Acousto-optic Patents (Class 359/305)
  • Patent number: 8718414
    Abstract: An acousto-optical filter element (114) is provided which has an acousto-optical crystal (118) having an acoustic signal transmitter (120) for generating acoustic signals in the acousto-optical crystal (118). The acousto-optical crystal (118) is designed to selectively spatially deflect light of a target wavelength from an input light beam (116) entering into the acousto-optical crystal (118), as a function of a high frequency applied to the acoustic signal transmitter (120), and to thereby produce a target light beam (126) having the target wavelength. In addition, the acousto-optical filter element (114) includes a spatial filter element (132) which is located in the target light beam (126) and is designed to selectively suppress the intensity of the target light beam (126) in a plane perpendicular to the propagation direction of the target light beam (126).
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: May 6, 2014
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Hilmar Gugel, Volker Seyfried
  • Patent number: 8687267
    Abstract: An acousto-optical tunable filter is disclosed. The filter includes a medium having one or more indices of refractions alterable by the application of acoustic waves to the medium. The filter also includes an acoustic transducer coupled to the medium to generate the acoustic waves Altering the frequency of the acoustic wave selects among the different wavelengths in the incident light ray. The device also includes an optical mirror for reflecting a wave diffracted by the medium back to the medium so that it can again be diffracted. The first diffracted wave has its frequency shifted in one direction by the frequency of the acoustic wave while the second diffracted wave has its frequency shifted in the opposite direction, thereby compensating for the first shift. The result is an output ray with little or no frequency shift.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: April 1, 2014
    Inventor: Peiliang Gao
  • Patent number: 8681412
    Abstract: An acousto-optical system is described comprising at least one acousto-optical element having at least one transducer that is attached to a crystal, a driver unit for generating at least one acoustic signal for driving acousto-optical elements modifying light transmitted through the acousto-optical element and comprising at least one digital data processing unit, at least one digital-to-analog converter transforming the digital combination signal into an initial analog driver signal, and an amplifier for amplifying the initial analog driver signal to become said analog electronic driver signal. Further, a microscope and a method of operating the acousto-optical element is are described. Various objectives are achieved like more flexibility, real time compensation for non-linearity and reducing the number, size, costs and energy consumption of electronic components.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Bernd Widzgowski, Holger Birk, Volker Seyfried
  • Publication number: 20140078578
    Abstract: The present disclosure provides various systems and methods for focusing electromagnetic radiation (EMR) within a diffusion medium, such as a turbid medium. A diffusion medium is irradiated with EMR. The EMR may be modulated by an acoustical wave focused on a focus volume within the diffusion medium. The EMR may be modulated by a beat frequency or other function of multiple focused acoustical waves. The EMR may be modulated at a harmonic of a fundamental frequency of one or more acoustical waves. A filter may filter the emerging EMR to remove all but specifically modulated EMR scattered from the focus volume. The modulated EMR may be focused and/or used for various purposes, including imaging. In some embodiments, the modulated EMR may be reflected and/or amplified by a phase conjugating mirror. Furthermore, in some embodiments, acoustical phase conjugation may be used to focus an acoustical wave on a focus volume.
    Type: Application
    Filed: September 20, 2012
    Publication date: March 20, 2014
    Applicant: ELWHA LLC
    Inventors: Michael H. Baym, Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, Jr.
  • Publication number: 20140081096
    Abstract: The present disclosure provides various systems and methods for focusing electromagnetic radiation (EMR) within a diffusion medium, such as a turbid medium. A diffusion medium is irradiated with EMR. The EMR may be modulated by an acoustical wave focused on a focus volume within the diffusion medium. The EMR may be modulated by a beat frequency or other function of multiple focused acoustical waves. The EMR may be modulated at a harmonic of a fundamental frequency of one or more acoustical waves. A filter may filter the emerging EMR to remove all but specifically modulated EMR scattered from the focus volume. The modulated EMR may be focused and/or used for various purposes, including imaging. In some embodiments, the modulated EMR may be reflected and/or amplified by a phase conjugating mirror. Furthermore, in some embodiments, acoustical phase conjugation may be used to focus an acoustical wave on a focus volume.
    Type: Application
    Filed: September 20, 2012
    Publication date: March 20, 2014
    Applicant: ELWHA LLC
    Inventors: Michael H. Baym, Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, JR.
  • Patent number: 8659819
    Abstract: An apparatus for controlling an acousto-optical component influencing at least one of illumination light and detection light in a microscope is described. The apparatus comprises a radio-frequency generator for supplying the acousto-optical component with a radio frequency. The radio-frequency generator is configured to compensate deviations in the characteristics of the light due to temperature fluctuations in the acousto-optical component by adapting the radio frequency.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: February 25, 2014
    Assignee: Leica Microsystems CMS GmbH
    Inventor: Volker Seyfried
  • Publication number: 20140036346
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g.
    Type: Application
    Filed: September 27, 2013
    Publication date: February 6, 2014
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Publication number: 20130321898
    Abstract: A direct imaging system comprises an illumination unit comprising a plurality of light sources, the plurality of light sources configured to emit a plurality of beams, an optical system for forming the plurality of beams to be aligned in position or angle, an acoustic optical modulator positioned to receive the plurality of beams aligned in one of position or angle and to consecutively diffract different portions of the plurality of beams as an acoustic wave propagates in an acoustic direction, and a scanning element adapted to scan an exposure plane with the plurality of beams modulated by the acoustic optical modulator at a scanning velocity, wherein the scanning velocity is selected to incoherently unite the different portions of the plurality of beams into a single exposure spot.
    Type: Application
    Filed: August 1, 2013
    Publication date: December 5, 2013
    Applicants: Laser Imaging Systems GmbH & Co. KG, Orbotech Ltd.
    Inventors: Stefan HEINEMANN, Wolfgang RETSCHKE, Holger WAGNER, Jonas BURGHOFF, Abraham GROSS
  • Publication number: 20130301114
    Abstract: An acousto-optic imaging device disclosed in the present application includes: an acoustic wave source; an acoustic lens system for converting a scattered wave produced by irradiation of an object with an acoustic wave emitted from the acoustic wave source into a predetermined converged state; an acousto-optic medium section which is arranged such that a scattered wave transmitted through the acoustic lens system is incident on the acousto-optic medium section; a light source for emitting a light beam which is formed by a plurality of superposed monochromatic light rays traveling in different directions; an image formation lens system for condensing diffracted light of a plurality of the monochromatic plane wave light rays produced at the acousto-optic medium section; and an image receiving section for detecting light condensed by the image formation lens system to output an electric signal.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Ushio SANGAWA, Takuya IWAMOTO, Yuriko KANEKO, Masahiko HASHIMOTO
  • Patent number: 8493645
    Abstract: An optically powered optical modulator comprises an optical modulation component, such as an electro-optical modulator, acousto-optic modulator or magneto-optic modulator, in combination with one or two lens assemblies positioned at one or both apertures of the optical modulation component, so that the optical modulator formed by the combination of the lens assembly or assemblies and the optical modulation component has optical focus power.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 23, 2013
    Assignee: PV Labs, Inc.
    Inventor: Eiji Yafuso
  • Patent number: 8487208
    Abstract: A laser beam irradiation apparatus includes a laser beam oscillation unit including a pulse laser beam oscillator for oscillating a pulse laser beam and a cycle frequency setting unit for setting the cycle frequency, an acousto-optic deflection unit for deflecting the optical axis of the pulse laser beam oscillated from the laser beam oscillation section, and a control unit for controlling the acousto-optic deflection unit. The control unit outputs a driving pulse signal having a predetermined time width including a pulse width of the pulse laser beam oscillated from the pulse laser beam oscillator to the acousto-optic deflection unit based on the cycle frequency setting signal from the cycle frequency setting section.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 16, 2013
    Assignee: Disco Corporation
    Inventors: Yutaka Kobayashi, Kouichi Nehashi, Keiji Nomaru, Yasuomi Kaneuchi
  • Publication number: 20130148188
    Abstract: Methods and apparatus for optimising, improving or maximising the efficiency of an acousto-optic lens (AOL) system are disclosed. Data relating to efficiency is used to select drive frequencies of the acousto-optic devices (AODs) forming the AOL, thereby both increasing the usable field of view and reducing a prior art patternation problem. Preferably according to the invention, drive frequencies are selected that maximise efficiency of transmission through the AOL. When scanning, the centre of each scan is optimised to be of maximum efficiency.
    Type: Application
    Filed: April 20, 2011
    Publication date: June 13, 2013
    Applicant: UCL BUSINESS PLC
    Inventors: Paul A. Kirkby, K.M. Naga Srinivas Nadella, R. Angus Silver
  • Patent number: 8462425
    Abstract: As disclosed herein, in a first aspect, a device may comprise: an oscillator producing a light output on a beam path; a target material for interaction with light on the beam path at an irradiation site; a beam delay on the beam path the beam delay having a beam folding optical arrangement; and a switch positioned along the beam path and interposed between the oscillator and the beam delay; the switch closable to divert at least a portion of light on the beam path from the beam path, the switch having close time, t1 and the beam path having a length, L1, along the path from the switch to the irradiation site; with t1<cL1, where c is the speed of light on the path, to protect the oscillator.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 11, 2013
    Assignee: Cymer, Inc.
    Inventors: Kai-Chung Hou, Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov
  • Publication number: 20130094071
    Abstract: A fast modular port switching device is described. The device can be used with an optical microscope to facilitate using multiple devices with the microscope. The port switching is done with a galvanometer for switching very fast. The device is modular so it can be combined with any number of similar devices for building a complex, multi-modal imaging system. Also described is the combination of a port switcher with automated spherical aberration correction. Even further described is a similar device where the outputs are recombined, thus making the device a fast filter switcher.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 18, 2013
    Applicant: INTELLIGENT IMAGING INNOVATIONS, INC.
    Inventor: INTELLIGENT IMAGING INNOVATIONS, INC.
  • Patent number: 8422110
    Abstract: An optical switch changes the refractive index of an electro-optical crystal according to an electric field applied to the electro-optical crystal so as to switch depending on whether the electro-optical crystal enables incident light to pass through or whether the electro-optical crystal enables incident light to be totally reflected. The optical switch includes an electrode section including a plurality of electrodes and formed in the electro-optical crystal, a principal plane including the largest area of each electrode on a same plane of the electro-optical crystal; an insulator layer on at least one plane of the electro-optical crystal, the plane being parallel with the electrode section, the insulator layer made of an insulator with lower dielectric constant than the electro-optical crystal; and a temperature control device formed on and in contact with the insulator layer and controls a temperature of the electrode section or dissipates heat generated in the electrode section.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 16, 2013
    Assignee: NEC Corporation
    Inventors: Masahiko Ohta, Osamu Ishibashi, Fujio Okumura
  • Patent number: 8397573
    Abstract: A photoacoustic apparatus includes an acoustic lens configured to collect a acoustic wave, an acoustic detector configured to detect the acoustic wave collected by the acoustic lens, a driver configured to move at least one of the acoustic detector and the acoustic lens so as to measure the acoustic wave generated from an object to be measured due to a photoacoustic effect, and a controller configured to output a first measurement signal resulting from the acoustic wave that is generated from a first position in the object, and to eliminate a second measurement signal resulting from the acoustic wave that is generated from a second position different from the first position in the object.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shuichi Kobayashi
  • Patent number: 8400706
    Abstract: An acousto-optic laser beam scanner of improved scanning angle scope is provided by introducing a controllable compound acoustic waveform into a light transmissive body wherein at least binary and binary diffraction grating patterns of both positive and negative sense can be introduced into the body, the period of the waveform determining the refraction angle magnitude and the order of the pulses determining the refraction angle direction.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: March 19, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Hideo Iizuka, Nader Engheta, Hisayoshi Fujikawa
  • Publication number: 20130063805
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: May 23, 2012
    Publication date: March 14, 2013
    Inventor: Craig B. Arnold
  • Publication number: 20130050788
    Abstract: An acousto-optic device includes an optical waveguide in which incident light is able to propagate; a metal layer surrounding at least a first portion of the optical waveguide; a gain medium layer disposed in the first portion of the optical waveguide; and a sonic wave generator configured to generate surface acoustic waves (SAWs) and apply the SAWs to the optical waveguide and/or the metal layer.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 28, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Wan-joo Maeng, Seung-hoon Han
  • Publication number: 20130050787
    Abstract: An acousto-optic device having a wide range of diffraction angle and an optical scanner, a light modulator, and a display apparatus using the acousto-optic device are provided. The acousto-optic device includes a core layer having a periodic photonic crystal structure in which unit cells of predetermined patterns are repeated, a first clad layer on a first surface of the core layer, the first clad layer having a refractive index that is different from a refractive index of the core layer, a second clad layer on a second surface of the core layer, the second surface being opposite the first surface, the second clad layer having a refractive index that is different from the refractive index of the core layer, and a sound wave generator configured to apply surface acoustic waves (SAW) to the core layer, the first clad layer, the second clad layer, or any combination thereof.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung-hoon HAN, Wan-joo MAENG
  • Patent number: 8368971
    Abstract: A light scanning apparatus includes a scanner 104 which scans a coherent light beam from a light source 101 , a light beam component generator 110 which divides the coherent light beam outgoing from the scanner 104 into a plurality of light beam components, and an optical system 105 which collects the plurality of light beam components so that they are incident on a scan surface 106 at an incident angle different from each other, and superposes the light beam components at an identical position on the scan surface.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 5, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keiichiro Ishihara
  • Patent number: 8369367
    Abstract: A tunable laser system utilizes a frequency shift compensated acousto-optic tunable filter. The wavelength accuracy and stability is achieved by a wavelength locker utilizing two separate intracavity light beams without the need to use beam splitters to significantly reduce the space typically needed by a conventional wavelength locker, and provide more stable operation and easy assembly. The acoustic optical tunable filter includes an acousto-optical crystal with a transducer coupled to the crystal to generate acoustic waves, and an optical mirror to reflect the diffracted light beam back to the acousto-optical medium again such that the frequency shift by two diffractions is compensated. By using different laser gain mediums, acoustic wave driving frequencies and acousto-optical crystals, this invention can be used to make tunable lasers in wide range of optical wavelengths for many different applications.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 5, 2013
    Inventor: Peiliang Gao
  • Publication number: 20130010301
    Abstract: A true time delay system and method for an optical carrier signal modulated with a microwave signal. The system includes a beam deflector, with the optical signal being imaged onto the beam deflector, a stationary reflective diffractive grating arranged in a Littrow configuration, a focusing element arranged between the beam deflector and the stationary reflective diffractive grating. In operation, the beam deflector steers the optical beam across the clear aperture of the focusing element and the focusing element transmits the steered beam to the reflective diffractive grating. A change in optical path length experienced by the optical beam as the beam is scanned across the grating surface results in a relative phase delay in the optical beam. The beam deflector can be a rotating mirror, an acousto-optic beam deflector, or an electro-optic beam deflector. The focusing element can be a lens or a curved mirror.
    Type: Application
    Filed: June 4, 2012
    Publication date: January 10, 2013
    Inventors: Ross Schermer, Frank Bucholtz, Carl A. Villarruel
  • Publication number: 20130010349
    Abstract: The invention provides a method of laser processing that includes the steps of: generating a sequence of RF pulses corresponding to a sequence of laser pulses having a laser pulse repetition rate, the RF pulses including transmitting RF pulses at transmitting RF frequencies and non-transmitting RF pulses at non-transmitting RF frequencies for causing the sequence of laser pulses to be deflected in respective transmitting and non-transmitting directions, each RF pulse comprising an RF frequency, an RF amplitude and a duration; controlling each RF pulse such that the sequence of RF pulses provides a modulated RF drive signal that is modulated to provide a balanced thermal loading on the acousto-optic deflector; applying the modulated RF drive signal to the acousto-optic deflector; and deflecting at least one laser pulse with the acousto-optic deflector using the modulated RF drive signal to irradiate a selected target position with a predetermined pulse energy.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: GSI GROUP CORPORATION
    Inventors: James Cordingley, Dimitry Maltsev
  • Publication number: 20130003066
    Abstract: An acousto-optic device includes an acousto-optic medium having a multi-layer nanostructure; and a sonic wave generator configured to apply sonic waves to the acousto-optic medium having the multi-layer nanostructure. The acousto-optic medium having the multi-layer nanostructure includes a second layer formed of at least two materials that have different dielectric constants and alternate with each other; and a first layer disposed on a first surface of the second layer and formed of a first material, and/or a third layer disposed on a second surface of the second layer and formed of a fourth material.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 3, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seung-hoon HAN, Wan-joo Maeng, Sang-yoon Lee
  • Publication number: 20120281272
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 8, 2012
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Publication number: 20120281271
    Abstract: The technology disclosed relates to improved acousto-optic deflectors (AODs). In particular, it relates to compensation for subtle effects not previously addressed by AOD designers. A shifting center of gravity is described and addressed using advanced power equalisation strategies. Denser writing brushes are provided by using a two-dimensional array of beams with corrections for factors such as angle of incidence at the AOD interface. The compensation and dense brush features can be used separately or in combination.
    Type: Application
    Filed: November 3, 2011
    Publication date: November 8, 2012
    Applicant: Micronic MyData AB
    Inventors: Torbjörn Sandström, Hans Martinsson
  • Publication number: 20120281195
    Abstract: The technology disclosed relates to improved acousto-optic deflectors (AODs). In particular, it relates to compensation for subtle effects not previously addressed by AOD designers. A shifting center of gravity is described and addressed using advanced power equalisation strategies. Denser writing brushes are provided by using a two-dimensional array of beams with corrections for factors such as angle of incidence at the AOD interface.
    Type: Application
    Filed: November 3, 2011
    Publication date: November 8, 2012
    Applicant: Micronic MyData AB
    Inventor: Torbjörn Sandström
  • Publication number: 20120250140
    Abstract: An acousto-optic laser beam scanner of improved scanning angle scope is provided by introducing a controllable compound acoustic waveform into a light transmissive body wherein at least binary and binary diffraction grating patterns of both positive and negative sense can be introduced into the body, the period of the waveform determining the refraction angle magnitude and the order of the pulses determining the refraction angle direction.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Applicant: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventors: Hideo IIZUKA, Nader ENGHETA, Hisayoshi FUJIKAWA
  • Patent number: 8259383
    Abstract: A beam combiner for combining at least two light beams (1, 2) into one combined light beam (3), in particular in the beam path of an optical arrangement, preferably of a microscope, is with respect to a flexible beam combination with structurally simple means characterized by an acousto-optical element (4) in which a mechanical wave or sound wave for deflecting or bending light beams can be generated, so that a first light beam (1) entering the acousto-optical element (4) and at least a second light beam (2) entering the acousto-optical element (4) exit the acousto-optical element (4) in a collinear manner as a combined light beam (3). Further, a light source with such a beam combiner is specified.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: September 4, 2012
    Assignee: Leica Microsystems CMS GmbH
    Inventor: Volker Seyfried
  • Publication number: 20120218623
    Abstract: The technology described applies an extended frequency range of over one octave to drive an acousto-optic deflector, thereby defying a design rule of thumb that limited bandwidth to just under one octave. A combination of extended frequency range and well-timed beam blanking reduces the proportion of a so-called chirp signal that is consumed by beam blanking. This increases the working, effective portion of the sweep signal.
    Type: Application
    Filed: August 29, 2011
    Publication date: August 30, 2012
    Applicant: Micronic MyData AB
    Inventor: Torbjörn Sandström
  • Publication number: 20120204648
    Abstract: A probe for use with an imaging system, including a scanning device configured to receive a first light beam from a light source, a beam-divider configured to split the first light beam into a plurality of second light beams, and a focusing device configured to focus each of the second light beams on respective locations in an object of interest.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 16, 2012
    Applicant: Washington University in St. Louis
    Inventors: Lihong Wang, Liang Song, Konstantin Maslov, Bin Rao
  • Publication number: 20120194885
    Abstract: An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Inventors: Seung-hoon HAN, In-kyeong YOO, Sang-yoon LEE, Hong-seok LEE, Moon-gyu HAN, Sun-kook KIM
  • Patent number: 8194306
    Abstract: A laser apparatus includes a laser capable of generating a laser signal; structure for conditioning the laser signal; and structure for varying the beamwidth of the laser signal as it is scanned into the field of view.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 5, 2012
    Assignee: Lockheed Martin Corp.
    Inventors: Mark A. Turner, Brett A. Williams
  • Patent number: 8174745
    Abstract: An optical unit includes an acousto-optic deflector and a drive control unit. The drive control unit controls the acousto-optic deflector by changing a frequency of a voltage applied to an acousto-optic medium of the acousto-optic deflector to a frequency in a first frequency range during a first period representing a deflection control period and changing the frequency of the voltage to a frequency in a second frequency range different from the first frequency range during a second period representing a transmittance control period.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 8, 2012
    Assignee: Sony Corporation
    Inventors: Hitoshi Okada, Satoru Seko
  • Publication number: 20120086937
    Abstract: An inspection system includes a first focusing unit configured to perform fast focus changes to a first focusing function applied to an incident light beam. A traveling lens acousto-optic device is arranged to receive the light beam focused by the first focusing function and produce focused spots using a plurality of traveling lenses generated in response to radio frequency signals. The traveling lenses apply a second focusing function and the traveling lens acousto-optic device is arranged to alter the second focusing function at a fast rate. The inspection system also includes optics arranged to direct the focused spots onto an inspected object and to direct radiation from the inspected object to a sensor.
    Type: Application
    Filed: September 1, 2011
    Publication date: April 12, 2012
    Inventors: Haim Feldman, Boris Morgenstein, Roman Naidis, Adam Baer
  • Patent number: 8149500
    Abstract: In an embodiment, set forth by way of example and not limitation, a Bragg mirror includes a first bi-layer of a first thickness and a second bi-layer of a second thickness which is different from the first thickness. In this exemplary embodiment, the first bi-layer consists essentially of a first high impedance layer and a first low impedance layer, and the second bi-layer of a second thickness which is different from the first thickness, the second bi-layer consisting essentially of a second high impedance layer and a second low impedance layer. Preferably, the first bi-layer is configured to substantially reflect a first wavelength and the second bi-layer is configured to substantially reflect a second wavelength different from the first wavelength.
    Type: Grant
    Filed: January 30, 2010
    Date of Patent: April 3, 2012
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Ed Godshalk, Guillaume Bouche
  • Patent number: 8110159
    Abstract: An imaging system includes a platform for placement of a sample or an animal to be imaged, and at least one excitation light source for irradiating the sample or animal to stimulate an emission at a plurality of different center wavelengths. An acousto-optic tunable filter (AOTF) is provided that includes a piezoelectric transducer crystal for emitting an acoustic wave having a ground electrode disposed on one side of the piezoelectric crystal. A patterned electrode layer is disposed on a side of the piezoelectric crystal opposite the ground electrode. The patterned electrode layer includes a continuous region proximate to its center and a discontinuous region, a pattern in the discontinuous region comprising a plurality of spaced apart features electrically connected to the continuous region, and an AO interaction crystal receiving the acoustic wave attached to the ground electrode or the patterned electrode layer.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: February 7, 2012
    Assignee: Gooch and Housego PLC
    Inventors: Elliot S. Wachman, Jill Wachman, Stanley J. Geyer
  • Publication number: 20110304900
    Abstract: An acousto-optical system is described comprising at least one acousto-optical element having at least one transducer that is attached to a crystal, a driver unit for generating at least one acoustic signal for driving acousto-optical elements modifying light transmitted through the acousto-optical element and comprising at least one digital data processing unit, at least one digital-to-analog converter transforming the digital combination signal into an initial analog driver signal, and an amplifier for amplifying the initial analog driver signal to become said analog electronic driver signal. Further, a microscope and a method of operating the acousto-optical element is are described. Various objectives are achieved like more flexibility, real time compensation for non-linearity and reducing the number, size, costs and energy consumption of electronic components.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 15, 2011
    Applicant: LEICA MICROSYSTEMS CMS GMBH
    Inventors: Bernd Widzgowski, Holger Birk, Volker Seyfried
  • Patent number: 8038299
    Abstract: A light source apparatus includes a light source emitting light, an optical deflection element deflecting and exciting the emitted light, and a light conversion member cyclically outputting source light components having a plurality of hues in accordance with irradiation positions in a time-sharing manner based on the irradiation using the light deflected by the optical deflection element.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 18, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Hideaki Inoue
  • Patent number: 7965437
    Abstract: An acousto-optic modulator for a Q-switch (300) for a laser includes a monolithic acousto-optic (a-o) medium (311), a series of at least two acoustic transducers (321, 322), bonded spaced apart on the a-o medium, which emit first and second columnar acoustic beams (331, 332). These interact sequentially with an incident optical beam (Light) passing through the modulator. The transducers are oriented so that an optical ray (342) diffracted from the first acoustic column region enters the second acoustic column region at an angle outside the “acceptance angle” of the second acoustical column, i.e. outside the range of incidence angles for which the diffraction efficiency is significant, whereas the remaining light in the zeroth order will undergo further diffraction at the second acoustic column region. This arrangement significantly reduces the amount of light diffracted by the first beam being diffracted back into the zeroth order by the second acoustic beam.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: June 21, 2011
    Assignee: Gooch and Housego PLC
    Inventors: David Lovering, Darren Chaney
  • Patent number: 7944607
    Abstract: The subject matter of the invention is a method of high-resolution acousto-optic programmable filtering in the infrared region of an incident optical wave. To that end it proposes the use of a birefringent acousto-optic crystal whereof the propagation speed of acoustic waves is slow, such as compounds of mercury, which acousto-optic crystal comprises, on one of its faces, a piezoelectric transducer designed to generate a transverse acoustic wave with wave vector whereof the energy propagates according to the same axis but in the opposite direction to the energy of the incident optical wave, knowing that the optical wave resulting from the acousto-optic interaction between the incident optical wave and the acoustic wave with wave vector is diffracted perpendicularly or almost perpendicularly to the direction of the incident optical wave.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 17, 2011
    Assignee: Fastlite
    Inventor: Pierre Tournois
  • Publication number: 20110085221
    Abstract: A laser beam is periodically deflected before being directed into a sample volume. The beam is deflected at a frequency such that the beam makes one or more passes through the sample volume while data are collected from the sample volume. The amplitude of motion of the beam, the dwell time of the beam at any given point, and the Gaussian intensity profile of the beam cooperate to produce an effective flat topped illumination profile for the light that is incident on specimens in the sample volume. The total photon exposure at any given point in the sample volume is a function of both the beam intensity and the dwell time at that location. Therefore, a longer dwell time and lower intensity at the edge of the profile are in balance with a shorter dwell time and higher intensity at the center of the profile.
    Type: Application
    Filed: September 20, 2010
    Publication date: April 14, 2011
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Perry, Tom Montague
  • Patent number: 7869124
    Abstract: It is an object to perform high-precision observation by compensating group-velocity-delay dispersion and angular dispersion with a simple structure. The invention provides a laser microscope 1 including a light source; an acousto-optic deflector 7 that deflects ultrashort-pulse laser light L emitted from the light source; an angular-dispersion element 8, disposed in front of or after the acousto-optic deflector 7, that applies angular dispersion in a direction opposite to the acousto-optic deflector 7; and a group-velocity-delay dispersion-amount adjusting unit 10 that adjusts the amount of dispersion compensation by moving the angular-dispersion element 8 so as to vary the optical path length at each wavelength between the angular-dispersion element 7 and the acousto-optic deflector 8.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: January 11, 2011
    Assignee: Olympus Corporation
    Inventor: Hirokazu Kubo
  • Patent number: 7855823
    Abstract: The present invention provides an acoustooptic device usable even with light in the ultraviolet region, free from laser damage and optical damage, and excellent in acoustooptic performance and an optical imaging apparatus using the same. The acoustooptic device according to the present invention includes a high-frequency signal input part (65), a transducer part (64), and an acoustooptic medium (6). A high-frequency signal input from the high-frequency signal input part (65) is converted into a mechanical vibration by the transducer part (64), and an optical characteristic of the acoustooptic medium (6) varies depending on the mechanical vibration. The acoustooptic medium is formed of a Group III nitride crystal. The optical imaging apparatus according to the present invention includes a light source, an acoustooptic device, a driving circuit, and an image plane.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: December 21, 2010
    Assignee: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Takayuki Negami, Yasuhito Takahashi, Toshimi Nishiyama, Kimihiko Shibuya
  • Patent number: 7843635
    Abstract: The present invention provides a device for trapping or stretching a microscopic substance comprising (a) a light source; (b) an acousto-optic modulator (AOM); (c)a beam-expander; (d) an object lens; and (e) an incoherent light source. The present invention further provides a method for trapping or stretching a microscopic substance comprising (a) providing a focused laser beam to form a focal spot and (b) scanning a plurality of points on said microscopic substance by said focal spot by way of the AOM.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: November 30, 2010
    Assignee: National Yang-Ming University
    Inventors: Guan-Bo Liao, Chi-Hung Lin, Arthur Chiou
  • Patent number: 7839495
    Abstract: A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable scan speed beam scanning subsystem, preferably using an acousto-optic deflector, with beam compensation, so that variable scanning speeds can be achieved. Also included are methods and systems for improving the signal to noise ratio by use of scatter reducing complements, and a system and method for selectively and repeatedly scanning a region of interest on the surface in order to provide additional observations of the region of interest.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 23, 2010
    Assignee: KLA-Tencor Corporation
    Inventors: Bruce Baran, Chris L. Koliopoulos, Songping Gao, Richard E. Bills, Michael Murphree
  • Patent number: 7826130
    Abstract: A device for the optical splitting and modulation of monochromatic coherent electromagnetic radiation, in particular light beams and/or laser beams, contains a beam source, an acousto-optical element disposed downstream of the latter and serving for splitting the beam generated by means of the beam source into a number of partial beams, a modulator and also a signal generator for applying to the acousto-optical element an electrical signal for splitting the beam. The device is intended to be developed to the effect that in conjunction with a simple and functionally reliable construction and independently of the number of beams emitted by the beam source, the intensity of the individual split partial beams can be kept constant.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Heidelberg Instruments Mikrotechnik GmbH
    Inventors: Michael Schweitzer, Joachim Jehle
  • Patent number: 7821703
    Abstract: A method of laser drawing includes steps of causing laser light from a light source to be incident to an acousto-optical diffraction element, and deflecting the light incident to the element by changing a frequency of a high frequency signal to be inputted to the element to diffract the light, thereby changing a diffraction angle of the diffracted light, and condensing the diffracted light emerging from the element on an object to be processed as an optical spot, thereby scanning the object with the optical spot. A diffracted light intensity control table for controlling a light intensity of the diffracted light so as to be constant independent of the diffraction angle of the diffracted light is prepared in advance, and in the deflecting step, the light intensity of the diffracted light is controlled based on the diffracted light intensity control table.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventor: Shingo Imanishi
  • Publication number: 20100232011
    Abstract: An apparatus for controlling an acousto-optical component influencing at least one of illumination light and detection light in a microscope is described. The apparatus comprises a radio-frequency generator for supplying the acousto-optical component with a radio frequency. The radio-frequency generator is configured to compensate deviations in the characteristics of the light due to temperature fluctuations in the acousto-optical component by adapting the radio frequency.
    Type: Application
    Filed: November 6, 2008
    Publication date: September 16, 2010
    Applicant: LEICA MICROSYSTEMS CMS GMBH
    Inventor: Volker Seyfried