Two Or More In A Series Patents (Class 359/365)
  • Patent number: 10690917
    Abstract: A variety of femtoprojector optical systems are described. Each of them can be made small enough to fit in a contact lens using plastic injection molding, diamond turning, photolithography and etching, or other techniques. Most, but not all, of the systems include a solid cylindrical transparent substrate with a curved primary mirror formed on one end and a secondary mirror formed on the other end. Any of the designs may use light blocking, light-redirecting, absorbing coatings or other types of baffle structures as needed to reduce stray light.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: June 23, 2020
    Assignee: Tectus Corporation
    Inventors: Gregory David Miller, Brian Elliot Lemoff, George Michael Mihalakis, Ronald Maynard, Michael West Wiemer
  • Patent number: 10670852
    Abstract: Provided is an illuminated reticle assembly for an optical aiming device. The assembly includes a reticle plate has a first surface on which a physical reticle pattern is applied. A laser light source is configured to project a beam of laser light into the reticle plate at a first angle and toward an inner side of a second surface at an angle of incidence that directs a reflected beam of laser light toward at least a selected portion of the physical reticle pattern. The reflected laser light illuminates the at least selected portion of the physical reticle pattern.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: June 2, 2020
    Assignee: Lightforce USA, Inc.
    Inventors: Brian J. Bellah, Chad D. Beauregard
  • Patent number: 10599042
    Abstract: An illumination optical system which is used with a reflective imaging optical system configured to form an image of a pattern arranged on a first plane onto a second plane, and which illuminates an illumination area on the first plane with a light from a light source. The illumination optical system includes one or more reflecting mirrors configured to reflect the light from the light source such that the light from the light source passes between first and second mirrors of a plurality of mirrors provided in the reflective imaging optical system, the first mirror being configured to reflect the light from the pattern first, and the second mirror being configured to reflect the light from the pattern second.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: March 24, 2020
    Assignee: NIKON CORPORATION
    Inventor: Yoshio Kawabe
  • Patent number: 10571698
    Abstract: A light guide device used in a display apparatus includes a transparent light guide portion that guides light beams incident from one end side to a light-emitting portion. The light guide portion includes a plurality of partial reflection surfaces between a first surface and a second surface which are parallel to each other, the plurality of partial reflection surfaces being inclined at the same angle from a normal direction with respect to the second surface toward the one end side. In the plurality of partial reflection surfaces, an appropriate incident angle range of the partial reflection surface positioned on the one end side is set to a larger angle than that of the partial reflection surface positioned on another end side.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: February 25, 2020
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Hayato Matsuki, Takashi Takeda
  • Patent number: 10466452
    Abstract: A projection optical system capable of performing compact and proximate projection and a projector including the projection optical system. The projection optical system includes a first optical group which is a dioptric system and a second optical group which is a catoptric system. The second optical group includes a first catoptric system to a third catoptric system that have a first reflection surface with a concave surface shape, a second reflection surface with a curved surface shape, and a third reflection surface with a convex surface shape. The first catoptric system to the third catoptric system satisfy Conditional Expression (1) for focal distances. Image light emitted from the first optical group is reflected by the second optical group to be projected to a projection surface.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 5, 2019
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Nobutaka Minefuji
  • Patent number: 10310284
    Abstract: A projection apparatus of reduced size and weight projects holographic images to a floating display position. An apparatus housing includes a laser projection system that outputs a laser beam, a beam diverter/splitter that receives and polarizes the laser beam, a concave mirror onto which the laser beam is diverted, and an adjustable lens or series of lenses to adjust the focus and/or size of images that are reflected from the concave mirror and through the adjustable lens. Rotating mirrors may be used instead of a beam diverter/splitter to draw images onto the concave mirror. Multiple apparatuses may be mounted around the floating display position for use as subsystems to synchronously project the holographic images for viewing from a 360° perspective. The multiple apparatuses or an individual apparatus may be used in conjunction with a conical mirror to display the images at a position above the conical mirror.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: June 4, 2019
    Inventors: Mary Gormley Waldron, Kenneth Epstein
  • Patent number: 10310275
    Abstract: An optical apparatus includes a structured light generation unit, a conversion lens module, a collimating lens and a casing. The structured light generation unit outputs a structured light. The light beams from the structured light generation unit are expanded by the conversion lens module. The expanded light beams are collimated by the collimating lens. After the light beams pass through the conversion lens module and the collimating lens, the light beams are projected to a projection surface. Consequently, a structured light pattern is formed on the projection surface. All conversion lenses of the conversion lens module have negative optical power. Consequently, the area of the structured light pattern on the projection surface is wider. Moreover, the structured light generation unit and the conversion lens module can be accommodated within the casing having a smaller thickness.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: June 4, 2019
    Assignee: EVERREADY PRECISION IND. CORP.
    Inventors: Jyh-Long Chern, Chih-Ming Yen
  • Patent number: 10191275
    Abstract: An off-axis optical system having a rectangular aperture stop to control rays of incident electromagnetic radiation passing through the optical system along an optical path is provided. The optical system includes one or more optical surfaces along the optical path, each surface being configured to change a direction of each ray on the surface based on a location of the ray relative to the surface. At least one of the surfaces is conjugate to and has the same shape as the rectangular aperture stop. In one embodiment, each optical surface is shaped to avoid vignetting the rays. In one embodiment, the optical system is a three-mirror anastigmat (TMA) and includes a concave primary mirror to collect and focus the electromagnetic radiation; a curved secondary mirror to reflect the electromagnetic radiation focused by the primary mirror; and a concave tertiary mirror to focus the electromagnetic radiation reflected by the secondary mirror.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 29, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Ian B. Murray, David Ericson, Michael J. Russo, Jr.
  • Patent number: 10095013
    Abstract: An objective optical system includes in order from an object side a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, wherein focusing is carried out by moving the second lens group with respect to a change in an object-point distance, and the following conditional expressions (2) and (3) are satisfied: 3<|?|??(2), and 60°<???(3), where, ? denotes a lateral magnification of the overall objective optical system at the time of focusing to an object point at a close distance, and ? denotes the maximum half angle of view at the time of focusing to an object point at a long distance.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: October 9, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Hideyasu Takato
  • Patent number: 10078223
    Abstract: A head mounted display device includes a structural frame arranged generally along a X-axis and a Y-axis for viewing along a Z-axis, the X, Y, and Z axes being mutually perpendicular. A micro-display is coupled to the structural frame, and configured to project visual content in a substantially forward direction along the Z-axis away from a user. A group of one or more optical elements with reflective optical surfaces is coupled to the structural frame and respectively positioned on a front side of the micro-display to reflectively guide a light ray bundle in a non-pupil forming optical path from the micro-display to a user's eye to provide an image to the user's eye such that the light rays of the light ray bundle entering the user's eye are essentially parallel to make the image visible to the user with varied positions of the user's pupil.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 18, 2018
    Assignee: IMMY INC.
    Inventor: Douglas Peter Magyari
  • Patent number: 10025195
    Abstract: A reflective imaging optical system which forms, on a second plane, an image of a pattern arranged on a first plane and illuminated with light from an illumination optical system includes a plurality of reflecting mirrors including first and second reflecting mirrors by which the light reflected by the first plane is reflected first, second, respectively. An area on the first plane illuminated with the light from the illumination optical system is an illumination objective area, the illumination objective area is positioned on a predetermined side of an optical axis of the reflecting mirrors, and reflection areas of the first and second reflecting mirrors are positioned on the predetermined side of the optical axis of the reflecting mirrors; and the first and second reflecting mirrors are arranged so that an optical path of the light from the illumination optical system is positioned between the first and second reflecting mirrors.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: July 17, 2018
    Assignee: NIKON CORPORATION
    Inventor: Yoshio Kawabe
  • Patent number: 9958683
    Abstract: In a light guide device, a step between optical surfaces connected to each other by a connection portion can be limited (e.g., to 1 mm or smaller) so that a large stepped portion is not allowed to be formed at the connection portion in a hard coat formation process, whereby a coating liquid that flows along portions that are to form the optical surfaces forms no liquid pool or causes no liquid sagging. The light guide device can thus maintain satisfactory light guiding performance at the light guide portion.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: May 1, 2018
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Masayuki Takagi, Toshiaki Miyao, Takahiro Totani, Takashi Takeda, Akira Komatsu
  • Patent number: 9846366
    Abstract: A catadioptric projection objective images a pattern provided in an object plane of the projection objective onto an image plane of the projection objective. The projection objective includes first, second and third objective parts. The first objective part images the pattern into a first intermediate image. The second objective part images the first intermediate image into a second intermediate image. The third objective part images the second intermediate image onto the image plane. A first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image. Pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate images and between the second intermediate image and the image plane. All concave mirrors are arranged optically remote from a pupil surface.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 19, 2017
    Assignee: Nikon Corporation
    Inventor: Yasuhiro Omura
  • Patent number: 9709824
    Abstract: A deformable membrane assembly comprising a fluid-filled envelope, one wall of which is formed by an elastic membrane that is held around its edge by a bendable supporting ring, a support for the envelope and at least three ring-engaging members that are arranged to apply a force to the ring at spaced control points for adjusting the shape of the membrane, with the ring bending to control the shape of the membrane to a predefined form. A control point is provided at or proximate each point on the ring where the profile of the ring that is needed to produce the predefined form of the membrane exhibits a turning point in the direction of the force applied at the control point between two adjacent points where the profile of the ring exhibits an inflection point or a turning point in the opposite direction.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: July 18, 2017
    Assignee: Adlens Ltd.
    Inventors: Robert Edward Stevens, Alex Edginton, Benjamin Thomas Tristram Holland, Daniel Paul Rhodes, Dijon Pietropinto, Derek Paul Forbes Bean, Roger Brian Minchin Clarke, Peter Lee Crossley, Richard Leefe Douglas Murray, Edwin James Stone
  • Patent number: 9632310
    Abstract: In a light guide device, a step between optical surfaces connected to each other by a connection portion can be limited to 1 mm or smaller so that a large stepped portion is not allowed to be formed at the connection portion in a hard coat formation process, whereby a coating liquid that flows along portions that are to form the optical surfaces forms no liquid pool or causes no liquid sagging. The light guide device can thus maintain satisfactory light guiding performance at the light guide portion.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 25, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Masayuki Takagi, Toshiaki Miyao, Takahiro Totani, Takashi Takeda, Akira Komatsu
  • Patent number: 9599815
    Abstract: Provided is a head-up display apparatus that projects a display image, which is formed on a display surface, onto a projection surface of a movable body to display a virtual image viewable from a cabin of the movable body. The head-up display apparatus includes a display with pixels arranged along the display surface, a light source, and a diffusion plate for diffusing the light coming from the light source and emits the diffused light toward the display. The diffusion plate has through-holes in a thickness direction. In a specific direction on the display surface, an inner dimension of the through-hole is smaller than a pixel pitch of the pixels.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 21, 2017
    Assignee: DENSO CORPORATION
    Inventor: Makoto Inomata
  • Patent number: 9541841
    Abstract: An imaging optical system has a plurality of mirrors which image an object field in an object plane into an image field in an image plane. The imaging optical system has a pupil obscuration. The last mirror in the beam path of the imaging light between the object field and the image field has a through-opening for the passage of the imaging light. A penultimate mirror of the imaging optical system in the beam path of the imaging light between the object field and the image field has no through-opening for the passage of the imaging light. The imaging optical system has precisely eight mirrors. The result is an imaging optical system which exhibits a favorable combination of small imaging errors, manageable production and good throughput.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: January 10, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Alexander Epple
  • Patent number: 9459539
    Abstract: An imaging optical unit for a projection exposure apparatus serves for imaging an object field in an object plane into an image field in an image plane. The image field is arranged at a field distance from the object plane. The optical unit has a plurality of mirrors. The imaging optical unit has a wavefront aberration over the image field of a maximum of 0.3 nm and an image-side numerical aperture of at least 0.5. The image field in at least one dimension has an extent of at least 10 mm. The result is an imaging optical unit in particular suited as part of an optical system for a projection exposure apparatus for projection lithography.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 4, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Christoph Menke, Susanne Beder
  • Patent number: 9395525
    Abstract: A catadioptric imaging lens includes: a first reflecting mirror; a second reflecting mirror; and a lens group. A reflecting surface of the first reflecting mirror is a rotationally asymmetrical aspherical, with concavity on the object side within the reference and the first orthogonal plane. A reflecting surface of the second reflecting mirror is a rotationally asymmetrical aspherical, with convexity toward the first reflecting mirror within the reference and within the second orthogonal plane. A surface in the lens group closest to the second reflecting mirror is a rotationally asymmetrical aspherical, with concavity toward the second reflecting mirror within the reference plane and convexity toward the second reflecting mirror within the third orthogonal plane.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: July 19, 2016
    Assignee: Nikon Corporation
    Inventors: Miho Matsumoto, Yoshikazu Hirayama, Kinya Kato, Yoshikazu Sugiyama
  • Patent number: 9341831
    Abstract: An optical system to form an image on an image plane includes, a catadioptric optical subsystem configured to collect light from an object plane; and a refractive optical subsystem configured to form the image on the image plane, the catadioptric and refractive optical subsystems being arranged in order from the object plane to the image plane along an optical axis of the optical system. A baffle to shut off light traveling toward the image plane without being reflected by the catadioptric optical subsystem is placed in the optical system, in order to form a shielded portion in a center of an exit pupil plane of the optical system, and the catadioptric optical subsystem includes a partially transparent surface around the optical axis of the optical system so that transmissivity of a region, other than the shielded portion, at the exit pupil plane varies in a radial direction of the exit pupil plane.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: May 17, 2016
    Assignees: Canon Kabushiki Kaisha, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Masatsugu Nakano, Jose Manuel Sasian-Alvarado
  • Patent number: 9323158
    Abstract: A design method of extreme ultraviolet lithography projection objective comprises: determining the optical design parameters of the lithography projection objective, setting the projection objective to include six lenses and an aperture diaphragm, and dividing the six lenses into the three groups according to the beam propagation direction; determining the radii and the intervals of the first and third groups, respectively; and determining the radii and the intervals of the second group of lenses according to the parameters of the foregoing two groups of lenses. The design method has the advantage of avoiding the blindness in revising and error testing of the existing structure of the conventional optical design method by calculating lens structures that meet the parameter conditions, so that light rays can be selected conveniently according to the special requirements of optical processing detection, and a mass of searches and judgments can be avoided.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 26, 2016
    Assignee: National Institute of Metrology
    Inventors: Yanqiu Li, Fei Liu
  • Patent number: 9297512
    Abstract: Incidence region 162 of light flux controlling member 160 includes first lens region 10 and second lens region 50 which have a fan shape in a plan view thereof. First lens region 10 includes a plurality of first projections 172. In first inclining surface 174 of first projection 172, angle ?11 on a first cross section and angle ?21 on a second cross section in a direction orthogonal to the first cross section are both larger than 0°. In second inclining surface 176, angle ?12 on the second cross section is larger than angle ?22 on the second cross section.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 29, 2016
    Assignee: Enplas Corporation
    Inventors: Aki Inada, Noriyuki Kawahara
  • Patent number: 9229236
    Abstract: A head-mounted display includes: a scanning unit that scans signal light modulated according to an image signal; a display unit on which the signal light from the scanning unit is incident and that is transmissive to visible light, the display unit including a half mirror area reflecting the signal light from the scanning unit and a transmission area having a transmittance higher than that of the half mirror area for visible light; and a control unit that scans, based on a use condition, the signal light over an area including the transmission area.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: January 5, 2016
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Makiko Hino, Yasushi Mizoguchi
  • Patent number: 9188771
    Abstract: An optical imaging system serving for imaging a pattern arranged in an object plane of the imaging system into an image plane of the imaging system with the aid of electromagnetic radiation from a wavelength range around a main wavelength ?0 has a multiplicity of mirrors. Each mirror has a mirror surface having a reflective layer arrangement having a sequence of individual layers.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 17, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Christoph Zaczek, Sascha Migura, Gerhard Braun, Hans-Juergen Mann, Hans-Jochen Paul
  • Patent number: 9110225
    Abstract: A metrology system serves to examine an object arranged in an object field using EUV illumination light. An illumination optics of the metrology system has a collector mirror which is arranged in the beam path directly downstream of an EUV light source. Downstream of the collector mirror, less than three additional illumination mirrors are arranged in the beam path between the collector mirror and the object field. An intermediate focus is arranged in the beam path between the collector mirror and the additional illumination mirror. The metrology system further includes a magnifying imaging optics for imaging the object field into an image field in an image plane. As a result a metrology system is obtained which comprises an illumination optics that ensures an efficient illumination of the object field by means of illumination parameters which are well adapted to the illumination situation of current EUV projection exposure apparatuses.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 18, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Jürgen Mann, Alois Herkommer
  • Patent number: 9081295
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective. The projection objective includes a first objective part that includes one or more refractive optical elements to image the pattern provided in the object plane into a first intermediate image, a second objective part that consists of reflective optical elements including at least one concave mirror to image the first intermediate image into a second intermediate image, and a third objective part that includes one or more refractive optical elements to image the second intermediate imaging onto the image plane. The projection objective includes at lease one double asphere having a first aspheric surface and a second aspheric surface immediately adjacent to the first aspheric surface, the double asphere being formed by facing adjacent aspheric surfaces of two consecutive lenses.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 14, 2015
    Assignee: Nikon Corporation
    Inventor: Yasuhiro Omura
  • Patent number: 9075322
    Abstract: An reflective imaging optical system of the far pupil type, which is applicable to an exposure apparatus using for example the EUV light, forms on a second plane an image of a predetermined area on a first plane and is provided with first to eighth reflecting mirrors arranged in an order of reflection from the first plane toward the second plane. An entrance pupil of reflective imaging optical system is positioned on a side opposite to the reflective imaging optical system with the first plane intervening therebetween; and the following condition is fulfilled provided that PD represents a distance along an optical axis between the entrance pupil and the first plane, TT represents a distance along the optical axis between the first plane and the second plane, and R represents an angle of incidence of a main light beam coming into the first plane: ?14.3<(PD/TT)/R<?2.5.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 7, 2015
    Assignee: Nikon Corporation
    Inventor: Yoshio Kawabe
  • Patent number: 9075291
    Abstract: A teleconverter includes a master lens apparatus-side mount on which a master lens apparatus is mounted, a camera body-side mount on which a camera body is mounted, and a converter lens unit that has a negative refracting power for mounting the master lens apparatus thereon to obtain a lens system having a focal length longer than that of the master lens apparatus, the converter lens unit including a first lens group on the master lens apparatus side and a second lens group on the camera body side with an on longest air separation interposed between them, the first lens group has positive refracting power, and the second lens group has negative refracting power, with satisfaction of the following condition (1): ?1.53<f1/f<?0.66??(1) where f is the focal length of a whole system of the converter lens unit, and f1 is the focal length of the first lens group.
    Type: Grant
    Filed: May 11, 2013
    Date of Patent: July 7, 2015
    Assignee: OLYMPUS IMAGING CORP.
    Inventor: Yasuji Ogata
  • Publication number: 20150146283
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventor: David M. Williamson
  • Patent number: 9030598
    Abstract: A method includes producing a first layer of optical liquid, shaping contactlessly the first layer of the optical liquid according to a desired form, and curing the shaped first layer of the optical liquid with electromagnetic radiation to generate a first optically refracting surface.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: May 12, 2015
    Assignee: Nokia Corporation
    Inventor: Marko Eromaki
  • Patent number: 8989584
    Abstract: An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: March 24, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Anthony J. Ruggiero, Hsueh-yuan Pao, Paul Sargis
  • Publication number: 20150062697
    Abstract: An intermediate image is formed inside a light guide member by a projection lens or the like, whereby a small optical system having a wide viewing angle and high performance is provided. At least one curved surface among curved surfaces forming an optical system is an opposite-sign curvature curved surface having an opposite-sign curvature point different in curvature depending on direction, whereby the optical system is placed in a satisfactory aberration correction state.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Akira KOMATSU, Takahiro TOTANI, Masayuki TAKAGI, Toshiaki MIYAO, Takashi TAKEDA
  • Patent number: 8970819
    Abstract: A microlithography projection optical system is disclosed. The system can include a plurality of optical elements arranged to image radiation having a wavelength ? from an object field in an object plane to an image field in an image plane. The plurality of optical elements can have an entrance pupil located more than 2.8 m from the object plane. A path of radiation through the optical system can be characterized by chief rays having an angle of 3° or more with respect to the normal to the object plane. This can allow the use of phase shifting masks as objects to be imaged, in particular for EUV wavelengths.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich
  • Publication number: 20150043063
    Abstract: A catadioptric system includes: a catadioptric unit configured to form an intermediate image of an object; a refracting portion configured to form an image of the intermediate image; a first field lens configured to guide optical flux from the catadioptric unit to the refracting portion; and a second field lens configured to guide the optical flux from the refracting portion toward an image side. The first and the second field lenses each include a positive lens and a negative lens adjacent to each other, and wherein where ?IFLp1 and ?IFLn1 are respectively Abbe numbers of materials of the positive lens and the negative lens of the first field lens, and ?FLp1 and ?FLn1 are respectively Abbe numbers of materials of the positive lens and the negative lens of the second field lens, conditions 20<?IFLp1??IFLn1 and 20<?FLp1??FLn1 are satisfied.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Inventor: Kazuhiko Kajiyama
  • Patent number: 8947774
    Abstract: A catadioptric optical system includes a first imaging optical system that includes a catadioptric part that collects a light beam from an object to form an intermediate image of the object, and a second imaging optical system that includes a refractive part that images the intermediate image on an image plane. The first imaging optical system includes a first optical element, a second optical element, and a negative lens in an optical path between the first and second optical elements, and the first and second optical elements are disposed so that reflection parts of the first and second optical element face each other. A power ?n of the negative lens, radii of curvature R1n and R2n of lens surfaces of the negative lens at an object side and an image side, respectively, and a power ?1 of the first imaging optical system are appropriately set.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatsugu Nakano
  • Patent number: 8947773
    Abstract: A catadioptric lens comprises, a first surface configured to introduce a ray within the catadioptric lens; and a second surface, with a reflective film, configured to reflect the introduced ray to the first surface; the second surface having a first reflection area and a second reflection area surrounded by the first reflection area, wherein the ray, which has been introduced from the first surface and has traveled to the first reflection area, is reflected on the first reflection area by total internal reflection, and the ray, which has been introduced from the first surface and has traveled to the second reflection area, is reflected by the reflective film.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatsugu Nakano
  • Publication number: 20150015941
    Abstract: A method includes generating a primary beam using light emitted by a light-source. The method includes generating a secondary beam using a portion of the light using a lens of a telescope. The lens includes one or more refraction elements positioned on a first surface of the lens, and the secondary beam is generated by diverting the portion of the light using the one or more refraction elements.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventor: Stephen K. Wilcken
  • Patent number: 8933417
    Abstract: A lens and reflector unit for optical measurements includes first and second convex surface sections of the lens and reflector unit. Both have their respective central normal lines. A first flat surface section has a normal direction that divides the angle between the central normal lines into equal halves. A third convex surface section has a third central normal line, and the fourth convex surface section has a fourth central normal line. A second flat surface section has a normal direction that divides the angle between the third and fourth central normal lines into to equal halves.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: January 13, 2015
    Assignee: Wallac Oy
    Inventor: Pauli Salmelainen
  • Publication number: 20140376086
    Abstract: A projection objective for imaging a pattern provided in an object plane onto an image plane includes: a first objective part to image the pattern provided in the object plane to a first intermediate image, wherein all of the elements in the first objective part having optical power to image the pattern are refractive elements; a second objective part that includes at least one concave mirror to image the first intermediate image to a second intermediate image; and a third objective part to image the second intermediate image to the image plane, wherein all of the elements in the third objective part having optical power are refractive elements. An aperture stop is positioned in the third objective part and there are no more than four lenses in the third objective part between the aperture stop and the image plane. The projection objective has an image side numerical aperture >0.9.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 25, 2014
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8913316
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 8908269
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: December 9, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140300957
    Abstract: A projection objective includes a plurality of optical elements configured so that, during use of the projection objective, radiation follows a path through the projection objective to image an object field in an object surface onto an image field in an image surface. The optical elements define a first group of refractive optical elements; a second group of optical elements downstream of the first group of refractive optical elements along the path, the second group of optical elements comprising a concave mirror; and a third group of refractive optical elements downstream of the second group of optical elements along the path. The projection objective has a first pupil surface along the path, and the projection objective comprises a Fourier lens group comprising a negative lens group arranged so that an absolute value of a Petzval radius at the first pupil surface is greater than 150 mm.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventor: Aurelian Dodoc
  • Patent number: 8830570
    Abstract: The invention provides a prism optical system includes a prism in which a space formed by at least two optical surfaces mutually decentered with respect to an axial chief ray of an incident light beam is filled up with a medium having a refractive index of greater than 1. At least two optical surfaces are rotationally asymmetric surfaces, five internal reflections take place inside the prism, and there is an intermediate image formed inside the prism, which image is in turn formed outside the prism.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 9, 2014
    Assignee: Olympus Corporation
    Inventor: Koichi Takahashi
  • Patent number: 8830571
    Abstract: An all-reflective afocal lens is comprised of eight-reflective mirrors which can fold the light path into a very compact and thin configuration while maintaining diffraction limited performance. Such an afocal arrangement is usable with a traditional optical imager of an appropriate aperture dimension and FOV range, or with an annular aperture optical system with the appropriately scaled aperture and acceptable FOV angles. When combined the resulting FOV is scaled by the magnification produced by the afocal. The afocal arrangement can be used in either a magnification mode or a demagnification mode. Such an afocal arrangement can be used as either a focal length extender or as a FOV switch enabling a very short length two FOV multi-spectral system with a length that can be an order of magnitude shorter than a known optical system.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: September 9, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Jay N. Vizgaitis
  • Publication number: 20140240820
    Abstract: An afocal telescope configured for back-scanned imagery including a three mirror anastigmat and an optical element positioned proximate an intermediate image plane of the three mirror anastigmat and configured to adjust distortion characteristics of the afocal telescope to control image wander on a focal plane array. The optical element may be a field correcting lens or mirror, for example.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: RAYTHEON COMPANY
    Inventor: David N. Sitter, JR.
  • Publication number: 20140226203
    Abstract: A catadioptric system includes a first catadioptric group, a second catadioptric group, and a lens group disposed in axial alignment with each other. The first catadioptric group includes a solid lens having an input surface, a primary reflective surface, secondary reflective surface and an exit surface. The primary reflective surface is a curved surface concave towards the secondary reflective surface. A light flux entering through the input surface undergoes more than two reflections between the primary and secondary reflective surfaces, prior to exiting through the exit surface. At least one of the primary reflective surface and secondary reflective surface has a continuous and smooth topological profile.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicants: The Arizona Board of Regents on behalf of the University of Arizona, CANON KABUSHIKI KAISHA
    Inventors: Masatsugu Nakano, Jose Manuel Sasian-Alvarado, Tamer T. Elazhary
  • Patent number: 8804234
    Abstract: A catadioptric projection objective for imaging a pattern onto an image plane includes: a first objective part for imaging the pattern into a first intermediate image; a second objective part for imaging the first intermediate image into a second intermediate image; and a third objective part for imaging the second intermediate image onto the image plane. A first concave mirror having a continuous mirror surface and a second concave mirror having a continuous mirror surface are upstream of the second intermediate image. A pupil surface is formed between the object plane and the first intermediate image, between the first and the second intermediate image, and between the second intermediate image and the image plane. A plate having essentially parallel plate surfaces is positioned in the first objective part near the pupil surface. At least one plate surface is aspherized to correct for aberrations.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Publication number: 20140218704
    Abstract: A catoptric system for EUV lithography includes six freeform reflective surfaces that are specified based on fringe Zernike polynomials. Each of the surfaces is tilted and/or decentered in a meridian plane and with respect to a common axis so that image and object planes are parallel. Rectangular fields can be imaged with image space numerical aperture of at least 0.5.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: Nikon Corporation
    Inventor: David M. Williamson
  • Patent number: 8786943
    Abstract: An imaging system having reduced susceptibility to thermally-induced stress birefringence comprising relay optics and projection optics. One of either the relay optics or the projection optics is a reflective optical system that includes reflective optical elements, and the other is a refractive optical system having a negligible or low susceptibility to thermal stress birefringence. The refractive optical system includes: a first group of refractive lens elements located upstream from an aperture stop, and a second group of refractive lens elements located downstream from the aperture stop. The refractive lens elements in the first and second groups that are immediately adjacent to the aperture stop are fabricated using optical materials having a negligible susceptibility to thermal stress birefringence, and the other refractive lens elements in the first and second groups are fabricated using optical materials having at most a moderate susceptibility to thermal stress birefringence.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 22, 2014
    Assignee: Eastman Kodak Company
    Inventors: Barry David Silverstein, Joseph Raymond Bietry, Andrew F. Kurtz, Robert J. Metzger
  • Patent number: 8780441
    Abstract: The disclosure provides a catadioptric projection objective which includes a plurality of optical elements, including first, second and third refractive objection parts. Optical elements arranged between an object surface and a first pupil surface form a Fourier lens group that includes a negative lens group arranged optically close to the first pupil surface. The Fourier lens group is configured such that a Petzval radius RP at the first pupil surface satisfies the condition: |RP|>150 mm.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Aurelian Dodoc