Imaging Patents (Class 356/456)
  • Publication number: 20130265582
    Abstract: Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 10, 2013
    Applicant: Duke University
    Inventors: Adam Wax, John W. Pyhtila
  • Patent number: 8553219
    Abstract: An apparatus includes first and second light sources for respectively generating broadband and monochromatic lights, a beamsplitter optically coupled to the first light source for splitting the broadband light into a reference light and a sample light, a reference arm optically coupled to the beamsplitter for receiving the reference light and returning the received reference light into the beamsplitter, a sample arm optically coupled to the beamsplitter and the second light source for combining the sample and monochromatic lights, delivering the combined light to the target of interest, collecting a backscattering light and a Raman scattering light generated from interaction of the combined light with the target of interest, returning the backscattering light into the beamsplitter so as to generate an interference signal between the returned backscattering light and the returned reference light in the beamsplitter, and directing the Raman scattering light in an output optical path.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 8, 2013
    Assignees: Vanderbilt University, Academisch Medisch Centrum Bu de Universiteit van Amsterdam
    Inventors: Chetan A. Patil, Anita Mahadevan-Jansen, Antonius Gerardus Johannes Maria Van Leeuwen, Jeroen Kalkman
  • Patent number: 8537366
    Abstract: Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: September 17, 2013
    Assignee: Duke University
    Inventors: Adam Wax, John W. Pyhtila
  • Patent number: 8520213
    Abstract: Methods and apparatus for rendering quantitative phase maps across and through transparent samples. A broadband source is employed in conjunction with an objective, Fourier optics, and a programmable two-dimensional phase modulator to obtain amplitude and phase information in an image plane. Methods, referred to as Fourier transform light scattering (FTLS), measure the angular scattering spectrum of the sample. FTLS combines optical microscopy and light scattering for studying inhomogeneous and dynamic media. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. Full angular information, limited only by the microscope objective, is obtained from extremely weak scatterers, such as a single micron-sized particle. A flow cytometer may employ FTLS sorting.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: August 27, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Gabriel Popescu, Huafeng Ding, Zhuo Wang
  • Publication number: 20130182259
    Abstract: Systems and methods for enhancing spectral domain optical coherence tomography (OCT] are provided. In particular, a system and method for calibration of spectral interference signals using an acquired calibration signal are provided. The calibration signal may be logarithmically amplified to further improve the accuracy of the calibration. From the calibration signal, a series of more accurate calibration data are calculated. An acquired spectral interference signal is calibrated using these calibration data. Moreover, systems that include logarithmic amplification of the spectral interference signal and variable band-pass filtering of the spectral interference signal are provided. Such systems increase the dynamic range and visualization capabilities relative to conventional spectral domain OCT systems.
    Type: Application
    Filed: December 1, 2010
    Publication date: July 18, 2013
    Inventors: Mark Brezinski, Bin Liu, Ehsan Azimi
  • Publication number: 20130176571
    Abstract: Method, apparatus and arrangement according an exemplary embodiment of the present invention can be provided for generating an image of at least one portion of an anatomical structure. For example, the portion can have an area greater than about 1 mm2, and the image can have a resolution a transverse resolution that is below about 10 ?m. For example, light can be scanned over such portion so as to generate first information which is related to the portion, where the light may be provided through a diffraction arrangement to generate a spectrally dispersed line. Method, apparatus and arrangement according to a further exemplary embodiment of the present invention can be provided for positioning a radiation or optical beam within an anatomical structure based on signals generated by scanning a portion of the structure using the same or a different beam.
    Type: Application
    Filed: February 22, 2013
    Publication date: July 11, 2013
    Applicant: The General Hospital Corporation
    Inventor: The General Hospital Corporation
  • Patent number: 8462326
    Abstract: The invention discloses the Schlieren type ultrasonic wave observer system. The invention states optics interference by the ultrasonic wave sound field after perturbation the medium, and combines to make the interference penetration optical projection the image, the goal lies in the observation ordinary naked eye blind ultrasonic wave sound field distribution. Characteristic of the invention using the spectroscope and the reflector combination, as well as microcontroller precise time delay control, might formerly be limited under the 4F optical field length limit to enhance largely the field of vision the several fold.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: June 11, 2013
    Assignee: Chang Gung University
    Inventors: Hao-Li Liu, Chung-Cheng Kung, Ting-Chia Chang
  • Patent number: 8446458
    Abstract: A miniaturized Holographic Fourier transform imaging spectrometer HFTIS, made from simple all-reflective components and with no moving parts, is provided. This HFTIS includes an all-reflective two beam interferometer, which provides two interfering beams; a two-dimensional detector array to detect the interference pattern created by the beams; a computing machine for correcting the distortions in the pattern and calculating the spectrum from the corrected interferogram. The same principle can be used to build spot spectrometers, line-scan imaging spectrometers (also called array spectrometers or line-scan hyperspectral cameras) as well as two-dimensional instantaneous imaging spectrometers (also called staring hyperspectral cameras). In all variants of HFTIS that can be built using this invention, the wave-signal collecting element can also be built of all-reflective components.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: May 21, 2013
    Inventor: Hamed Hamid Muhammed
  • Publication number: 20130120755
    Abstract: A method for the acquisition (AU) of a spectrally resolved, two-dimensional image by means of Fourier transform (=FT) spectroscopy or Fourier transform infrared (=FTIR) spectroscopy, is characterized in that, during multiple passes (D1-D4) of an optical path difference (OG) between two partial rays (14a, 14b) over an identical range (IB), different subsets of detector elements (22) of an array detector (5) are read out and the signals of the read-out detector elements (22) of the multiple passes (D1-D4) are Fourier transformed and combined to form the spectrally resolved image. A method is thereby provided for the acquisition of two-dimensional, spectrally resolved images, in which the influence of vibrations on the measurement is reduced, and which is less affected by the movement of objects to the resolved spectrally.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 16, 2013
    Applicant: BRUKER OPTIK GMBH
    Inventor: BRUKER OPTIK GMBH
  • Patent number: 8411922
    Abstract: Methods and apparatus for reducing noise in images acquired with a scanning beam device are disclosed. A representative method may include scanning a beam of light over a surface in a scan with a variable velocity. Light backscattered from the surface may be detected at different points in time during the scan at a substantially constant rate. Reduced-noise representations of groups of the detected light that each correspond to a different position in an image of the surface may be generated. The reduced-noise representations may be generated for groups having multiple different sizes. The image of the surface may be generated by representing the different positions in the image with the reduced-noise representations of the corresponding groups. Other methods and apparatus are disclosed.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 2, 2013
    Assignee: University of Washington
    Inventors: Cameron M. Lee, Richard S. Johnston
  • Patent number: 8405406
    Abstract: A detection apparatus and an imaging apparatus are capable of accurately conducting non-destructive observation of a target by using an incoherent electromagnetic wave. The detection apparatus has a generating section, a first coupler section, a delaying section, a second coupler section and a signal processing section. The generating section 101 includes a coherent electromagnetic wave source 102 and a diffusing section 103 for generating a pseudoincoherent electromagnetic wave by changing a propagation state of the coherent electromagnetic wave in accordance with a code pattern. The incoherent electromagnetic wave is split into first and second waves and the first wave is affected by the target of observation while the second wave is delayed by the delaying section. The first and second waves are then coupled to produce a coupled wave having a correlation signal of them and the signal is utilized to acquire information on the inside of the target of observation.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Patent number: 8396536
    Abstract: Light is collected from a sample that is to be imaged, such as tissue or the like, and made to undergo self-interference, e.g., on a detector. An imaging system may include a low coherence light source arranged for illuminating the sample, and an interferometer arranged to receive the light collected from the sample and to pass it to a detector. The interferometer includes a beam divider that directs the radiation collected from the sample along two paths, phase-delaying one beam relative to another and then recombining the beams on a detector. A processor may be coordinated with the phase delay and in some embodiments with spatial scanning or detector array addresses, and operates on the signal from the detector to form a tomographic image of the sample illuminated tissue.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: March 12, 2013
    Inventor: Mark D. Modell
  • Patent number: 8384907
    Abstract: Method, apparatus and arrangement according an exemplary embodiment of the present invention can be provided for generating an image of at least one portion of an anatomical structure. For example, the portion can have an area greater than about 1 mm2, and the image can have a resolution a transverse resolution that is below about 10 ?m. For example, light can be scanned over such portion so as to generate first information which is related to the portion, where the light may be provided through a diffraction arrangement to generate a spectrally dispersed line. Method, apparatus and arrangement according to a further exemplary embodiment of the present invention can be provided for positioning a radiation or optical beam within an anatomical structure based on signals generated by scanning a portion of the structure using the same or a different beam.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 26, 2013
    Assignee: The General Hospital Corporation
    Inventors: Guillermo J. Tearney, Dvir Yelin, Brett E. Bouma
  • Publication number: 20130044317
    Abstract: A sensor suite comprising a LIDAR transmitter and receiver element and a visible imager element. The transmitter operates with a plurality of selectable beam-forming optics or a tilt-tip element. A Risley or counter-rotating prism set element permits beam-steering with lower size, weight and power (SWaP). The optics for the system may be configured in a Cassegrain-type configuration in cooperation with a plurality of beam-splitting elements to permit predetermined spectrums of the received electromagnetic spectrum to be provided respectively to the LIDAR receiver and the visible imager. One or a plurality of laser illuminator analysis spectrometers are provided for the detection of incoming laser illumination from an external source which may be in the form of a micro-lamellar spectrometer element.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 21, 2013
    Applicant: ISC8 Inc.
    Inventors: James Justice, John Carson, Medhat Azzazy, Ying Hsu
  • Patent number: 8368892
    Abstract: An apparatus includes an optical source providing an optical beam; a splitter configured to split the optical beam into a sample beam and a reference beam; a sample path containing a sample material to be analyzed, the sample beam being directed through the sample path so as to interact with the sample material; a reference path containing a reference material, the reference beam being directed through the reference path so as to interact with the reference material; a disperser configured to receive the sample beam after it exits the sample path and to receive the reference beam after it exits the reference path, the disperser outputting a dispersed sample beam and a dispersed reference beam; and a photodetector disposed to receive the dispersed sample beam and the dispersed reference beam and outputting electrical signals comprised of data indicative of a spectra of the sample beam after it exits the sample path and a spectra of the reference beam after it exits the reference path.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: February 5, 2013
    Assignee: Nokia Corporation
    Inventors: Kenneth Tracton, Quinn Jacobson
  • Patent number: 8351045
    Abstract: Systems and methods for multispectral imaging are disclosed. The optical system includes 1) an array of optical elements, each optical element optically disposed to receive incident electromagnetic radiation; 2) a filter capable of substantially operating as a filter array, each filter element spectrally filtering electromagnetic radiation substantially into a spectral band having a predetermined central wavelength; and 3) a detector system capable of substantiality operating as a detector array of detector elements.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: January 8, 2013
    Assignee: Wavefront Research, Inc.
    Inventors: Thomas A. Mitchell, Thomas W. Stone
  • Patent number: 8351044
    Abstract: A spectral imaging apparatus includes: a spectral transmittance variable element having a spectral transmittance characteristics such that a transmittance periodically varies with wavelength and being capable of changing the variation period, for converting light from an object under observation into light having a plurality of peak wavelengths; a light extracting device for extracting, from the light having a plurality of peak wavelengths, light for imaging that contains a peak wavelength proximate to a predetermined command wavelength designated by a user and light for calibration that contains a peak wavelength other than the peak wavelength proximate to the command wavelength; an image sensor for capturing an image of the object under observation formed of the light for imaging; a detector for detecting, from the light for calibration, the peak wavelength other than the peak wavelength proximate to the command wavelength; and a control unit including, an operation processing section that calculates the pe
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: January 8, 2013
    Assignee: Olympus Corporation
    Inventors: Shinya Matsumoto, Koki Morishita, Motohiro Mitamura
  • Patent number: 8345256
    Abstract: A method is provided to calibrate a detection array used for acquiring an image of an interferogram at an instrument. A first interferogram and at least two shifted interferograms are elaborated at the instrument by creating a number of optical path differences, so at least three samples are on a sine wave portion for each optical path difference. A function coinciding with the sine wave portion is determined by interpolation. A calibration coefficient is determined from the function for each optical path difference.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 1, 2013
    Assignee: Centre National d'Etudes Spatiales
    Inventors: Elodie Cansot, Alain Rosak
  • Publication number: 20120327421
    Abstract: A micro-machined optical measuring device including: a set of photosensitive detector elements situated on a given face of a first support; a second support, assembled to the first support, forming a prism and including a first face through which a visible radiation is intended to penetrate and a second face, forming a non-zero angle ? with the first face and a non-zero angle ? with the given face of the first support, the second face being semi-reflective, the first support and the second support being positioned such that an interferometric cavity is made between the second face and the given face, the distance between the given face of the first support and the second face of the second support varying regularly.
    Type: Application
    Filed: February 7, 2011
    Publication date: December 27, 2012
    Applicants: Office National d'Etudes et de Recherches Aerospatiales, Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Manuel Fendler, Gilles Lafargues, Nicolas Guerineau, Sylvain Rommeluere, Florence De La Barriere
  • Patent number: 8319968
    Abstract: A method of determining a position of a substrate relative to an imprint template is described, wherein the imprint template has at least three gratings and the substrate has at least three gratings positioned such that each imprint template grating forms a composite grating with an associated substrate grating, the at least three imprint template gratings and associated substrate gratings having offsets relative to one another. The method includes detecting an intensity of radiation which is reflected by the three composite gratings, and using the detected intensities to determine displacement of the substrate or imprint template from a position.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: November 27, 2012
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Andre Bernardus Jeunink, Johannes Petrus Martinus Bernardus Vermeulen, Pascal Antonius Smits, Sander Frederik Wuister, Yvonne Wendela Kruijt-Stegeman, Catharinus De Schiffart
  • Publication number: 20120281223
    Abstract: An interferometer is disclosed, such as may be incorporated into a hand-held spectrometer. The interferometer comprises enclosed path optics and a detector, the enclosed path optics comprise at least two reflecting elements and a beamsplitter, the beamsplitter is arranged to divide an input beam into first and second beams. The enclosed path optics are arranged to direct the first and second beams in opposite directions around paths enclosing an area and to output the first and second beams towards the detector. The enclosed path optics also focus the first and second beams onto the detector. The detector is arranged to detect a pattern produced by interference of the first and second beams. In a preferred embodiment the two reflecting elements are a pair of concave mirrors, and the enclosed path optics enclose a triangular area. The use of concave mirrors for both reflection and focussing provides the interferometer with compactness.
    Type: Application
    Filed: January 14, 2011
    Publication date: November 8, 2012
    Applicant: THE SCIENCE AND TECHNOLOGY FACILITIES COUNCIL
    Inventor: Hugh Mortimer
  • Publication number: 20120281224
    Abstract: Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: DUKE UNIVERSITY
    Inventors: Adam Wax, John W. Pyhtila
  • Publication number: 20120281899
    Abstract: An apparatus and method process optical coherence tomography (OCT) imaging data from a sample. The method includes using a magnitude spectrum and an estimated phase term of a complex spatial Fourier transform of a complex intermediate function to generate an estimated complex spatial Fourier transform. The method further includes calculating an inverse Fourier transform of the estimated complex spatial Fourier transform and calculating an estimated intermediate function by applying at least one constraint to the inverse Fourier transform. The apparatus includes a partially reflective element configured to reflect a first portion of light and to allow a second portion of light to propagate through the partially reflective element and to reflect from the sample. The apparatus further includes a detector that measures the OCT power spectrum in response to the first and second portions of light.
    Type: Application
    Filed: June 12, 2012
    Publication date: November 8, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 8298831
    Abstract: A method of probing a plurality of analyzer molecules distributed about a detection platform is disclosed. The method includes contacting a test sample to the plurality of analyzer molecules, scanning the plurality of analyzer molecules at a rate relating to a carrier frequency signal, and detecting the presence or absence of a biological molecule based at least in part upon the presence or absence of a signal substantially at a sideband of the carrier frequency signal. A molecule detection platform including a substrate and a plurality of targets positioned about the substrate is also disclosed. Specific analyzer molecules adapted to bind a specific analyte are immobilized about a first set of the targets. Nonspecific analyzer molecules are immobilized about a second set of the targets. The targets positioned about the substrate along at least a segment of a scanning pathway alternate between at least one of the first set and at least one of the second set.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: October 30, 2012
    Assignee: Purdue Research Foundation
    Inventors: David D. Nolte, Manoj Varma, Fred E. Regnier, Leilei Peng, Ming Zhao
  • Publication number: 20120262720
    Abstract: An optical coherence tomography (OCT) imaging system is disclosed. In an embodiment of the invention, an OCT imaging system may include (a) multiple scan geometries, including a lateral scan of a beam perpendicular to the scan direction and a rotating scan where the beam is perpendicular to a curved surface (such as the front of the eye), and (b) a low coherence interferometry engine based on spectral domain interferometry, with a spectrometer capable of ultra deep imaging.
    Type: Application
    Filed: October 6, 2011
    Publication date: October 18, 2012
    Inventors: William J. Brown, Michael E. Sullivan
  • Patent number: 8273567
    Abstract: There is provided a portable measuring system having a biophotonic sensor. The portable measuring system also includes a tunable light source, an output intensity detector and an output wavelength detector, which are mounted therein. The portable measuring system can precisely measure a variation in the reflectivity spectrum and/or the transmittance spectrum of the biophotonic sensor before and after an antigen-antibody reaction by varying the wavelength of the tunable light source. Thus, the concentration of the antigen is precisely measured.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Sung Ko, Chul Huh, Kyung Hyun Kim, Jong Cheol Hong, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Publication number: 20120147380
    Abstract: A wavelength-variable interference filter includes first and second electrodes provided at first and second substrates, respectively, the second substrate including a movable section, first and second electrode wires that extend from the first and second electrodes toward outer circumferential edges of the first and second substrates, respectively, a first opposite electrode wire disposed so as to be isolated from the second electrode, and a first conductive section that connects the first electrode wire with the first opposite electrode wire. The second electrode wire and the first opposite electrode wire extend passing through a center point of an imaginary circle of the movable section in respective directions and dividing the imaginary circle at regular angular intervals.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 14, 2012
    Applicant: Seiko Epson Corporation
    Inventors: Tomonori MATSUSHITA, Yasushi MATSUNO
  • Patent number: 8200306
    Abstract: A non-invasive imaging and analysis system suitable for measuring attributes of a target, such as the blood glucose concentration of tissue, includes an optical processing system which provides a probe and reference beam. It also includes a means that applies the probe beam to the target to be analyzed, combines the probe and reference beams interferometrically and detects concurrent interferometric signals. The invention includes fitting multiple sets of concurrently acquired data to a profile template and calculating a variance between the profile template and the acquired data sets. It further includes refining the profile template to minimize the variance between at least some of the concurrently acquired data sets to generate a refined profile, correlating the refined profile with data from a data bank stored in memory and processing resulting correlation data to determine an attribute of the target.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: June 12, 2012
    Inventors: Josh N. Hogan, Carol Jean Wilson
  • Publication number: 20120127472
    Abstract: A new broadband discrete spectrum light source comprising a gain medium placed in a feedback cavity is disclosed. A design for a feedback cavity including reflectors having raised-edge reflectivity is presented. Bandwidth enhancement is achieved by selectively enhancing the intensity of the discrete emission lines near the band edges of the gain medium spectrum. The bandwidth of a broadband discrete spectrum light source is further enhanced by digitally applying a spectral correction to each detected signal according to a predetermined correction profile. A combined effect of using a broadband discrete spectrum light source and applying spectral correction to the detected signal in an imaging system such as a Spectral Domain Optical Coherence Tomography (SD-OCT) imaging system, results in a desired spectral profile and a bandwidth necessary to achieve higher depth resolution for obtaining high quality diagnostic images.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 24, 2012
    Applicant: GAA ASSOCIATES
    Inventor: Gerard A. Alphonse
  • Publication number: 20120113431
    Abstract: A motion detector 220 calculates the Doppler frequency shift amount based on the movement velocity of an eye E. A drive controller 230 calculates the modulation frequency of the intensity of output light M based on this Doppler frequency shift amount. A light source unit 201 outputs the light M in which the intensity is modulated with this modulation frequency. The light M is divided into a signal light S and a reference light R. Interference light L is generated by superimposing the signal light S passing through the eye E and the reference light R. Two polarized components of the interference light L have a phase difference of 180°, resulting from a quarter-wave plate 207. The polarized components L1, L2 which are divided by a polarization beam splitter 211 are detected by CCD 212, 213. A computer 250 forms a tomographical image based on these detection results.
    Type: Application
    Filed: May 20, 2010
    Publication date: May 10, 2012
    Applicant: KABUSHIKI KAISHA TOPCON
    Inventors: Yasufumi Fukuma, Masahiro Akiba, Kinpui Chan
  • Publication number: 20120113430
    Abstract: The invention discloses the Schlieren type ultrasonic wave observer system. The invention states optics interference by the ultrasonic wave sound field after perturbation the medium, and combines to make the interference penetration optical projection the image, the goal lies in the observation ordinary naked eye blind ultrasonic wave sound field distribution. Characteristic of the invention using the spectroscope and the reflector combination, as well as microcontroller precise time delay control, might formerly be limited under the 4F optical field length limit to enhance largely the field of vision the several fold.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 10, 2012
    Applicant: Chang Gung University
    Inventors: Hao-Li Liu, Chung-Cheng Kung, Ting-Chia Chang
  • Publication number: 20120105860
    Abstract: An improved method and an improved device for carrying out an optical comparison between at least two samples, preferably by comparing sections that can be selected, is characterized by the following characteristics: the sample (UR, LE, I) that is to be examined and is characterized by a non-uniformity in the structure and/or color is illuminated by diffused light; from the light reflected by the sample (UR, LE, I) to be examined, an interference spectrum is created by means of a spectrometer; the interference spectrum created by the spectrometer is depicted on a camera; the interference spectrum obtained in this way and/or values of the sample (I) to be examined derived therefrom are used as sample values which are compared to sample values of a reference sample (UR, LE) obtained accordingly.
    Type: Application
    Filed: April 29, 2010
    Publication date: May 3, 2012
    Applicant: Schattdecor AG
    Inventors: Johannes Jaschul, Martin Kosina, Kal Rainer Hummel
  • Publication number: 20120105859
    Abstract: An optical measuring apparatus may include a light source, linear polarizer, polarized beam splitter, quarter wave plate, objective lens, and/or light receiver. The polarized beam splitter may be configured to transmit linearly polarized light from the linear polarizer to any one of a first and second optical path. The quarter wave plate may be configured to circularly polarize light transmitted through the first optical path from the polarized beam splitter and transmit the circularly polarized light to an object to be measured, and the quarter wave plate may be configured to linearly polarize the circularly polarized light reflected from the object to be measured and transmit the linearly polarized reflected light to the second optical path of the polarized beam splitter. The objective lens may be configured to generate light having different wavelengths by generating chromatic aberration in the circularly polarized light from the quarter wave plate.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Young HEO, Chang Hoon CHOI, Byung Seon CHUN, Kwang Soo KIM, Tae Joong KIM
  • Patent number: 8164750
    Abstract: Colored foreign particles contained in quartz powder material are detected in a high precision with the specified detection apparatus even when the colored foreign particles are pale colored foreign particles such as iron-based refuse, organic refuse and carbon-based refuse.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 24, 2012
    Assignee: Japan Super Quartz Corporation
    Inventors: Atsushi Shimazu, Masaki Morikawa
  • Patent number: 8144331
    Abstract: Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a widefield data cube based on the overlaid first data and second data for each point. The method can generate an image from the widefield data cube.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 27, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Richard G. Lyon, David T. Leisawitz, Stephen A. Rinehart, Nargess Memarsadeghi
  • Patent number: 8144052
    Abstract: A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 27, 2012
    Assignee: California Institute of Technology
    Inventors: Ken B. Cooper, Robert J. Dengler, Peter H. Siegel, Goutam Chattopadhyay, John S. Ward, Nuria Llombart Juan, Tomas E. Bryllert, Imran Mehdi, Jan A. Tarsala
  • Publication number: 20120038929
    Abstract: An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
    Type: Application
    Filed: September 30, 2011
    Publication date: February 16, 2012
    Applicant: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Maria Den Boef, Arno Jan Bleeker, Youri Johannes Laurentius Maria Van Dommelen, Mircea Dusa, Antoine Gaston Marie Kiers, Paul Frank Luehrmann, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Cedric Desire Grouwstra, Markus Gerardus Martinus Van Kraaij
  • Patent number: 8064064
    Abstract: Disclosed is an apparatus and method for obtaining images using coherent anti-stokes Raman scattering. The apparatus for obtaining images using coherent anti-stokes Raman scattering according to the present invention comprises: a pump light source and a stokes light source that irradiate pump light and stokes light on a sample to generate anti-stokes light having anti-stokes frequency; a reference light source that generates reference light; and an image obtaining unit that obtains the images of the sample using a change in phase of the reference light due to a change in the refractive index of the sample in the vicinity of the anti-stokes frequency. Thereby, the present invention can provide the apparatus for obtaining images using coherent anti-stokes Raman scattering that is not affected by a non-resonant background signal phenomenon, strong resistance against noise even in a weak signal, and has excellent sensitivity and resolution.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: November 22, 2011
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Dug Young Kim, Seung Bum Cho
  • Patent number: 8054468
    Abstract: Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and low coherence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split into N spectral bands. The N spectral bands are individually detected and processed to provide an increase in the signal-to-noise ratio by a factor of N. Each spectral band is detected by a separate photo detector and amplified. For each spectral band the signal is band pass filtered around the signal band by analog electronics and digitized, or, alternatively, the signal may be digitized and band pass filtered in software. As a consequence, the shot noise contribution to the signal is reduced by a factor equal to the number of spectral bands. The signal remains the same. The reduction of the shot noise increases the dynamic range and sensitivity of the system.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 8, 2011
    Assignee: The General Hospital Corporation
    Inventors: Johannes F. de Boer, Guillermo J. Tearney, Brett Eugene Bouma
  • Patent number: 8054467
    Abstract: An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 8, 2011
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Maria Den Boef, Arno Jan Bleeker, Youri Johannes Laurentius Maria Van Dommelen, Mircea Dusa, Antoine Gaston Marie Kiers, Paul Frank Luehrmann, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Cedric Desire Grouwstra, Markus Gerardus Martinus Van Kraaij
  • Publication number: 20110235046
    Abstract: An imaging apparatus includes an optical source configured to emit an electromagnetic wave, a wave dividing unit configured to divide the wave from the optical source into a first and a second wave beam, a probe optical source configured to emit a probe beam, a probe-beam dividing unit configured to divide the probe beam into a first and a second probe beam, a first crystal on which the first crystal is irradiated through an object and the first probe beam is incident, a second crystal on which the second crystal is irradiated through an object and the second probe beam is incident, an interference unit configured to allow the first probe beam from the first crystal to interfere with the second probe beam from the second crystal, and an image pickup device configured to capture an interference figure between the first and the second probe beam.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kazunori MARUYAMA, Shinya HASEGAWA, Akinori MIYAMOTO, Norihiko ITANI
  • Patent number: 8027041
    Abstract: Systems and methods for multispectral imaging.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Wavefront Research, Inc.
    Inventors: Thomas A. Mitchell, Thomas W. Stone
  • Publication number: 20110228221
    Abstract: An apparatus for generating a two-dimensional image of an object using an optical coherence tomography (OCT) optical system, includes: the OCT optical system including: a light source; a splitter for splitting light emitted from the light source into a measurement optical path and a reference optical path; a scanner arranged in the measurement optical path for scanning the object in at least one of XY directions with the split light; and a detector for detecting a spectrum of combined light of the split light from the measurement optical path reflected on the object and the split light from the reference optical path each XY position of the light on the object, and a processor for generating the two-dimensional image of the object in the XY directions by converting the number of zero cross points of an interference signal contained in the spectrum at each XY position into a luminance value.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: NIDEK CO., LTD.
    Inventors: Masaaki HANEBUCHI, Yasuhiro FURUUCHI, Norimasa SATAKE
  • Patent number: 8018598
    Abstract: A system, process and software arrangement are provided to compensate for a dispersion in at least one portion of an image. In particular, information associated with the portion of the image is obtained. The portion of the image can be associated with an interference signal that includes a first electromagnetic radiation received from a sample and a second electromagnetic radiation received from a reference. The dispersion in the at least one portion of the image can be compensated by controlling a phase of at least one spectral component of the interference signal.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: September 13, 2011
    Assignee: The General Hospital Corporation
    Inventors: Abraham J. Cense, Seok-Hyun Yun, Johannes F. de Boer
  • Publication number: 20110199616
    Abstract: According to a first aspect the invention relates to a reconstruction process of a narrow-band signal acquired by an instrument producing irregular sampling, in which two series of samples are acquired at the same sampling period, the two series being offset relative to one another such that the sampling errors are identical or quasi identical over both series. According to a second aspect, the invention relates to an instrument configured to carry out the process according to the first aspect of the invention.
    Type: Application
    Filed: September 1, 2009
    Publication date: August 18, 2011
    Applicant: CENTRE NATIONAL D'ETUDES SPATIALES
    Inventors: Elodie Cansot, Emmanuel Christophe, Alain Rosak
  • Publication number: 20110199615
    Abstract: An optical coherence tomographic imaging apparatus for splitting light emitted from a light source into reference light and signal light and creating an optical coherence tomographic image and tomographic spectral information in a predetermined spectral analyzing portion in the optical coherence tomographic image based on optical interference signal information of the reference light and the signal light which are incident on an inspection target and reflected on respective layers, the optical coherence tomographic imaging apparatus including a spectral information processing unit for performing a spectral information calculation using an optical interference signal of a deeper region and creating the tomographic spectral information of the spectral analyzing portion. With this arrangement, spectral information corresponding to the optical coherence tomographic image can be output with high wavelength accuracy.
    Type: Application
    Filed: December 25, 2009
    Publication date: August 18, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Mitsuro Sugita
  • Publication number: 20110200168
    Abstract: An imaging apparatus analyzes a periodic pattern of a Moiré due to Talbot interference by the Fourier transform method and forms an image. The imaging apparatus includes a first grating having a structure that transmits light beams from a beam source to refract or diffract the light beams and forms a self image based on a first periodic pattern by the Talbot interference at a predetermined position; a second grating that absorbs part of the first periodic pattern and causes a Moiré to be generated based on a second periodic pattern when the second grating is arranged at a position at which the self image is formed. All cross sections of the Moiré with axes in differential directions of a wavefront for the analysis by the Fourier transform method have a two-dimensional periodic structure in which periods of patterns in the second periodic pattern are the same.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 18, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Chidane Ouchi, Kentaro Nagai
  • Patent number: 7986413
    Abstract: Methods and apparatus are provided employing rapid scanning continuous wave terahertz spectroscopy and imaging for the non-destructive evaluation of materials such as animal hides and natural cork, and explosive detection, concealed weapon detection, and drug detection. A system employing an aperiodic detector array and implementing phase modulation at 100 kHz significantly reduces the imaging time and enables interferometric images of a THz point source to be obtained at several frequencies between 0.3 and 0.95 THz.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: July 26, 2011
    Assignee: New Jersey Institute of Technology
    Inventor: John Francis Federici
  • Publication number: 20110176139
    Abstract: An apparatus includes a system configured to split a light emitted from a light source into reference light and subject light, cause the subject light to enter into an object, and combine the subject light reflected by the object with the reference light, a detection unit configured to detect coherent light between the combined subject and reference lights, an element, provided within a light path of the reference light or the subject light, configured to change a path length difference between the reference light and the subject light and a relative position between the reference light and the subject light in a light receiving surface of the detection unit, and a position-variable mechanism configured to cause a position of the optical element to be changeable, wherein, by changing a position of the element, the optical path length difference and the relative position are independently adjusted.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 21, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Wataru Yamaguchi, Ryo Sasaki, Takahiro Matsumoto
  • Publication number: 20110176107
    Abstract: There is provided an optical tomographic imaging apparatus for imaging a tomographic image capable of setting characteristics of an optical system to accommodate to different positions on an object. The apparatus using an OCT system, includes: a scanning device for scanning measuring beams, an irradiating device for irradiating a different irradiation area on the object with the measuring beams scanned by the scanning device, an adjusting device for adjusting an irradiation position on the object of the measuring beams irradiated by the irradiating device, and a detecting device for detecting each combined beam produced from light interference between each of the return beams and the reference beams, characterized in that: the detecting device includes spectroscopy devices and a sensor, and a spectral width of the combined beam acquired with the sensor through the spectroscopy devices is set at a different spectral width by the spectroscopy devices.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 21, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hirofumi Yoshida, Norihiko Utsunomiya