopy method are provided for observing a fluorescent substance accumulated in a tissue. The microscopy system comprises a filter allowing to observe the tissue at a same time both with visible light and with fluorescent light. It is possible to observe a series of previously recorded fluorescent light images in superposition with the visible light images. An end of the series of images may be automatically determined. A thermal protective filter may be inserted into a beam path of an illuminating system at such automatically determined end of the series.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 22, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Haisch, Christoph Hauger, Harmut Wolf, Joachim Hug, Brigitta Schwarz, Gerhard Gaida, Andreas Raabe
  • Patent number: 8699111
    Abstract: Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: April 15, 2014
    Inventors: Robert F. Dillon, Neil H. K. Judell, Timothy I. Fillion, Gurpreet Singh, Nathan E. Wallace
  • Publication number: 20140092390
    Abstract: An apparatus for obtaining spectral image includes a variable spectral element capable of changing its spectral characteristics, a transmission wavelength setting unit for setting a wavelength of light to be transmitted by the variable spectral element, a variable spectral element control unit changing a first control of the variable spectral element and a second control of the variable spectral element for controlling spectral characteristics of the variable spectral element to each other, an image capturing unit capturing an image that is formed by light transmitted by the variable spectral element, and an image correction unit acquiring a difference image between a first image captured in the first control and a second image captured in the second control.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: OLYMPUS CORPORATION
    Inventor: Toshiaki WATANABE
  • Publication number: 20140078509
    Abstract: A microelectromechanical system (MEMS) (10), and a microelectromechanical (MEM) optical interferometer (18), for hyper-spectral imaging and analysis. System (10) includes matrix configured collimating micro lens (16), for receiving and collimating electromagnetic radiation (60) emitted by objects (12) in a scene or sample (14); microelectromechanical optical interferometer (18), for forming divided collimated object emission beam (72) having an optical path difference, and for generating an interference image exiting optical interferometer (18); matrix configured focusing micro lens (20); micro detector (22), for detecting and recording generated interference images; and micro central programming and signal processing unit (24). Applicable for on-line (e.g., real time or near-real time) or off-line hyper-spectral imaging and analyzing, on a miniaturized or ‘micro’ (sub-centimeter [1 cm (10 mm) or less], or sub-millimeter) scale, essentially any types or kinds of biological, physical, or/and chemical, (i.e.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 20, 2014
    Applicant: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Publication number: 20140049779
    Abstract: A property of a material is determined. The material is illuminated with a light beam of controlled spectral and coherence properties. A stack of speckle field images is recorded from speckle fields reflected from the illuminated material in multiple spectral channels. The stack of speckle field images includes multiple speckle field images each being recorded in a respectively different spectral channel. Statistical properties of the speckle field images in the stack of speckle field images are analyzed to determine at least one property of the illuminated material.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Siu-Kei Tin, Francisco Imai
  • Publication number: 20140009764
    Abstract: A method for measuring an angularly resolved intensity distribution in a reticle plane (24) of a projection exposure apparatus (10). The apparatus includes an illumination system (16), irradiating a reticle (22) arranged in the reticle plane (24) and having a first pupil plane (20). All planes of the projection exposure apparatus which are conjugate thereto are further pupil planes, and the reticle plane (24) and all planes which are conjugate thereto are field planes. The method includes: arranging a spatially resolving detection module (44) in the region of one of the field planes (24, 30) such that the detection module is at a smaller distance from this field plane than from the closest pupil plane (20), radiating electromagnetic radiation (21) onto an optical module (42) from the illumination system, and determining an angularly resolved intensity distribution of the radiation from a signal recorded by the detection module.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Inventors: Wolfgang EMER, Dirk HELLWEG
  • Patent number: 8620051
    Abstract: A co-registration system provides a means for spatially warping an optical image of an object with another images of a similar object. The optical image may be a scatter image, and the second image may be the same type of image modality, or may be different. The co-registration may use landmarks selected by a user, or may make use of contour information derived from the images. The system may also include processing of three-dimensional volume data in the form of sets of two-dimensional slices for co-registration.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 31, 2013
    Inventors: Salim Djerizi, Niculae Mincu, Mario Khayat
  • Patent number: 8593631
    Abstract: A spectral image acquiring apparatus includes an optical filter on which light is incident; an image sensor including a two-dimensionally disposed pixel array for detecting the light via the optical filter; and a signal processing unit generating a difference-value image based on a detection signal from the image sensor. The optical filter includes a diffraction grating having a lattice pattern corresponding to one or more pixels on the image sensor. The signal processing unit calculates a difference value in an amount of received light between two adjacent pixels based on the detection signal from the image sensor, and generates the difference-value image based on the difference value. The difference value between the two adjacent pixels is varied depending on a difference in an interference point on the image sensor corresponding to a diffraction angle of the light that has passed through the diffraction grating.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Hideaki Hirai, Masanori Kobayashi
  • Publication number: 20130301033
    Abstract: Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 ?m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: King Abdullah University of Science and Technology
    Inventors: Erkki Alarousu, Ghassan Jabbour
  • Patent number: 8570525
    Abstract: In an apparatus for imaging of objects by applying optical frequency domain tomography and provided with an adjusting system for setting a relative position of photosensitive elements (174) and a spectrum image (273), the adjusting system is an automatically controlled device causing a relative displacement of at least one photosensitive element (174) of the detection device (173) of the spectrum and the spectrum image (273) between each other. The adjusting system comprises at least one actuator (14, 16) acting on the dispersion device (171) and/or the set of optical elements (172) and/or the detection device (173) and movement of which causes the relative displacement between each other of at least one photosensitive element (174) of the detection device (173) of the spectrum and the spectrum image (273) of the resultant light beam (270).
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: October 29, 2013
    Assignee: Optopol Technology S.A.
    Inventors: Pawel Wojdas, Grzegorz Slusarczyk, Tomasz Bajraszewski, Maciej Wojtkowski, Anna Szkulmowska, Piotr Targowski, Andrzej Kowalczyk