With Graded Refractive Index Patents (Class 359/652)
  • Patent number: 8827502
    Abstract: The present embodiment relates to a metamaterial for deflecting electromagnetic wave, includes a functional layer made up by at least one metamaterial sheet layer, each of the metamaterial sheet layers including a substrate and a number of artificial microstructures attached onto the substrate. The functional layer is divided into several strip-like regions. The refractive indices in all the strip-like regions continually increase along the same direction and there are at least two adjacent first and second regions, wherein, the refractive indices in the first region continually increase from n1 to n2, the refractive indices in the second region continually increase from n3 to n4, and n2>n3. The metamaterial of the present invention that deflects electromagnetic wave has a number of regions disposed thereon. In each region, the refractive indices can continuously increase or decrease so that the electromagnetic waves within the regions will be slowly deflected.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 9, 2014
    Assignees: Kuang-Chi Innovative Technology Ltd., Kuang-Chi Institute of Advanced Technology
    Inventors: Ruopeng Liu, Chunlin Ji, Lin Luan, Jinjin Wang
  • Patent number: 8786965
    Abstract: A method for processing a material for a die for molding an objective lens which is formed with a multilevel structure on the curved surface thereof, wherein the transfer surface of the objective lens is cut by a tool having a cutting face, the outline of which includes a linear first edge portion, a linear second edge portion extending in a direction which intersects the first edge portion at an acute angle thereto, and a third edge portion which joins the ends of the first and second edge portions, while the die material is rotated around the axis thereof, in a state in which at least the first edge portion and the second edge portion of the tool is inclined with respect to the axis and while the tool is moved only in the axial direction and in the direction which intersects the axis.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 22, 2014
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Kenichi Ishii, Kyu Takada
  • Publication number: 20140192420
    Abstract: A method of fabricating an aspherical gradient refractive index lens includes co-extruding a first polymer material having a first refractive index and a second polymer material having a second refractive index different than the first refractive index to form multilayered polymer composite films, assembling the multilayered polymer composite films into a multilayer composite GRIN sheet and shaping the multilayered composite GRIN sheet into an aspherical lens.
    Type: Application
    Filed: April 17, 2013
    Publication date: July 10, 2014
    Inventor: Case Western Reserve University
  • Publication number: 20140185991
    Abstract: Translating lens holder assemblies employing bore relief zones, as well as optical connectors employing such lens holder assemblies, are disclosed. In one embodiment, a lens holder assembly includes a lens holder body having a mating face, a first forward slide portion and a first rear slide portion disposed on a first side of the lens holder body, and a second forward slide portion and a second rear slide portion disposed on a second side of the lens holder body. The first forward slide portion is separated from the first rear slide portion by a first bore relief zone, and the second forward slide portion is separated from the second rear slide portion by a second bore relief zone. In one embodiment, the lens holder assembly further includes at least one groove alignment feature disposed in the lens holder body that is configured to support at least one GRIN lens.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140178010
    Abstract: Gradient index (GRIN) lens assemblies employing lens alignment channels, as well as fiber optic connectors and fiber optic cable assemblies employing such GRIN lens assemblies, are disclosed. In one embodiment, a GRIN lens assembly includes a lens holder body having a mating face, a surface extending from the mating face, and a lens alignment channel. The lens alignment channel is defined by a narrow portion extending from the surface to a first depth and at least partially along a length of the surface, and a wide portion extending from the narrow portion to a second depth. A lens opening defined by the wide portion of the lens alignment channel at the mating face is disposed in the mating face. The wide portion of the lens alignment channel is configured to support a GRIN lens disposed in the lens alignment channel.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8699140
    Abstract: Examples of the present invention include methods and apparatus for modification of electromagnetic waves, including lenses with generally parallel flat surfaces. Lenses may comprise metamaterials, dielectric materials (such as glass), plastics, and the like. Lenses may have an index profile corresponding to a coordinate transformation for the desired effect on the electromagnetic waves.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 15, 2014
    Assignee: The Penn State Research Foundation
    Inventors: Douglas H. Werner, Do-Hoon Kwon
  • Patent number: 8681428
    Abstract: An optical material is described. The optical material includes at least one layer of a metamaterial. Each layer of metamaterial includes a matrix material and a plurality of nano-particles. The plurality of nano-particles are geometrically arranged in an array within the matrix material such that the layer of metamaterial has a high positive refractive index based on a cooperative plasmon effect at a predetermined electro-magnetic radiation (EMR) wavelength relative to the refractive index of the matrix material without the nano-particles.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 25, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Robert G. Brown
  • Patent number: 8681429
    Abstract: The present disclosure relates to a metamaterial for converging electromagnetic waves, which comprises a plurality of metamaterial sheet layers stacked integrally in an x direction. Each of the metamaterial sheet layers comprises a plurality of metamaterial units. Each of the metamaterial units has an identical substrate unit and a man-made microstructure attached on the substrate unit. The metamaterial units of each row have a same refractive index. Refractive indices of the metamaterial units of each column satisfy particular relationships. The man-made microstructure is a non-90° rotationally symmetrical structure, and an extraordinary optical axis of a refractive index ellipsoid thereof is non-perpendicular to and unparallel to the y direction. The thickness of the metamaterial can be considerably decreased while the function of converging electromagnetic waves is achieved in the present disclosure. This is favorable for making the metamaterial product miniaturized and lightweight.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 25, 2014
    Assignees: Kuang-Chi Innovative Technology Ltd., Kuang-Chi Institute of Advanced Technology
    Inventors: Ruopeng Liu, Chunlin Ji, Jinjin Wang
  • Patent number: 8674792
    Abstract: A metamaterial comprises a support medium, such as a planar dielectric substrate and a plurality of resonant circuits supported thereby. At least one resonant circuit is a tunable resonant circuit including a conducting pattern and a tunable material, so that an electromagnetic parameter (such as resonance frequency) may be adjusted using an electrical control signal applied to the tunable material.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: March 18, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Serdar H. Yonak, Frederick W. Mau, II, Vinh N. Nguyen
  • Patent number: 8665525
    Abstract: One embodiment provides for a gradient lens having a first substantially hemispherical member comprising a first convex surface and a base and a second substantially hemispherical member projecting away from the base of the first hemispherical member and comprising a second convex surface. The gradient lens also includes a plurality of gradient layers disposed within the first hemispherical member, each gradient layer concentrically aligned to the first hemispherical member and comprising an index of refraction different than that of adjacent gradient layers.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 4, 2014
    Assignee: EMS Technologies, Inc.
    Inventors: Donald N. Black, Enrique Jesus Ruiz, William M. Smith, John Haslam, John L. Beafore
  • Patent number: 8659834
    Abstract: A method of making an achromatic gradient index singlet lens comprising utilizing a gradient index material with a curved front surface in which light does not follow a straight line as it travels through the material and wherein different color rays traverse different curved paths, utilizing the natural dispersion of the curved front surface as a strong positive lens, and developing a weakly diverging GRIN distribution within the lens to balance the chromatic aberrations of the curved front surface.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Guy Beadie, Erin F. Fleet
  • Patent number: 8654446
    Abstract: An optical element or module is designed to be placed in front of an optical sensor of a semiconductor component. At least one optically useful part of the element or module is provided through which the image to be captured is designed to pass. A method for obtaining such an optical element or module includes forming at least one through passage between a front and rear faces of the element or module. The front and rear faces are covered with a mask. Ion doping is introduced through the passage. As a result, the element or module has a refractive index that varies starting from a wall of the through passage and into the optically useful part. An image capture apparatus includes an optical imaging module having at least one such element or module.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: February 18, 2014
    Assignee: STMicroelectronics S.A.
    Inventors: Emmanuelle Vigier-Blanc, Guillaume Cassar
  • Patent number: 8619176
    Abstract: A solid-state image-taking apparatus which have a solid-state image-taking device includes a chip of the solid-state image-taking device, an imaging lens configured to focus incoming light into an image on the solid-state image-taking device, and a material of a refraction index larger than 1, which is arranged between the chip and the imaging lens.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 31, 2013
    Assignee: Sony Corporation
    Inventor: Atsushi Toda
  • Publication number: 20130321927
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 5, 2013
    Applicant: TAG Optics Inc.
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Patent number: 8593741
    Abstract: An optical system includes a positive lens unit, wherein the positive lens unit includes an optical element containing a base material and minute particles that are mixed with the base material and have Abbe number that is lower than that of the base material, and the minute particles are higher in density at a peripheral portion of the optical element than on an optical axis of the optical element.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: November 26, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Keiichiro Ishihara
  • Patent number: 8582210
    Abstract: A lens includes a transparent member, wherein the transparent member contains a plurality of polymers formed from organic monomers; the transparent member has a refractive index distribution due to the plurality of polymers; and particles having a lower thermal expansion coefficient than the transparent member are dispersed in the transparent member.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshiki Ito
  • Patent number: 8553332
    Abstract: A display device includes; a display panel, a lens substrate facing the display panel, an air layer disposed between the display panel and the lens substrate, and a light refraction portion disposed on a surface of the lens substrate facing the display panel, wherein an average refractive index of the light refraction portion taken along a plane substantially parallel to the display panel increases in a direction substantially parallel to a path of light from the display panel to the lens substrate.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hae-Young Yun, Kyung-Ho Jung, Seung-Hoon Lee, Sung-Woon Kim, Jiangang Lu, Hee-Seop Kim
  • Publication number: 20130194677
    Abstract: A consolidated multilayered GRIN optical material includes a multilayered composite GRIN sheet that includes a plurality of consolidated coextruded multilayered polymer films. Each of the multilayered polymer films includes a plurality of at least two alternating layers (A) and (B). Layer (A) includes a first blend of polymer components and layer (B) includes a second blend of polymer components. The multilayered composite GRIN sheet has an external optical transmission of at least 80% at a wavelength of 633 nm measured using UV-VIS spectroscopy and is free of intralayer polymer domains at least 1 micron size scale in any dimension.
    Type: Application
    Filed: January 28, 2013
    Publication date: August 1, 2013
    Applicant: POLYMERPLUS LLC
    Inventor: POLYMERPLUS LLC
  • Patent number: 8379314
    Abstract: Provided is a method for designing an image pickup lens which is low cost and applicable to reflow process. The method includes a step of designing the image pickup lens including a lens formed of energy curable resin, on the assumption that the energy curable resin is homogeneous; a step of obtaining an image pickup lens by manufacturing each lens forming the image pickup lens, based on the design; a step of evaluating lens performance of the obtained image pickup lens; a step of designing the image pickup lens again by changing surface shape of at least one surface and/or lens-surface distance in at least one place in the image pickup lens, based on the lens performance obtained by an simulation in the designing step and the lens performance of the image pickup lens obtained in the evaluating step.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 19, 2013
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Yuichi Ozaki
  • Patent number: 8351127
    Abstract: A gradient lens capable of focusing electromagnetic rays received at a first lens surface onto a second lens surface. The first lens surface and second lens surface can include convex surfaces protruding in opposite directions from a substantially planar surface. The lens can include a gradient index between the first surface and the planar surface and a gradient index between the two convex surfaces. The lens can include two or more gradient layers, each gradient layer having an index of refraction different than that of adjacent gradient layers. The gradient layers can focus parallel electromagnetic rays incident on the first surface onto a focal point at the second surface of the lens. As the parallel electromagnetic rays pass from one gradient layer to the next, the rays are redirected toward the focal point.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: January 8, 2013
    Assignee: EMS Technologies, Inc.
    Inventors: Donald N. Black, Jr., Enrique Jesus Ruiz, William M. Smith, John Haslam, John L. Beafore
  • Publication number: 20130003186
    Abstract: A method of making an achromatic gradient index singlet lens comprising utilizing a gradient index material with a curved front surface in which light does not follow a straight line as it travels through the material and wherein different color rays traverse different curved paths, utilizing the natural dispersion of the curved front surface as a strong positive lens, and developing a weakly diverging GRIN distribution within the lens to balance the chromatic aberrations of the curved front surface.
    Type: Application
    Filed: June 11, 2012
    Publication date: January 3, 2013
    Inventors: Guy Beadie, Erin F. Fleet
  • Publication number: 20120321249
    Abstract: Laser-processed gradient-index (GRIN) lenses and optical interface devices and assemblies that utilize the laser-processed GRIN lenses are disclosed. A GRIN lens assembly includes a cylindrical central section having a GRIN index profile, planar front and back surfaces, an outer surface, and a diameter D1 where 200 micrometers?D1?420 micrometers. An annular cladding of outer diameter D2 surrounds the central section outer surface and has front and back annular surfaces and a constant or a varying refractive index. One or both of the front and back annular surfaces may be curved. An optical fiber is optically coupled to the central section at the planar back surface. An optical interface device is formed by operably supporting at least one GRIN lens assembly with a support member. An optical interface assembly is formed by interfacing two optical interface devices.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, Pushkar Tandon
  • Publication number: 20120281272
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 8, 2012
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Patent number: 8270089
    Abstract: A method of forming thermoplastic polyurethane (TPU) into an optical lens. Suitable TPUs contain urethane (—NHCOO—) repeating units that are present in at least 23% by weight. This range of urethane weights is an indicator of a flexural modulus above 1,400 MPa. The TPUs have refractive indices above 1.54 and Abbe numbers above 27. They have glass transition temperatures above about 100 degrees C. The selected TPU can be injection molded to form ophthalmic lenses, that are well suited for use in rimless spectacles. The lenses are highly solvent resistant, while at the same time being readily tintable. The lenses made according the invention meet FDA 21 CFR 801.41 Impact Requirement, and ANSI Z87.1 high velocity impact (HVI) standard.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 18, 2012
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventors: Hao-Wen Chiu, Roger A. Mayr, Leanirith Yean
  • Patent number: 8211625
    Abstract: An optical structure is provided. The optical structure includes a substrate structure. A photosensitive material layer is positioned on said substrate structure. The photosensitive material layer having uniform periodic geometry and a period length throughout associated with a 2D periodic pattern. The 2D periodic pattern includes a period length greater than the exposing light wavelength and spatial variation in the duty cycle of the features of a mask layer used in the formation of said 2D periodic pattern.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: William J. Arora, George Barbastathis
  • Publication number: 20120154715
    Abstract: An active optical device includes a substrate; a plurality of refractive index variable regions formed on the substrate; and a voltage applier which applies an electric field to the plurality of refractive index variable regions.
    Type: Application
    Filed: September 13, 2011
    Publication date: June 21, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sun-il KIM, Jun-hee CHOI
  • Patent number: 8194327
    Abstract: This is to shed light on a glass composition suitable for a thin lens, and provide a lens (an optical component) manufactured with using the glass. A concave lens as an optical component is made of glass containing 12 to 16% of B2O3, 35 to 44% of La2O3, and 3 to 8% of ZnO, expressed as wt %. The concave lens has a thickness t1 in its center portion of 0.5 mm or less, and a ratio (W/t1) of an external diameter W with respect to the thickness t1 of 24 or more. The concave lens can be produced suitably by press forming.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: June 5, 2012
    Assignee: Panasonic Corporation
    Inventors: Toru Nanba, Tetsuya Suzuki, Toshiaki Takano, Tomokazu Tokunaga
  • Patent number: 8193108
    Abstract: A clad glass composition that is excellent in devitrification resistance and that prevents the whole mother glass rod from devitrifying by preventing a core glass composition from devitrifying in forming a mother glass rod using a concentric crucible drawing method, is provided. The clad glass composition forms a clad of a mother glass rod for a gradient-index rod lens having a core/clad structure.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Teruhide Inoue, Kunihiro Nomiyama, Koichi Sakaguchi
  • Patent number: 8189265
    Abstract: An optical element Ggi1 includes a medium that has a refractive index distribution. This optical element satisfies conditions of |?gF(pmax)??gF(pmin)|?0.02, |??gFgi(p1)|?0.0272,|??gdgi(p1)|?0.0250, and |?gFgi(pmaxgi)??gFgi(pmingi)|?0.1.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: May 29, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomohiko Ishibashi
  • Publication number: 20120113637
    Abstract: Such optical elements can provide optical concentration in excess of the free-space brightness theorem limit, because of the increased refractive index at the output of the concentrator compared to the input. Optical contact (i.e., no intervening low index material) between the AGILE and the absorbing element (or an optical source) can be employed to ensure no loss of brightness at the interface between the AGILE and the absorbing element (or source). Although solar cell concentration is a significant application of this technology, there are various other applications, such as increasing the efficiency of optical emission, and providing transmissive optical windows that include optically cloaked regions.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 10, 2012
    Inventors: Olav Solgaard, Reinhold Dauskardt, Nina Vaidya
  • Patent number: 8159753
    Abstract: An optical lens which, in a controlled manner, and without altering either the resolution or luminous capture, helps to extend the depth of field of any other optical system. The optical lens of the present invention is composed of two optical lenses that form a pair. Each of the lenses of the pair produces a change of optical path with a symmetrical distribution. If there is no relative displacement, the lenses of the pair generate an optical path difference equal to zero. When there is relative displacement, the lenses of the pair generate a change of optical path with asymmetric distribution, which helps to extend the depth of field without reducing either the resolution or luminous capture. The optical lens of this invention, in the form of an optical pair, serves any other optical system to capture images without loss of modulation, but with attenuated modulation which can be retrieved with digital processing algorithms known in the art.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 17, 2012
    Assignee: Universidad de Guanajuato
    Inventors: Jorge Ojeda Castaneda, Eduardo Aguilera Gomez, Hector Plascencia Mora, Miguel Torres Cisneros, Elias Rigoberto Ledesma Orozco, Alejandro Leon Martinez, Jose Sergio Pacheco Santamaria, Juan Gerardo Martinez Castro, Roberto Carlos Salas Segoviano
  • Publication number: 20120069580
    Abstract: An optical element has a plano-piano body formed of a first material having a greater refraction index n1 and a second material having a lesser refraction index n2. Both indices are greater than one. The absolute value of the index contrast, log10 (n1/n2), is in the range from about 0.001 to about 0.17, preferably from about 0.01 to about 0.05. The materials have an induced absorbance rate ?Abs/Dose less than or equal to about 0.4, preferably less than or equal to about 0.2. The materials are arranged such that an interface with at least one cusp is defined therebetween. The cusp has an apex pointed toward the material having the greater index of refraction. The cusp is operative to produce a region of increased light intensity on one surface of the optical element in response to light incident on the other surface of the optical element.
    Type: Application
    Filed: July 12, 2011
    Publication date: March 22, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Rebekah Ann DERRYBERRY, Roger Harquail FRENCH, Mark E. LEWITTES, Ronald Jack RIEGERT, Jose Manuel RODRIGUEZ-PARADA
  • Publication number: 20120050879
    Abstract: An optical device includes a transparent substrate, a first replicated refractive surface on a first surface of the substrate in a first material, and a second replicated refractive surface on a second surface, opposite the first surface, and made of a second material, different from the first material. The material and curvature of the first replicated surface and the material and curvature of the second replicated surface may be configured to substantially reduce the chromatic dispersion and/or the thermal sensitivity of the optical device.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Inventor: Alan KATHMAN
  • Publication number: 20120050878
    Abstract: Embodiments of the invention described herein include metamaterials that exhibit negative permittivity and negative permeability at optical frequencies, methods for preparing such materials, and devices prepared from same.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 1, 2012
    Applicant: TRITON SYSTEMS, INC.
    Inventors: Keith A. Higginson, Alkim Akyurtlu, Adil-Gerai Kussow
  • Publication number: 20120020198
    Abstract: An optical information recording/reproducing apparatus for an optical disc using a light beam having a wavelength of ? including: an objective lens that converges the light beam onto a recording surface of the optical disc and satisfies a condition: 0.48 < d · ( n - 1 ) f 2 < 0.75 ( 1 ) where f represents a focal length (unit: mm) of the objective lens with respect to the wavelength ?, d represents a thickness (unit: mm) of the objective lens along an optical axis of the objective lens, and n represents a refractive index with respect to the wavelength ?; a photoreceptor to receive the beam reflected from the optical disc; a detector to detect quality of a signal, and an objective lens driving unit to tilt the objective lens in a direction to improve the quality of the signal based on a result of detection by the detector.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 26, 2012
    Applicant: HOYA CORPORATION
    Inventors: Satoshi INOUE, Shuichi TAKEUCHI
  • Patent number: 8098440
    Abstract: The present invention relates to the optimization of human visual function by correcting and/or optimizing high-order optical aberrations in high performance optical devices. The optimization is particularly useful for high performance devices used under low light conditions such as binoculars, rifle scopes, telescopes, microscopes, night vision goggles and laser eye protection devices.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 17, 2012
    Assignee: Ophthonix, Inc.
    Inventors: Jagdish M. Jethmalani, Andreas W. Dreher, Lawrence H. Sverdrup
  • Publication number: 20110317275
    Abstract: One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: The Regents of the University of California
    Inventors: David R. Smith, David Schurig, Anthony F. Starr, Jack J. Mock
  • Patent number: 8085472
    Abstract: An optoelectronic device comprising a gradient index lens having an optical length, L, wherein L=P/4+NP/2, where N is an integer equal to or greater than 0 and P is the pitch of the gradient index lens. If the desired focus spot is spaced from the end face of the gradient index lens, the optical length L can be adjusted accordingly as a function of that distance and the index of refraction of the medium occupying that distance.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: December 27, 2011
    Assignee: Tyco Electronics Corporation
    Inventor: Michael Aaron Kadar-Kallen
  • Publication number: 20110292516
    Abstract: An optical lens which, in a controlled manner, and without altering either the resolution or luminous capture, helps to extend the depth of field of any other optical system. The optical lens of the present invention is composed of two optical lenses that form a pair. Each of the lenses of the pair produces a change of optical path with a symmetrical distribution. If there is no relative displacement, the lenses of the pair generate an optical path difference equal to zero. When there is relative displacement, the lenses of the pair generate a change of optical path with asymmetric distribution, which helps to extend the depth of field without reducing either the resolution or luminous capture. The optical lens of this invention, in the form of an optical pair, serves any other optical system to capture images without loss of modulation, but with attenuated modulation which can be retrieved with digital processing algorithms known in the art.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: UNIVERSIDAD DE GUANAJUATO
    Inventors: Jorge OJEDA CASTA+e,otl N+ee EDA, Eduardo AGUILERA GOMEZ, Hector PLASCENCIA MORA, Miguel TORRES CISNEROS, Elias Rigoberto LEDESMA OROZCO, Alejandro León MARTINEZ, Jose Sergio PACHECO SANTAMARIA, Juan Gerardo MARTINEZ CASTRO, Roberto Carlos SALAS SEGOVIANO
  • Publication number: 20110273779
    Abstract: An optical device includes a transparent substrate, a first replicated refractive surface on a first surface of the substrate in a first material, and a second replicated refractive surface on a second surface, opposite the first surface, and made of a second material, different from the first material. The material and curvature of the first replicated surface and the material and curvature of the second replicated surface may be configured to substantially reduce the chromatic dispersion and/or the thermal sensitivity of the optical device.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Inventor: Alan Kathman
  • Patent number: 8054558
    Abstract: A multiple magnification optical system has a single objective focused upon a specimen at a given working distance. A graded-index lens receives light passing through the objective from the specimen. A beam splitter splits the light exiting the gradient-index lens into a first optical axis and a second optical axis. A first lens is aligned in the first optical axis between the beam splitter and a first camera to focus a magnified image at the first camera. A second camera is situated along the second optical axis from the rear principal plane of the objective so as to obtain unity magnification when the working distance of the objective is set at twice its focal length. Multiple magnifications can be obtained with a single objective by moving the optical system axially to set different working distances from a specimen, and by using multiple beam splitters, or combinations thereof.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 8, 2011
    Assignee: Omniprobe, Inc.
    Inventors: Herschel M. Marchman, Gonzalo Amador
  • Publication number: 20110242672
    Abstract: A lens includes a transparent member, wherein the transparent member contains a plurality of polymers formed from organic monomers; the transparent member has a refractive index distribution due to the plurality of polymers; and particles having a lower thermal expansion coefficient than the transparent member are dispersed in the transparent member.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Toshiki Ito
  • Publication number: 20110242631
    Abstract: A composition for producing optical elements having a gradient structure, particularly for holographic applications, is formed by a refractive index gradient. The composition is produced from one or more polymerizable and/or polycondensable monomers and at least one biological polymer. A potential difference is generated for the directed diffusion of the monomers by inducing a local polymerization or polycondensation. The result is the formation of a refractive index gradient.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 6, 2011
    Inventors: Peter William de Oliveira, Michael Veith, Peter Koenig, Jenny Kampka, Anette Kraegeloh
  • Patent number: 8018508
    Abstract: The present invention provides an optical device and the like which can collect incident light at a high incident angle than an existing microlens, in order to realize a solid-state imaging apparatus and the like corresponding to an optical system (an optical system with a high incident angle ?) with a short focal length for a thin camera. Each unit pixel (2.8 ?m square in size) is made up of a distributed index lens 1, a color filter 2 for green G, Al wirings 3, a signal transmitting unit 4, planarizing films 5, a light-receiving device (Si photodiodes) 6, and a Si substrate 7. The distributed index lens 1 is made of high refractive index materials 33 [TiO2 (n=2.53)] and low refractive index materials 34 [air (n=1.0)] having concentric zones. Further, in a distributed refractive index lens, a width 35 of adjacent divided areas is 200 nm. Also, a film thickness t is 0.5 ?m.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: September 13, 2011
    Assignee: PANASONIC Corporation
    Inventor: Kimiaki Toshikiyo
  • Publication number: 20110205634
    Abstract: An optical member including high refractive index layers having a great refractive index and low refractive index layers having a small refractive index, which are each relatively thin as compared with an optical length, disposed alternately in the lateral direction as to an optical axis. Each width of the high refractive index layers and the low refractive index layers is equal to or smaller than the wavelength order of incident light.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Applicant: SONY CORPORATION
    Inventor: Atsushi TODA
  • Publication number: 20110199687
    Abstract: The process according to the invention is based on the simultaneous ion exchange of two ions having an almost identical mobility with the ions of a glass substrate, at least one of the aforementioned two ions being used in the form of an enamel.
    Type: Application
    Filed: March 25, 2009
    Publication date: August 18, 2011
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Julien Sellier, Arnaud Huignard, Xavier Brajer
  • Patent number: 7969660
    Abstract: The subject invention provides methods for creating wavefront aberrators with a desired refractive index profile that is stable against thermal and/or solar exposure. The invention further provides wavefront aberrators produced according to the methods described herein.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 28, 2011
    Assignee: Opthonix, Inc.
    Inventors: Jeffrey S. Chomyn, Lawrence H. Sverdrup, Jagdish M. Jethmalani, Andreas W. Dreher
  • Patent number: 7969659
    Abstract: A device for magnifying an object comprising an SSID having at least one imaging array disposed on a distal end thereof. The device further comprises a first optical element disposed on the distal end of the SSID wherein the first optical element has a distal end and a proximal end defining a first longitudinal length. A GRIN lens is disposed on the distal end of the first optical element and a second optical element is disposed on the distal end of the GRIN lens defining a second longitudinal length. The first longitudinal length and the second longitudinal length are configured such that when viewing the object at a predetermined wavelength of light, the object is magnified at a predetermined level of magnification and the focal plane of the magnified object is aligned at the proximal end of the first optical element.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: June 28, 2011
    Assignee: Sterling LC
    Inventors: Stephen C. Jacobsen, David P. Marceau
  • Publication number: 20110134304
    Abstract: An optical element or module is designed to be placed in front of an optical sensor of a semiconductor component. At least one optically useful part of the element or module is provided through which the image to be captured is designed to pass. A method for obtaining such an optical element or module includes forming at least one through passage between a front and rear faces of the element or module. The front and rear faces are covered with a mask. Ion doping is introduced through the passage. As a result, the element or module has a refractive index that varies starting from a wall of the through passage and into the optically useful part. An image capture apparatus includes an optical imaging module having at least one such element or module.
    Type: Application
    Filed: April 8, 2009
    Publication date: June 9, 2011
    Applicant: STMICROELECTRONICS S.A.
    Inventors: Emmanuelle Vigier-Blanc, Guillaume Cassar
  • Publication number: 20110116170
    Abstract: Gradient index lenses with no aberrations and related methods for making such lenses are described. In one aspect, a gradient index lens can be a substantially spherically-shaped lens that has at least one side that is flattened such that a locus of focal points resides on a plane. A method for making a gradient index lens can include forming material layers, each of the material layers defining an effective refractive index, and laminating the material layers together to form a substantially spherically-shaped lens having at least one side that is flattened to a substantially planar surface. The material layers can have a gradient refractive index distribution such that a locus of focal points resides on the substantially planar surface.
    Type: Application
    Filed: October 6, 2010
    Publication date: May 19, 2011
    Inventors: David R. Smith, Nathan B. Kundtz