Using Reflective Or Cavity Structure Patents (Class 359/247)
  • Patent number: 8345349
    Abstract: Various embodiments of the present invention are directed to compact, sub-wavelength optical resonators. In one aspect, an optical resonator comprises two approximately parallel reflective structures positioned and configured to form a resonant cavity. The resonator also includes a fishnet structure disposed within the cavity and oriented approximately parallel to the reflective structures. The resonant cavity is configured with a cavity length that can support resonance with electromagnetic radiation having a fundamental wavelength that is more than twice the cavity length.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 1, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Jingjing Li
  • Patent number: 8331008
    Abstract: Whispering gallery mode resonator based devices as photonic RF or microwave receivers.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: December 11, 2012
    Assignee: OEwaves, Inc.
    Inventors: Andrey B. Matsko, Anatoliy Savchenkov, David Seidel, Lute Maleki, Vladimir Ilchenko
  • Patent number: 8306375
    Abstract: A first exemplary aspect of the present invention is a wavelength-tunable optical transmitter including: a semiconductor substrate (101); a wavelength-tunable light source that is formed on the semiconductor substrate (101) and includes at least a first reflector (102) of a wavelength-tunable type and a gain region (104); a semiconductor optical modulator formed on the semiconductor substrate (101); a first semiconductor optical waveguide (105c) that is formed on the semiconductor substrate (101) and smoothly connected to the wavelength-tunable light source; a second semiconductor optical waveguide (105d) that is formed on the semiconductor substrate and smoothly connected to the semiconductor optical modulator; a waveguide coupling region (108) in which the first and second semiconductor optical waveguides are collinearly coupled with a length LC that is not equal to m/2 (m: integer) times a complete coupling length LC0; and a second reflector (113) formed at an end of the waveguide coupling region (108).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 6, 2012
    Assignee: NEC Corporation
    Inventor: Tomoaki Kato
  • Patent number: 8305676
    Abstract: An optical deflector includes multiple voltage-dependent refractive boundaries. Light passes through the refractive boundaries and accumulates a deflection angle. An electrode placed to apply a voltage to the boundaries may be non-uniform to modulate a wavefront as it passes. A scanning laser projector includes the optical deflector to modulate laser light.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 6, 2012
    Assignee: Microvision, Inc.
    Inventor: Bin Xue
  • Patent number: 8300669
    Abstract: A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and/or MIIPS unit between a laser oscillator and an output of a laser amplifier.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 30, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Igor Pastirk, Vadim Lozovoy, Matthew Comstock
  • Patent number: 8227796
    Abstract: A display device includes light emitting elements corresponding to respective colors disposed on a substrate. Each of the light emitting elements corresponding to the respective colors has a cavity structure in which a light emission functioning layer including a light emitting layer is held between a reflecting electrode and a semitransmitting electrode. A cavity order of at least the light emitting element adapted to resonate a light, having the shortest wavelength, of the light emitting elements corresponding to the respective colors is 1, and a cavity order of each of other light emitting elements is 0. The light emission functioning layer except for the light emitting layer is common to the light emitting elements corresponding to the respective colors.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 24, 2012
    Assignee: Sony Corporation
    Inventors: Reo Asaki, Jiro Yamada
  • Patent number: 8223423
    Abstract: An array of two or more tunable electro-optical reflecting elements where the phase response of one or more elements may be adjusted by a variety of approaches including, but not limited to: a liquid crystal superstrate, schottky contact(s), ultra-violet radiation pulses, and illumination of photoconductive substrates. Methods and apparatus for direct and/or adaptive control of phase response via the above approaches are also discussed.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 17, 2012
    Assignee: Lockheed Martin Corp.
    Inventors: Thomas E Haberfelde, Edit L. Braunstein, Glenn Boreman, James Ginn, David Shelton, Gene D. Tener, Andrew H. Hawkins
  • Patent number: 8218919
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: July 10, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 8208504
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: June 26, 2012
    Assignee: Board of Trustees Operation Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Patent number: 8169687
    Abstract: An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 1, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Mark W. Miles
  • Patent number: 8111994
    Abstract: The invention generally relates, in one aspect, to an interferometer system. The interferometer system includes a splitter/combiner element (SCE), a first bi-directional optical path, and a second bi-directional optical path.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: February 7, 2012
    Assignee: Massachusetts Institute of Technology
    Inventor: Milos Popovic
  • Patent number: 8090229
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 8077231
    Abstract: An imaging apparatus includes: a solid-state imaging device including a semiconductor substrate, a plurality of photoelectric conversion elements provided in the semiconductor substrate and a spectral element which is provided over the plurality of photoelectric conversion elements that are consecutive in a straight-line manner, in which a trapezoidal opening longitudinal in a direction from a bottom side into which light incident on the plurality of photoelectric conversion elements is introduced to a top side is provided, and which makes a spectral separation occur in the longitudinal direction by interference between the incident light and light reflected from an inner side surface of the trapezoidal opening; and a polarizing element which is provided on an optical path from a photographic subject to the solid-state imaging device and which allows polarized light to be transmitted therethrough.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 13, 2011
    Assignee: Fujifilm Corporation
    Inventors: Takeshi Miyashita, Hirokazu Kobayashi, Mitsuru Iwata, Yoshiyasu Nishida
  • Patent number: 8054528
    Abstract: By selectively placing color filters with different transmittance spectrums on an array of modulator elements each having the same reflectance spectrum, a resultant reflectance spectrum for each modulator element and it's respective color filter is created. In one embodiment, the modulator elements in an array are manufactured by the same process so that each modulator element has a reflectance spectrum that includes multiple reflectivity lines. Color filters corresponding to multiple colors, such as red, green, and blue, for example, may be selectively associated with these modulator elements in order to filter out a desired wavelength range for each modulator element and provide a multiple color array. Because the modulator elements are manufactured by the same process, each of the modulator elements is substantially the same and common voltage levels may be used to activate and deactivate selected modulation.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 8, 2011
    Assignee: QUALCOMM MEMS Technologies Inc.
    Inventor: William J. Cummings
  • Patent number: 8045835
    Abstract: A package structure and method of packaging for an interferometric modulator. A thin film material is deposited over an interferometric modulator and transparent substrate to encapsulate the interferometric modulator. A gap or cavity between the interferometric modulator and the thin film provides a space in which mechanical parts of the interferometric modulator may move. The gap is created by removal of a sacrificial layer that is deposited over the interferometric modulator.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: October 25, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Lauren Palmateer, William J. Cummings, Brian Gally, Mark Miles, Jeffrey B. Sampsell, Clarence Chui, Manish Kothari
  • Patent number: 8040588
    Abstract: An interferometric modulator array device with backlighting is disclosed. The interferometric modulator array device comprises a plurality of interferometric modulator elements, wherein each of the interferometric modulator elements comprises an optical cavity. The interferometric modulator array includes an optical aperture region, and at least one reflecting element is positioned so as to receive light passing through the optical aperture region and reflect at least a portion of the received light to the cavities of the interferometric modulator elements. In some embodiments, the interferometric modulator elements may be separated from each other such that an optical aperture region is formed between adjacent interferometric modulator elements.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 18, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Ming-Hau Tung
  • Patent number: 8023171
    Abstract: Electrically active, cathodically coloring electrochromic polymers are blended with a non-electrochromic, non-electrically conductive binder polymer to provide an electrochomic composition with greatly enhanced performance in an electrochromic device over time. It is also found that blending an electrochromic polymer with a non-coloring electroactive material allows for greater design in preparing electrochromic devices as it enables the use of a higher amount of typically low coloring anodic materials due to increased need for charge balancing.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: September 20, 2011
    Assignee: BASF SE
    Inventors: Nancy Nase Cliff, David Yale, Jennifer Jankauskas, Ece Unur
  • Patent number: 8009346
    Abstract: The present invention relates to an interference optical modulator and a display apparatus having the same. The display apparatus includes a metal thin film and a dielectric multiple thin film spaced apart from the metal thin film. The display apparatus may realize colors by changing an interval between the metal thin film and the dielectric multiple thin film, and may realize a black color by applying a voltage to each respective sub-pixel.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-Ho Cheong, Oleg Prudnikov
  • Patent number: 7990601
    Abstract: A package structure and method of packaging an interferometric modulator with a reinforcing substance to help support the integrity of the package. In some embodiments the reinforcing substance is a desiccant integrated into the backplate or the transparent substrate.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 2, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Lauren Palmateer
  • Patent number: 7952789
    Abstract: Methods of forming a protective coating on one or more surfaces of a microelectromechanical device are disclosed comprising the steps of forming a composite layer of a sacrificial material and a protective material, and selectively etching the sacrificial material to form a protective coating. The protective coatings of the invention preferably improve one or more aspects of the performance of the microelectromechanical devices in which they are incorporated. Also disclosed are microelectromechanical devices formed by methods of the invention, and visual display devices incorporating such devices.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 31, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ming-Hau Tung, Lior Kogut
  • Patent number: 7940446
    Abstract: An optical modulator comprising a spacing-controllable etalon having at least one sprung micro-mirror suspended above a substrate. At least one electrically insulating stop is provided between the micro-mirror and the substrate to avoid short-circuit when the micro-mirror is drawn towards the substrate by an applied voltage. An optical detector detects the time of arrival of a first laser pulse. A control circuit predicts from this an arrival time of the next incident laser pulse and, responsive to a control signal, either retains the micro-mirror in its pulled-down state held against the insulating stops or releases the micro-mirror at a time predicted to maximise or minimise the light transmitted through the modulator. After a time interval calculated to permit a predetermined number of mechanical oscillations, the micro-mirror is pulled back down onto the stops.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 10, 2011
    Assignee: Qinetiq Limited
    Inventors: Andrew Maxwell Scott, Mark Edward McNie, Kevin Michael Brunson
  • Patent number: 7936031
    Abstract: Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, both rivets and posts may be used. In certain embodiments, these support structures are formed from rigid inorganic materials, such as metals or oxides. In certain embodiments, etch barriers may also be deposited to facilitate the use of materials in the formation of support structures which are not selectively etchable with respect to other components within the MEMS device.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: May 3, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Jeffrey B. Sampsell, Clarence Chui, Manish Kothari, Mark W. Miles, Teruo Sasagawa, Wonsuk Chung, Ming-Hau Tung
  • Patent number: 7933476
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 26, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 7929193
    Abstract: Embodiments of the present invention include a method, apparatus and/or system of producing a color image using four or more primary colors. The apparatus, according to some demonstrative embodiments of the invention, may include an optical arrangement to selectively split polychromatic light into at least four primary-color light beams, and to direct the at least four primary-color light beams towards at least four reflective spatial light modulators, respectively. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Shmuel Roth
  • Patent number: 7916378
    Abstract: A microelectromechanical system (MEMS) is provided. In one embodiment, the MEMS includes a transparent substrate, and a plurality of interferometric modulators. The plurality of interferometric modulators includes an optical stack coupled to the transparent substrate, in which the optical stack includes a first light absorbing area. The plurality of interferometric modulators further includes a reflective layer over the optical stack, and one or more posts to support the reflective layer. Each of the one or more posts includes a second light absorbing area integrated in the post.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: March 29, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Chun-Ming Albert Wang
  • Patent number: 7898167
    Abstract: An electroluminescence (EL) display device with improved external light coupling efficiency and brightness that may be easily manufactured. The EL display device includes: a substrate; a first electrode arranged above the substrate; a second electrode arranged above and substantially parallel to the first electrode; an intermediate layer arranged between the first and second electrodes, and including an emissive layer; a color converting layer arranged between the substrate and the first electrode or above the second electrode; and a light resonance controlling layer arranged between the emissive layer and the color converting layer.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: March 1, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Young-Woo Song, Yoon-Chang Kim, Sang-Hwan Cho, Ji-Hoon Ahn, Joon-Gu Lee, So-Young Lee, Jong-Seok Oh, Jae-Heung Ha
  • Patent number: 7864269
    Abstract: A liquid crystal display (LCD) device that is switchable between a transmissive mode and a reflective mode is provided. The LCD device includes a backlight; an active reflective polarizer which operates as a reflector that reflects incident light or as a reflective polarizer that reflects light of a first polarization and transmits light of a second polarization perpendicular to the first polarization, based on whether a magnetic field is applied; and a liquid crystal panel that modulates incident light to form images. The liquid crystal panel includes a liquid crystal layer, a first polarizer that is disposed on a rear surface of the liquid crystal layer and faces the active reflective polarizer, and a second polarizer that is disposed on a front surface of the liquid crystal layer.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-mo Hwang, Moon-gyu Lee, Sung Nae Cho
  • Patent number: 7848003
    Abstract: In certain embodiments, a device is provided that utilizes both interferometrically reflected light and transmitted light. Light incident on the device is interferometrically reflected from a plurality of layers of the device to emit light in a first direction, the interferometrically reflected light having a first color. Light from a light source is transmitted through the plurality of layers of the device to emit from the device in the first direction, the transmitted light having a second color.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: December 7, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Manish Kothari, Gaurav Sethi, Jonathan Charles Griffiths, Kasra Khazeni
  • Patent number: 7847999
    Abstract: An embodiment for a pixel for a display device on a substrate is disclosed. The pixel includes a first interferometric modulator on the substrate. The first interferometric modulator has a first normal direction substantially perpendicular to the first interferometric modulator and a first angularly-dependent reflectivity function comprising a first reflectivity in a first direction and a second reflectivity in a second direction, with the first reflectivity being greater than the second reflectivity. The pixel also includes a second interferometric modulator on the substrate. The second interferometric modulator has a second normal direction substantially perpendicular to the second interferometric modulator and a second angularly-dependent reflectivity function comprising a third reflectivity in the second direction and a fourth reflectivity in the first direction, with the third reflectivity being greater than the fourth reflectivity.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: December 7, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Donovan Lee, Kasra Khazeni
  • Publication number: 20100277786
    Abstract: Anisotropic film laminates for use in image-preserving reflectors such as rearview automotive mirror assemblies, and related methods of fabrication. A film may comprise an anisotropic layer such as a light-polarizing layer and other functional layers. The film having controlled water content is heated under omnidirectional pressure and vacuum to a temperature substantially equal to or above a lower limit of a glass-transition temperature range of the film so as to be laminated to a substrate. The laminate is configured as part of a mirror structure so as to increase contrast of light produced by a light source positioned behind the mirror structure and transmitted through the mirror structure towards a viewer. The mirror structure is devoid of any extended distortion and is characterized by SW and LW values less than 3, more preferably less than 2, and most preferably less than 1.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 4, 2010
    Applicant: Gentex Corporation
    Inventors: John S. Anderson, William L. Tonar, Henry A. Luten, George A. Neuman, Gary J. Dozeman, Tammy G. Morgan
  • Patent number: 7826127
    Abstract: A microelectromechanical systems device having a transparent substrate joined to a planar backplate with a raised perimeter structure forming a recessed cavity or cell. The raised perimeter structure is formed by applying a first layer around the peripheral area of the backplate to form a recessed cell. A second layer is applied over the first layer. The first layer is thicker than the second layer. The thicker layer comprises a viscous material. A second layer is a thinner adhesive layer, and is applied over the thicker layer to join the backplate to the transparent substrate to encapsulate the microelectromechanical systems device formed on the transparent substrate.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 2, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Nassim Khonsari, Clarence Chui
  • Patent number: 7822348
    Abstract: A method, apparatus, and computer program product are provided for optimizing the pulse shape of optical signals output from an optical transmitter. The optical transmitter includes an optical modulator controlled by a bias voltage and a signal drive level, wherein the bias voltage and signal drive level are controlled automatically in a systematic way in dependence on one another to adapt the pulse shape of an optical output signal for optimal transmission over a transmission line.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: October 26, 2010
    Assignee: Xtera Communications, Inc.
    Inventors: Stephen Michael Webb, Richard Oberland
  • Patent number: 7817322
    Abstract: An optical scanning element performs scanning with light by bringing a mirror portion into a swinging state by generating resonance oscillations of the mirror portion due to torsional oscillations. The optical scanning element has a first resonance frequency and a second resonance frequency which generate longitudinal oscillations and lateral oscillations on a lower region side and a high region side of a resonance frequency of the torsional oscillations respectively. Outputting of a drive signal is started by setting a frequency of a drive signal which is used for oscillating the optical scanning element to a specific frequency which falls between the first resonance frequency and the second resonance frequency and is higher than the resonance frequency of the torsional oscillations and, thereafter, the frequency of the outputted drive signal is shifted to the resonance frequency of the torsional oscillations after outputting of the drive signal is started.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: October 19, 2010
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Masahiro Sakakibara
  • Patent number: 7801189
    Abstract: Examples and implementations of photonic devices and techniques based on whispering gallery mode resonators formed of electro-optic materials to effectuate cross modulation between whispering gallery modes of different polarizations in the resonators.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 21, 2010
    Assignee: OEWaves, Inc.
    Inventors: Lutfollah Maleki, Andrey B. Matsko, Anatoliy Savchenkov, Vladimir Ilchenko
  • Patent number: 7791783
    Abstract: A transmissive backlit display is disclosed. In one aspect, the backlit display comprises a backlight and an array of transmissive interferometric modulators. Each interferometric modulator comprises a fixed and moving dielectric mirror stack. The interferometric modulators cause light within the desired wavelength range to be transmitted while reflecting at least a portion of the remaining light.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: September 7, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Jeffrey B. Sampsell
  • Patent number: 7782293
    Abstract: Embodiments include devices and methods for wavelength filtering. For example, one embodiment includes a display comprising a plurality of the display elements each comprising a movable reflector, a first partial reflector, and a second partial reflector. The first partial reflector is positioned at a first distance from the movable reflector and forms a first optical resonant cavity therebetween. The second partial reflector is positioned at a second distance from said first partial reflector and forming a second optical resonant cavity therebetween. In various embodiments, the movable reflector is movable with respect to the first partial reflector to alter the first optical cavity. Other embodiments include a method of making devices.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: August 24, 2010
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings
  • Patent number: 7777936
    Abstract: The present invention relates to a display device including a substrate having a display area, a first electrode disposed on the substrate to receive a first voltage, a second electrode disposed on the substrate to receive a second voltage having an opposite polarity to that of the first voltage, an insulating layer disposed on the first electrode and the second electrode, and an isolated member disposed on the insulating layer and electrically isolated, wherein an induction charge is generated in the isolated member by application of the first voltage and the second voltage, and wherein light transmittance is controlled according to the application of the first and second voltages.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: August 17, 2010
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Jae-Hyuk Chang, Nam-Seok Roh, Seong-Sik Shin, Ju-Han Bae, Kyung-Ho Lee, Jun-Bo Yoon
  • Patent number: 7768688
    Abstract: An image display device having an optical modulation element, which modulates light emitted from a light source according to display information, and displaying a display image based on the display information includes: a unit adjusting the amount of illumination light with respect to light emitted from the light source on the basis of brightness information on the brightness of the display image based on the display information; a color conversion processing unit that performs a color conversion process according to the brightness information with respect to the display information so that the display image can be color-reproduced within a predetermined color space; and a display and driving unit that drives the optical modulation element on the basis of the display information having been subjected to the color conversion process so as to display the display image.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 3, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Yasunaga Miyazawa, Hiroshi Hasegawa, Hidehito Iisaka, Hidehiro Akahane, Takashi Toyooka
  • Patent number: 7751724
    Abstract: An optical modulator is provided which includes: an optical splitting part that splits an input light wave into two light waves; two optical waveguides that propagate the two light waves into which the input light wave is split, respectively; a first SSB modulating part that is provided in one of the two optical waveguides and modulates a light wave, which propagates into the first SSB modulating part, with a carrier frequency so that the light wave is converted into a different light wave having a single side band; a second SSB modulating part that is provided in the other of the two optical waveguides and modulates a light wave, which propagates into the second SSB modulating part, with a data signal in order to generate a signal light wave having a different single side band; and an optical combining part that combines the light wave modulated by the first SSB modulating part with the signal light wave generated by the second SSB modulating part.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 6, 2010
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yoshihiro Hashimoto, Shingo Mori, Norikazu Miyazaki, Kaoru Higuma, Toshio Sakane
  • Patent number: 7750301
    Abstract: Systems and methods are disclosed herein, as an example, to provide microbolometer resonant cavity tuning techniques and calibration techniques in accordance with one or more embodiments of the present invention. For example, in accordance with one embodiment, a method of operating an array of microbolometers on a substrate of an infrared camera system includes filtering infrared radiation to pass a first infrared radiation wavelength and to block a second infrared radiation wavelength, wherein the first infrared radiation wavelength is different than the second infrared radiation wavelength; setting a spacing between the microbolometers and the substrate to approximately tune the microbolometers to the second infrared radiation wavelength which is blocked by the filtering; and determining calibration data for the microbolometers.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 6, 2010
    Assignee: Flir Systems, Inc.
    Inventors: James T. Woolaway, Austin A. Richards
  • Patent number: 7746532
    Abstract: In an optical switch, a set of coherent electromagnetic radiation is selectively delayed and recombined to produce constructively or destructively combined radiation. When the radiation is constructively combined, a signal is transmitted out of the switch to a remote receiver. When the radiation is destructively combined, a signal is not transmitted out of the switch to a remote receiver.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Virgin Island Microsystems, Inc.
    Inventor: Jonathan Gorrell
  • Patent number: 7738158
    Abstract: Methods, devices, and systems provide MEMS devices exhibiting at least one of reduced stiction, reduced hydrophilicity, or reduced variability of certain electrical characteristics using MEMS devices treated with water vapor. The treatment is believed to form one or more passivated surfaces on the interior and/or exterior of the MEMS devices. Relatively gentle temperature and pressure conditions ensure modification of surface chemistry without excessive water absorption after removal of sacrificial material to release the MEMS devices.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 15, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Bangalore R. Natarajan, Kasra Khazeni, David Heald, Rihui He, Sriram Akella, Evgeni Gousev
  • Publication number: 20100141950
    Abstract: Provided is a tunable filter including: a polarization splitter that splits input light into two linearly polarized light rays of mutually orthogonal vibration directions; a wavelength dispersion spectroscopic element that splits the two linearly polarized light rays split by the polarization splitter, into two spectral images having spatial spread in one direction, the two spectral images corresponding to the two linearly polarized light rays; and a reflective spatial modulator device that modulates and reflects linearly polarized light in each wavelength region for the two spectral images independently from each other, where modulated light reflected at the reflective spatial modulator device reenters the wavelength dispersion spectroscopic element and the polarization splitter, thereby splitting and outputting the modulated light, as output light in a wavelength region modulated by the reflective spatial modulator device and output light in a wavelength region not modulated, and input light and reentered l
    Type: Application
    Filed: November 30, 2009
    Publication date: June 10, 2010
    Inventor: Atsushi Katsunuma
  • Patent number: 7729033
    Abstract: A device including: a first layer of material; a second layer of material disposed as a sealing layer; walls disposed to interconnect the first layer and second layer, wherein cavities are formed by the first layer, the second layer, and the walls; a fluid at least partially filling the cavities; and blocks integrally connected to the first layer of material, and defining housings filled at least partially with the material of the second layer and not including any of the fluid.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: June 1, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Jean-Charles Souriau
  • Patent number: 7710629
    Abstract: A package structure and method of packaging an interferometric modulator with a reinforcing substance to help support the integrity of the package. In some embodiments the reinforcing substance is a desiccant integrated into the backplate or the transparent substrate.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: May 4, 2010
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventor: Lauren Palmateer
  • Patent number: 7709815
    Abstract: The inventions relates to a lithography system in which an electronic image pattern is delivered to a exposure tool for projecting an image to a target surface, said exposure tool comprising a control unit for controlling exposure projections, said control unit at least partly being included in the projection space of the said exposure tool, and being provided with control data by means of light signals, said light signals being coupled in to said control unit by using a free space optical interconnect comprising modulated light beams that are emitted to a light sensitive part of said control unit, wherein the modulated light beams are coupled in to said light sensitive part using a holed mirror for on axis incidence of said light beams on said light sensitive part, the hole or, alternatively, holes of said mirror being provided for passage of said exposure projections.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: May 4, 2010
    Assignee: Mapper Lithography IP B.V.
    Inventors: Remco Jager, Aukje Arianne Annette Kastelijn, Guido de Boer, Marco Jan Jaco Wieland, Stijn Willem Karel Herman Steenbrink
  • Patent number: 7710632
    Abstract: By selectively placing color filters with different transmittance spectrums on an array of modulator elements each having the same reflectance spectrum, a resultant reflectance spectrum for each modulator element and it's respective color filter is created. In one embodiment, the modulator elements in an array are manufactured by the same process so that each modulator element has a reflectance spectrum that includes multiple reflectivity lines. Color filters corresponding to multiple colors, such as red, green, and blue, for example, may be selectively associated with these modulator elements in order to filter out a desired wavelength range for each modulator element and provide a multiple color array. Because the modulator elements are manufactured by the same process, each of the modulator elements is substantially the same and common voltage levels may be used to activate and deactivate selected modulation.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: May 4, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: William J. Cummings
  • Patent number: 7710630
    Abstract: Embodiments of the present invention include a method, apparatus and/or system of producing a color image using four or more primary colors. The apparatus, according to some demonstrative embodiments of the invention, may include an optical arrangement to selectively split polychromatic light into at least four primary-color light beams, and to direct the at least four primary-color light beams towards at least four reflective spatial light modulators, respectively. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: May 4, 2010
    Assignee: Genoa Color Technologies Ltd.
    Inventor: Shmuel Roth
  • Patent number: 7672034
    Abstract: A manufacturing method is provided for a light modulation device that improves utilization efficiency of light. After forming a first reflective layer using a metallic material such as Pt or the like, on a substrate, a light modulating film is formed using an electro-optic material in which refractive index changes in accordance with an applied electrical field. After that, planarization is carried out so that irregularities on an upper surface of the light modulating film are less than or equal to 1/100 of the wavelength of light incident on the light modulation device. A transparent electrode is then formed using ITO, ZnO, or the like, on the light modulating film, and a second reflective layer including a dielectric multilayer is formed.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 2, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Yoshikazu Fujimori
  • Patent number: RE42119
    Abstract: One aspect of the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating an array of first elements, each first element conforming to a first geometry; fabricating at least one array of second elements, each second element conforming to a second geometry; wherein fabricating the arrays comprises selecting a defining aspect of each of the first and second geometries based on a defining characteristic of each of the first and second elements; and normalizing differences in an actuation voltage required to actuate each of the first and second elements, wherein the differences are as a result of the selected defining aspect, the defining characteristic of each of the elements being unchanged.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: February 8, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Mark W. Miles