Beam Deflector Or Splitter Patents (Class 359/489.08)
  • Patent number: 10935399
    Abstract: An apparatus for sensing a value of a property includes: an optical sensor having a single mode optical fiber responsive to the property; an optical interrogator having a tunable laser to transmit polarized light to the optical sensor, a photo-detector to receive sensor light, and a controller configured to process the received light and output the value of the property; and a passive random depolarizer disposed between the tunable laser and the single mode optical fiber and having (i) a first polarization maintaining (PM) optical fiber of length L1 having a first fast optical axis and a first slow optical axis and (ii) a second PM optical fiber of length L2 having a second fast optical axis and a second slow optical axis rotationally spliced to the first PM optical fiber in which the second fast and slow optical axes are offset from the first fast and slow optical axes.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 2, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Dan Raymond Provenzano
  • Patent number: 10444328
    Abstract: A high-power laser (HPL) system and method for targeting an object and imaging/tracking the object with an integral track illuminator. The system includes a HPL optically coupled to an aperture sharing element (ASE) and configured to project high-power light at the object, and to switch off for prescribed time intervals to illuminate and track the object. At least one camera is optically coupled to and disposed with respect to the ASE to track the illuminated object over a shared optical path with the HPL when the HPL is switched off for a prescribed time interval.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: October 15, 2019
    Assignee: United States of America as Represented by the Secretary of the Air Force
    Inventor: Patrick D. Saunders
  • Patent number: 10365777
    Abstract: A polarizer and a display device, which relates to a display technology is provided. The polarizer is divided into a plurality of pattern regions arranged in a two-dimensional direction. The polarizer includes a linear polarization pattern and a touch sensing electrode disposed in the pattern region. The touch sensing electrodes in the different pattern regions are not connected. Polarization pattern and touch sensing electrode are set in the same layer.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: July 30, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Rui Xu, Xue Dong, Jing Lv, Haisheng Wang, Chun-Wei Wu, Yingming Liu
  • Publication number: 20150146295
    Abstract: A laser output apparatus is disclosed. The laser output apparatus includes a laser source providing a first laser light; a first attenuation element attenuating the first laser light to be a second laser light having a polarization direction and an energy; a polarization changing element changing the polarization direction; and a second attenuation element decreasing the energy.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 28, 2015
    Applicant: U&U Engineering Inc.
    Inventors: Wen-Chih Weng, Ming Chen, Hsiao Yen Chuang
  • Patent number: 9041897
    Abstract: An optical switch for performing high extinction ratio switching of an optical signal includes a beam polarizing element and one or more optical elements. The optical elements are configured to direct an optical signal along a first or second optical path based on the polarization state of the optical signal as it passes through the optical elements. The optical switch performs high extinction ratio switching of the optical signal by preventing unwanted optical energy from entering an output port by using an absorptive or reflective optical element or by directing the unwanted optical energy along a different optical path.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: May 26, 2015
    Assignee: II-VI Incorporated
    Inventors: Haijun Yuan, Xuehua Wu, Christopher Lin, Giovanni Barbarossa
  • Patent number: 8937768
    Abstract: An optical component has a lens including a further optical component therein. The further optical component acts upon light propagating within a portion of the lens but not on light propagating within a second other portion of the lens. A simple configuration involves a lens having a slot for having the optical component inserted therein. Optical components including the lens with further optical component include beam splitters and beam combiners.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: January 20, 2015
    Assignee: Viscore Technologies Inc.
    Inventors: Wenlu Wang, Kinwai Leong, Yunqu Liu
  • Publication number: 20150015952
    Abstract: A high brightness, high power laser output is produced using a technique of splitting the outputs of multiple laser diode sources into two polarization states, wavelength combining the first polarization state from the multiple laser diodes, separately wavelength combining the second polarization state from the multiple laser diodes, and recombining the two polarized wavelength combined beams using a polarization combiner.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventor: Edmund L. Wolak
  • Publication number: 20140376083
    Abstract: A polarization reducing apparatus includes a separating unit configured to separate input light into components having polarization directions orthogonal to each other; a winding waveguide of silicon formed on a silicon substrate in a winding manner, the winding waveguide transmitting a first component among the components separated by the separating unit; an optical path configured to have a shorter optical path length than the winding waveguide, the optical path transmitting a second component among the components separated by the separating unit; a combining unit configured to combine the first component and the second component; and an output unit configured to output light consisting of the first component and the second component combined by the combining unit.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventor: Miki ONAKA
  • Patent number: 8867133
    Abstract: The present disclosure relates to a polarization converting device and a method for manufacturing the same, wherein the polarization converting device includes a polarization separation unit aligned with a plurality of unit blocks including an optical separator transmitting a first polarization between an upper surface and a lower surface and reflecting a second polarization, and a phase retarder aligned in correspondence to an upper surface of each unit block of the polarization separation unit where a first region and a second region are alternately formed, wherein any one of the first and second regions of the phase retarder converts the polarized light while the other region emits the polarized light as it is.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 21, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Eunsung Seo, Seungman Jeong, Hyunho Choi
  • Patent number: 8861082
    Abstract: An apparatus for providing a light beam has a solid-state laser to emit a polarized input laser light beam that has a first aspect ratio of etendue R1. First and second cylindrical lenses collimate the light along orthogonal directions. An edge of a bisecting reflective surface splits the laser light beam into a first portion directed along a first beam path and a second portion along a second beam path, wherein the first and second beam paths each contain emitted light from the solid-state laser. One or more folding reflective surfaces are disposed along the first or second or both beam paths. A polarization rotator rotates polarization of the light along the second beam path. A polarization combiner combines light from the first and second beam paths to form an output beam, wherein the output beam has a second aspect ratio of etendue R2 not equal to R1.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventor: Joshua Monroe Cobb
  • Patent number: 8837870
    Abstract: A fiber laser device includes a laser source that can emit a source laser beam, a birefringent beam separator configured to receive the source laser beam and to split the source laser beam into an o ray and an e ray which have mutually orthogonal polarizations, and a polarization maintaining fiber comprising a fiber core characterized by a core diameter, wherein after the o ray and the e ray exit birefringent beam separator, the o ray and the e ray are separated by a distance that is larger than the fiber core of the polarization maintaining fiber. The polarization maintaining fiber is positioned to couple one of the o ray and the e ray into the fiber core. The one of the o ray and the e ray transmits through the polarization maintaining fiber to form an output laser beam.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: September 16, 2014
    Assignee: Photop Technologies, Inc.
    Inventors: Zhenyu Wang, Shaofeng Zhang, Dashan Li
  • Publication number: 20140240831
    Abstract: A system and method for stabilizing WBC systems utilizing retro reflectors.
    Type: Application
    Filed: November 29, 2013
    Publication date: August 28, 2014
    Applicant: TERADIODE, INC.
    Inventor: Bien Chann
  • Publication number: 20140185139
    Abstract: An optical apparatus, comprising a polarization beam splitter (PBS) comprising a birefringent crystal having a front-end and a back-end, and an optical rotator positioned on the back-end of the birefringent crystal. Included is an optical apparatus comprising a PBS comprising a birefringent crystal and an optical rotator, wherein the PBS is configured to receive a multiplexed optical signal comprising a first polarized optical signal and a second polarized optical signal, wherein the second polarized optical signal is orthogonal to the first polarized optical signal, separate the first polarized optical signal from the second polarized optical signal using the birefringent crystal, and rotate the second polarized optical signal using the optical rotator such that the rotated second polarized optical signal is parallel to the first polarized optical signal. The PBS may further comprise only one lens, wherein the lens is positioned on the front-end of the birefringent crystal.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Tongqing Wang, Changzheng Su, Xueyan Zheng, Yu Sheng Bai
  • Publication number: 20140152961
    Abstract: A laser module includes a first laser light source, a second laser light source, and a third laser light source. Laser beams of the laser light sources are combinable into an overall laser beam. The laser beam of the first laser light source and the laser beam of the second laser light source have a first polarization, and the laser beam of the third laser light source has a second polarization. The laser beams of the first and the third laser light sources are coupled into the overall laser beam with the aid of mirror devices. The laser beam of the second laser light source is split, the polarization of the laser beam of the second laser light source being changed from the first polarization to the second polarization in a splitting path.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 5, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Gael PILARD
  • Patent number: 8736896
    Abstract: An optical scanning unit includes a light source including a plurality of light-emitting elements; a light detector to detect a light beam emitted from the light source; a light-flux splitter, angled to the optical axis of the light beam emitted from the light source, having an aperture, a portion of reduced thickness susceptible to warping, a concave face of the warped light-flux splitter as a reflecting face, and a convex face of the warped light-flux splitter opposite the concave face as a non-reflecting face; and a light-flux splitter pressing unit to press the light-flux splitter onto a light-flux splitter holding member without blocking the aperture. Light beam passed the aperture is used as a write-use light flux. The reflecting face reflects a light flux other than the write-use light flux as a monitor-use light flux. The light-flux splitter pressing unit presses a portion of maximum convexity of the non-reflecting face.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Ricoh Company, Ltd.
    Inventor: Susumu Mikajiri
  • Publication number: 20140126057
    Abstract: There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 8, 2014
    Applicant: Lumus Ltd.
    Inventors: Yaakov Amitai, Mali Hadad, Naamah Friedmann
  • Publication number: 20140118813
    Abstract: There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: Lumus Ltd
    Inventors: Yaakov Amitai, Mali Hadad, Naamah Friedmann
  • Patent number: 8696131
    Abstract: A polarization element includes: a substrate; and a plurality of grid sections arranged on the substrate, wherein the grid sections each have protruding sections and recessed sections alternately arranged in a longitudinal direction of the grid sections at a pitch shorter than a wavelength of incident light, in the plurality of grid sections, the arrangement pitch P of the protruding sections is the same, and a proportion (D=L/P) of a length L of the protruding section to the arrangement pitch P of the protruding sections is the same, and a height of the protruding sections is different between the grid sections adjacent to each other.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 15, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Daisuke Sawaki
  • Publication number: 20140078511
    Abstract: An apparatus for separating polarization of light includes a rotatable beam splitter including an input for receiving light with a first polarization and an output for outputting light with a second polarization different from the first polarization. Rotation of the rotatable beam splitter changes the first polarization of the input light to the second polarization of the output light. An optical network and method are also set forth.
    Type: Application
    Filed: May 21, 2012
    Publication date: March 20, 2014
    Applicant: LUNA INNOVATIONS INCORPORATED
    Inventors: Eric E. Sanborn, Mark E. Froggatt
  • Patent number: 8657448
    Abstract: A polarization separating element is configured to include a translucent substrate formed of a crystal material having birefringent properties and optically rotatory power and a polarization separating portion formed on the incidence-side surface of the translucent substrate so as to transmit a P-polarized light beam and reflect an S-polarized light beam. A reflecting element that reflects the S-polarized light beam reflected by the polarization separating portion is disposed so as to be separated approximately in parallel to the translucent substrate. A predetermined function is set such that the P-polarized light beam having passed through the polarization separating portion and been incident to the translucent substrate is converted so as to be parallel to the polarization plane of the S-polarized light beam so that the P-polarized light beam is output as the S-polarized light beam.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Shuho Kobayashi, Mitsuru Miyabara, Makoto Sakurai
  • Publication number: 20140036364
    Abstract: A regular pentagonal arrangement of multiple selectively transmitting interfaces provides a beam-splitter and beam combiner in a compact and cost-effective package. The selectively transmitting interfaces are either provided on transparent plates, or alternatively can be external surfaces of a solid transparent prism. One or more of the sides of the regular pentagonal arrangement includes a transparent or absent surface, so that for beam-splitter operation, the input light can be introduced, and for beam combiner operation, the combined light can be emitted. In beam-splitter operation, the input optical beam is introduced through the transparent side, and is sequentially reflected between the plurality of selectively transmitting interfaces, with beams containing the wavelengths corresponding to each of the selectively transmitting interfaces being emitted from the corresponding surface to the outside of the beam-splitter.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Applicant: Optomak, Inc.
    Inventor: Sead Doric
  • Patent number: 8643949
    Abstract: Disclosed is a polarization conversion apparatus, the apparatus including a first optical device capable of angle-converting incident unpolarized light to allow a polarization direction to be emitted in mutually different first and second linear polarizations, an FEL (Fly Eye Lens) including first and second MLAs (Micro Lens Arrays) arrayed with first and second micro lenses, where first and second linear polarizations of the first optical device incident on the first micro lenses are divided and condensed on an upper side and a bottom side of the second micro lenses of the second MLA, and a second optical device converting the first and second linear polarizations condensed on the upper side or the bottom side of the second MLA at the FEL to any one polarization of the first and second linear polarizations and emitting the polarization.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 4, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Eunsung Seo, Seungman Jeong, Hyunho Choi, Sanghun Lee
  • Publication number: 20140009829
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. For some embodiments employing a pulsed light source, the output pulse may be stretched relative to the input pulse width. The methods and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Dean JENNINGS, Timothy N. THOMAS, Stephen MOFFATT, Jiping LI, Bruce E. ADAMS, Samuel C. HOWELLS
  • Publication number: 20130342769
    Abstract: Device for generating polarized electromagnetic radiation has a diffuser and a polarizer. The diffuser is arranged in a beam path of the electromagnetic radiation. The polarizer is arranged in the beam path of the electromagnetic radiation, to be precise downstream of the diffuser in the direction of propagation of the electromagnetic radiation. The polarizer has a reflective side facing the diffuser, said reflective side being at least partly reflective to the electromagnetic radiation. The polarizer transmits electromagnetic radiation having a predefined polarization and reflects electromagnetic radiation not having the predefined polarization back to the diffuser. The diffuser scatters, in a non-polarization-maintaining manner, at least one portion of the reflected-back electromagnetic radiation not having the predefined polarization.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 26, 2013
    Inventors: Christopher KOELPER, Reiner WINDISCH, Christopher WIESMANN, Julius MUSCHAWECK
  • Publication number: 20130342905
    Abstract: The optical projection system according to the invention for a display has an imaging display unit, which emits image information at least partly in the form of unpolarized light, and imaging optics, wherein the imaging optics are configured to present a virtual image of image information generated by the display unit in a display area, and wherein the imaging optics are further configured to split the light emitted by the display unit into two partial beam paths each having a different polarization, to rotate the polarization direction of at least one of the two partial beam paths and to subsequently superimpose the two partial beam paths and to present them as a virtual image display in the display area.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 26, 2013
    Inventor: Eberhard Piehler
  • Patent number: 8611008
    Abstract: An optical system capable of enhancing a specific polarization state of light beam comprises a polarization beam splitter and a polarization state converter. The polarization beam splitter separates an input light beam into a first light beam of first polarization state and a second light beam of second polarization state. The first polarization state is different from the second polarization state. The second light beam is input into the polarization state converter and converted to a third light beam having significantly much more components of first polarization state. The polarization state converter has a configuration providing total reflection or high reflection function. The configuration includes at least one anisotropic optical thin film that is disposed between an incident medium of high refractive index and a medium of low refractive index.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 17, 2013
    Assignee: National Taipei University of Technology
    Inventor: Yi-Jun Jen
  • Patent number: 8605247
    Abstract: An optical switch for performing high extinction ratio switching of an optical signal includes a beam polarizing element and one or more optical elements. The optical elements are configured to direct an optical signal along a first or second optical path based on the polarization state of the optical signal as it passes through the optical elements. The optical switch performs high extinction ratio switching of the optical signal by preventing unwanted optical energy from entering an output port by using an absorptive or reflective optical element or by directing the unwanted optical energy along a different optical path.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 10, 2013
    Inventors: Haijun Yuan, Xuehua Wu, Christopher Lin, Giovanni Barbarossa
  • Patent number: 8602563
    Abstract: A projection image display apparatus includes: a light source; an illumination optical system that uniformly irradiates a surface of an image modulation element serving as a primary image surface with a light beam emitted from the light source; and a projection optical system that enlarges and projects image information on the primary image surface modulated by the image modulation element onto a screen serving as a secondary image surface, and that includes a first optical system that forms an intermediate image from the image information, a single-image second optical system that enlarges and projects the intermediate image to display a single image on the screen, a plural-image second optical system that enlarges and projects the intermediate image to display plural images on the screen, and an optical path switching mechanism that selectively guides a light beam from the first optical system to the single-image or plural-image second optical system.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: December 10, 2013
    Assignee: Sony Corporation
    Inventors: Jun Nishikawa, Hideki Yamamoto, Junichi Iwai
  • Publication number: 20130314759
    Abstract: An optical system includes a display panel, an image former, a viewing window, a proximal beam splitter, and a distal beam splitter. The display panel is configured to generate a light pattern. The image former is configured to form a virtual image from the light pattern generated by the display panel. The viewing window is configured to allow outside light in from outside of the optical system. The virtual image and the outside light are viewable along a viewing axis extending through the proximal beam splitter. The distal beam splitter is optically coupled to the display panel and the proximal beam splitter and has a beam-splitting interface in a plane that is parallel to the viewing axis. A camera may also be optically coupled to the distal beam splitter so as to be able to receive a portion of the outside light that is viewable along the viewing axis.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: Google Inc.
    Inventors: Xiaoyu Miao, Adrian Wong, Babak Amirparviz
  • Publication number: 20130314784
    Abstract: Optical polarizers and optical isolators and systems that incorporate the optical polarizers and isolators are disclosed. In one aspect, an optical isolator includes a Faraday crystal with a first surface and a second surface opposite the first surface, a first one-dimensional sub-wavelength grating disposed on the first surface, and a second one-dimensional sub-wavelength grating disposed on the second surface. The isolator is to receive a first input beam of light on the first grating and output a polarized first output beam of light through the second grating approximately parallel to the first input beam. The isolator is to also receive a second input beam of light on the second grating and output a polarized second output beam of light through the first grating with the second output beam offset from the second input beam.
    Type: Application
    Filed: February 10, 2011
    Publication date: November 28, 2013
    Inventors: David A Fattal, Marco Fiorentino, Raymond G. Beausoleil
  • Publication number: 20130300997
    Abstract: There is provided a device for reducing laser speckle comprising: a first transparent substrate; a second transparent substrate; an SBG sandwiched between said substrates; and transparent electrodes applied to said substrates. The first substrate is optically coupled to a laser source. The face of the second substrate in contact with the SBG is configured as an array of prismatic elements.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Patent number: 8570654
    Abstract: A free-space optical hybrid is provided. The free-space optical hybrid includes a polarizing beam splitter that split the light beams S and L into horizontal polarization light beams Sx, Lx and orthogonal polarization light beams Sy, Ly, respectively, at least one birefringent crystal splits the horizontal polarization light beams Sx, Lx and orthogonal polarization light beams Sy, Ly into light beams Sxo, Sxe, Lxo, Lxe, Syo, Sye, Lyo, Lye, a light combiner that combine the light beams Sxo+Lxo, Sxo?Lxo, Sxe+jLxe, Sxe?jLxe, Syo+Lyo, Syo?Lyo, Sye+jLye, Sye?jLye and output the light beams at ports. The present invention can realize an optical hybrid in free-space by using a birefringent crystal and can split light beams of different polarization statuses in free-space well. The optical hybrid offers a compact structure and good stability.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: October 29, 2013
    Assignee: O-Net Communications (Shenzhen) Limited
    Inventors: Bin Chen, Xiaohui Ren, Linyong Chen, Hong Xie
  • Patent number: 8531766
    Abstract: A polarization-separation device includes: a beam splitter that includes a beam-separating surface, on which a light beam that contains a first light beam and a second light beam impinges, wherein polarization direction of the first light beam and polarization direction of the second light beam are perpendicular to each other, and incident angle of the first light beam and incident angle of the second beam vary independently while incident into the beam-separating surface; a first polarizer arranged in an optical path of light beams having transmitted through the beam splitter, and allows the first light beam to transmit therethrough; and a second polarizer arranged in an optical path of light beams reflected from the beam splitter, and allows the second light beam to transmit therethrough.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 10, 2013
    Assignee: Ricoh Company, Limited
    Inventors: Toshiaki Tokita, Nobuaki Kubo, Kenichiro Saisho
  • Publication number: 20130215392
    Abstract: A polarization converting element group for a projection apparatus is disclosed. The polarization converting element group includes a polarization beam splitter and a half wave plate. The polarization beam splitter splits a light beam into a first polarized light beam with a first polarization direction and a second polarized light beam with a second polarization direction. The half wave plate is placed next to the polarization beam splitter and reciprocally moves between the first and second position. At different time points, the half wave plate changes the polarization direction of the first light beam or the second light beam passing therethrough. With this arrangement, the light beam that exits the polarization converting element group will either be a uniform first polarized light with a first polarization direction or a uniform second polarized light with a second polarization direction.
    Type: Application
    Filed: July 12, 2012
    Publication date: August 22, 2013
    Inventor: Hung Ying LIN
  • Publication number: 20130206963
    Abstract: Methods, systems, and devices are provided that may facilitate multibeam coherent detection and/or speckle mitigation. For example, some embodiments provide for multiple simultaneous independent speckle realizations in light reflected from an actively illuminated target while also may simultaneously provide reference beams inherently aligned to each speckle. These tools and techniques may facilitate coherent detection of light returned from a target. In some cases, this may provide the basis for substantial speckle mitigation. With the addition of illumination phase or frequency modulation and/or intelligent algorithmic methods, some designs may utilize the multiple speckle returns to actively mitigate speckle noise, and can further be used to separately measure speckle phase to implement interferometric resolution surface tilt measurement and/or surface imaging. These tools and techniques may be utilized for other purposes related to multibeam coherent detection and/or speckle mitigation.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: LIGHTWORKS II, LLC
    Inventor: LightWorks II, LLC
  • Patent number: 8493657
    Abstract: A light source switching device for use in a projection system is provided. The light source switching device comprises at least two light guiding devices and at least one phase switching device. The phase switching device is disposed between the two light guiding devices and adapted to be in one of a first status and a second status. When the first light travels into the light source switching device, the phase switching device is capable of being in the first status such that the first light is adapted to emit out from the outlet surface. When the second light travels into the light source switching device, the phase switching device is capable of being in the second status such that the second light is adapted to emit out from the outlet surface. With the switching operation of the phase switching device, the plural lights provided by plural light sources would be selected and uniformized by the light source switching device.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: July 23, 2013
    Assignee: Delta Electronics, Inc.
    Inventor: June-Jei Huang
  • Publication number: 20130169935
    Abstract: A polarization conversion system (PCS) is located in the output light path of a projector. The PCS may include a polarizing beam splitter, a polarization rotating element, a reflecting element, and a polarization switch. Typically, a projector outputs randomly-polarized light. This light is input to the PCS, in which the PCS separates p-polarized light and s-polarized light at the polarizing beam splitter. P-polarized light is directed toward the polarization switch on a first path. The s-polarized light is passed on a second path through the polarization rotating element (e.g., a half-wave plate), thereby transforming it to p-polarized light. A reflecting element directs the transformed polarized light (now p-polarized) along the second path toward the polarization switch. The first and second light paths are ultimately directed toward a projection screen to collectively form a brighter screen image in cinematic applications utilizing polarized light for three-dimensional viewing.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 4, 2013
    Applicant: REALD INC.
    Inventors: Miller H. Schuck, Michael G. Robinson, Gary D. Sharp
  • Publication number: 20130135588
    Abstract: A 3D display is provided comprising at least one light source, a Switchable Bragg Grating device, a microdisplay and a projection lens system. In one embodiment of the invention the SBG device converts the source light into colour sequential illumination and, and provides sequential orthogonally polarized illumination of the microdisplay for each colour. In one embodiment of the invention the first SBG device converts the source light into colour sequential illumination and, and provides sequential first and second sense circularly polarized illumination. The microdisplay is updated with alternating left and right eye perspective images for stereoscopic viewing.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Publication number: 20130135722
    Abstract: A polarization separation device includes a first end surface on which incident light is incident, a polarization separation surface that reflects an s-polarized light component and transmits a p-polarized light component, a second end surface that is arranged to be opposed to the first end surface, converts the p-polarized light component transmitted through the polarization separation surface to the s-polarized light component, and reflects the converted light component to an optical axis direction which is the same as the incident light, a third end surface from which the s-polarized light component reflected by the polarization separation surface without transmitting through the polarization separation surface is output, and a fourth end surface that is arranged to be opposed to the third end surface and from which the s-polarized light component reflected by the second end surface and the polarization separation surface is output.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 30, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Patent number: 8434873
    Abstract: An interactive projection device includes a light source configured to emit an input light beam, wherein the light source comprises a visible light emitting device; a first beam splitter configured to split the input light beam into first and second split light beams; a second beam splitter configured to split a scattered light beam received from a surface into third and fourth split light beams; an image forming device configured to produce an image light beam based on the first split light beam and emit the image light beam onto the surface through the first and second splitters, thereby generating a projection image on the surface; and a detector configured to detect the invisible light of the third split light beam, thereby acquiring a scattering image from the surface.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 7, 2013
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Yaojun Feng, Weiping Tang, Ying Liu
  • Publication number: 20130100414
    Abstract: Three dimensional projection systems may be single projector or multiple projector systems. These 3D projection systems may include a one or more polarization conversion systems (PCS). Each PCS may be designed for relatively small throw ratios and thus, may be designed to accommodate the small throw ratios. Each PCS may include a polarizing beam splitter, a first optical stack, a reflector and a second quarter wave retarder. The first optical stack may include a rotator, a polarizer, a polarization switch and a first quarter wave retarder. Each PCS may receive light from a respective projector, and the PBS in each PCS may direct the light toward the first optical stacks. The light may be converted to a different polarization state as it passes through the first optical stack. The converted light may then be re-directed by a reflecting element to a second quarter wave retarder. The second quarter wave retarder may convert linearly polarized light to circularly polarized light.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: REALD INC.
    Inventor: Reald Inc.
  • Patent number: 8419188
    Abstract: A wavelength combining apparatus includes first and second optical devices. The first optical device collects and collimates or focuses light from multiple laser light sources. The second optical device includes multiple nonparallel dichroic surfaces to combine light received from the first optical device.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 16, 2013
    Assignee: Microvision, Inc.
    Inventors: Robert A. Sprowl, Joshua M. Hudman, Joshua O. Miller
  • Patent number: 8416496
    Abstract: An optical probe for splitting a beam of light into multiple beams. The optical probe may comprise a first polarizing beam splitter having a first polarization axis, a second polarizing beam splitter having a second polarization axis orthogonal to the first polarization axis, a first half wave plate and a second half wave plate, and optionally a first birefringent phase plate, and a second birefringent phase plate. The first half wave plate may be located before first polarizing beam splitter, and the second half wave plate may be located after the first polarizing beam splitter, relative to the propagation of the light beam. The optical probe may further include a lens for collimating the four light beams. A profilometer includes the optical probe for splitting a beam of light into four light beams, and a scanner for traversing the optical probe over a surface of an element to be measured.
    Type: Grant
    Filed: March 20, 2010
    Date of Patent: April 9, 2013
    Assignee: ASE Optics Inc.
    Inventors: Damon W. Diehl, Christopher T. Cotton
  • Publication number: 20130077053
    Abstract: Provided is an optical apparatus including a polarization separation element for separating an incident light beam into a first polarization component and a second polarization component and outputting the first polarization component and the second polarization component, a polarization conversion unit including a waveplate for converting one of the first polarization component and the second polarization component into the other polarization component, the waveplate being held to a holding metal plate, and a housing for holding the polarization separation element and the polarization conversion unit.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Applicant: Sony Corporation
    Inventor: Yoshihisa AIKOH
  • Publication number: 20130070338
    Abstract: An eyepiece includes an eyepiece frame, an in-coupling polarization beam splitter (“PBS”), an end reflector, and an out-coupling PBS. The eyepiece frame defines an air cavity and includes an illumination region for receiving computer generated image (“CGI”) light into the eyepiece frame and a viewing region to be aligned with an eye of a user. The in-coupling PBS is supported within the eyepiece frame at the illumination region to re-direct the CGI light to a forward propagation path extending along the air cavity towards the viewing region. The end reflector is disposed to reflect the CGI light back along a reverse propagation path within the eyepiece frame. The out-coupling PBS is supported at the viewing region to pass the CGI light traveling along the forward propagation path and to redirect the CGI light traveling along the reverse propagation path out of an eye-ward side of the eyepiece frame.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: GOOGLE INC.
    Inventors: Anurag Gupta, Babak Amirparviz, Sumit Sharma
  • Publication number: 20130063671
    Abstract: The present disclosure relates generally to an optical element, a light projector that includes the optical element, and an image projector that includes the optical element. In particular, the optical element provides an improved uniformity of light by homogenizing the light with lenslet arrays, such as “fly-eye arrays” (FEA). The FEA is positioned to homogenize an unpolarized combined light before the light is converted to a single polarization state.
    Type: Application
    Filed: May 18, 2011
    Publication date: March 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Kim Leong Tan, Andrew T. Tio
  • Publication number: 20130063701
    Abstract: The present disclosure relates generally to an optical element, a light projector that includes the optical element, and an image projector that includes the optical element. In particular, the optical element provides an improved uniformity of light by homogenizing the light with lenslet arrays, such as “fly-eye arrays” (FEA). A first FEA is positioned to intercept and converge an unpolarized combined light before the light is converted to a single polarization state, and a second FEA is positioned to intercept and diverge the converted light having a single polarization state.
    Type: Application
    Filed: May 9, 2011
    Publication date: March 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Xiaohui Cheng, Kim Leong Tan
  • Publication number: 20130021658
    Abstract: An optical system includes a display panel, an image former, a viewing window, a proximal beam splitter, and a distal beam splitter. The display panel is configured to generate a light pattern. The image former is configured to form a virtual image from the light pattern generated by the display panel. The viewing window is configured to allow outside light in from outside of the optical system. The virtual image and the outside light are viewable along a viewing axis extending through the proximal beam splitter. The distal beam splitter is optically coupled to the display panel and the proximal beam splitter and has a beam-splitting interface in a plane that is parallel to the viewing axis. A camera may also be optically coupled to the distal beam splitter so as to be able to receive a portion of the outside light that is viewable along the viewing axis.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: GOOGLE INC.
    Inventors: Xiaoyu Miao, Adrian Wong, Babak Amirparviz
  • Patent number: 8358398
    Abstract: An optical device is configured to perform both switching and attenuation of an optical beam in response to a single control signal. The optical device includes a liquid-crystal-based beam-polarizing element having polarization-conditioning regions that are controlled using a common electrode. The first polarization-conditioning region conditions the polarization of the input beam in order to separate the input beam into a primary component and a residual component. The second and third polarization-conditioning regions change the polarization of the primary component and the residual component, respectively. The primary component is directed to an output port after it has been attenuated based on its polarization state. The residual component, after passing through the third polarization-conditioning region, has its intensity further reduced based on its polarization state.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: January 22, 2013
    Assignee: Oclaro (North America), Inc.
    Inventors: Xuehua Wu, Haijun Yuan, Christopher Lin, Giovanni Barbarossa
  • Patent number: 8358466
    Abstract: Delay line interferometer designs using combinations of basic optical components that are expected to simplify manufacture and reduce costs while still providing precision optical performance. The main operative components of these designs are polarization beam splitters, birefringent crystals, optical delay components, and waveplates. Temperature controllers may be provided for adjusting the delay of the optical delay components.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: January 22, 2013
    Assignee: Oclaro (North America), Inc.
    Inventors: Ming Cai, Ruibo Wang