Including Concave Or Convex Reflecting Surface Patents (Class 359/727)
  • Publication number: 20100315725
    Abstract: A wide-angle projection optical system includes a first lens set with positive power, an aperture stop, a second lens set with positive power, a third lens set with negative power, and a negative power reflecting mirror. The first lens set provides optical characteristics to match with a light beam coming from the object side. The second lens set is arranged behind the aperture stop to converge the light beam. The third lens set is configured to diverge the light to enlarge a full field angle. The negative power reflecting mirror is configured to further enlarge the full field angle and correct image distortion. The first lens set, the second lens set, the third lens set and the reflecting mirror have a common optical axis. The optical axis is shifted with respect to a center of a micro display.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Applicant: DELTA ELECTRONICS, INC.
    Inventor: Lai-Chang Lin
  • Publication number: 20100302785
    Abstract: A lens comprises an incident curved surface and an exit curved surface opposite to the incident curved surface. The incident curved surface and the exit curved surface are configured such that light emitted from a light emitting diode (LED) light source enters the lens through the incident curved surface and incident on the exit curved surface, and is refracted by the exit curved surface. The position of a point on the exit curved surface is represented by z=z0??{square root over (r2?(x2+y2))}+ax2+by2+cx2y2, where x, y and z are respective coordinates along X, Y and Z axes, and parameters a, b, c, r and z0 are numbers determining the shape of the exit curved surface. The Z axis coincides with an optical axis of the lens.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Applicant: BYD COMPANY LIMITED
    Inventor: Huijun ZHOU
  • Publication number: 20100302783
    Abstract: The present invention is directed to a lens. In one embodiment, the lens includes a first surface, a second surface that bends a light emitted from a light source with the first surface, a third surface that bends the light emitted from the light source with the first surface and a fourth surface coupled to the second surface and the third surface that bends the light emitted from the light source with the first surface. The first surface and the second surface are dioptric. The first surface and the third surface are dioptric. The first surface and the fourth surface are catadioptric.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Inventors: Chakrakodi Vishnu Shastry, Anthony Verdes
  • Publication number: 20100238416
    Abstract: A projection optical system for enlarging and projecting a light flux from an image display panel modulating an irradiation light, onto a screen in an oblique direction, the projection optical system includes: a lens system including a plurality of lenses, the lens system refracting the light flux from the image display panel; a single convex mirror reflecting the light flux from the lens system, the lens system and the convex mirror being arranged in an order from the image display panel; and a stop disposed in an optical path after an emission from the lens system to an incidence on the convex mirror.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Inventors: Muneharu KUWATA, Tomohira Sasagawa
  • Publication number: 20100231873
    Abstract: A fixed-focus lens disposed between an object side and an image side is provided. The fixed-focus lens includes a reflector, a curved reflector, a first lens group, and a second lens group disposed in sequence from the object side to the image side. The first lens group includes two aspheric lenses. The second lens group includes a spherical lens and an aspheric lens, wherein the aspheric lens of the second lens group is closest to the image side in the second lens group. Besides, an effective focal length (EFL) of the fixed-focus lens is f, an EFL of the second lens group is f2, and a clear aperture of the aspheric lens of the second lens group is D. The fixed-focus lens satisfies one of following conditions: 0.04<f/f2<0.078 and 0.05<f/D<0.18. An apparatus integrating optical projection and image detection is provided.
    Type: Application
    Filed: September 15, 2009
    Publication date: September 16, 2010
    Applicant: YOUNG OPTICS INC.
    Inventors: Jung-Yao Chen, Hsin-Te Chen
  • Publication number: 20100232039
    Abstract: A lens adapted to image a first image plane at a reduced side onto a magnified side is provided. The lens has an optical axis. The lens includes a lens group and a concave reflective mirror. The lens group is disposed in the light path between the reduced side and the magnified side. The concave reflective mirror is disposed in the light path between the lens group and the magnified side. The offset of the first image plane with respect to the optical axis is greater than 100%. The throw ratio of the lens is less than 0.3.
    Type: Application
    Filed: November 2, 2009
    Publication date: September 16, 2010
    Applicant: YOUNG OPTICS INC.
    Inventors: Sung-Nan Chen, Long-Sheng Liao, Ya-Ling Hsu, Chao-Shun Chen
  • Patent number: 7791801
    Abstract: A zoom lens system comprising a plurality of lens units each composed of at least one lens element, wherein an interval between at least any two lens units is changed so that an optical image is formed with a continuously variable magnification, the zoom lens system comprises a first lens unit having positive power, a second lens unit that includes a lens element having a reflecting surface and has negative power and subsequent lens units including at least one lens unit having positive power, and the condition: 0.50<(C?S)/H<1.00(C=?(2R·dR?dR2), S is a sag of the image side surface of the most object side lens element in the second lens unit at height H, H is one-half of an optical axial thickness of the lens element having a reflecting surface, R is a radius of curvature of the image side surface, and dR is an interval between the most object side lens element and the lens element having a reflecting surface) is satisfied.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Keiki Yoshitsugu, Takakazu Bito
  • Patent number: 7782550
    Abstract: In one embodiment, a lens structure has an object surface, an image surface, and an axicon mirror. The axicon mirror is defined by an inner diameter, an outer diameter, and a tilt angle, with the tilt angle being defined by a plane of the axicon mirror and the surface of the axicon mirror. The image surface is positioned within the inner diameter of the axicon mirror. The lens structure may be incorporated into an optical transmitter having a light source and a photodetector. The light source is positioned to transmit light toward the object surface of the lens structure, and the photodetector is positioned to receive light reflected from the axicon mirror. A method for producing lens structures with different optical attenuation properties is also disclosed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 24, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Eric Vancoille
  • Publication number: 20100182706
    Abstract: An optical-deflection accelerating device is provided. The device comprises an incident light source for generating an incident light-beam with a deflection speed, an emergent-light capturing device for capturing an emergent light-beam, and a reflective device which is a curved-surface reflective mirror for reflecting the incident light-beam to the emergent-light capturing device. When the incident light-beam enters to a reflective point on the curved-surface reflective mirror in sequence, an incident angle and a reflective angle are altered with locations of the reflective point on the curved-surface reflective mirror, and are increased with an increased curvature of the reflective point. When the incident light-beam is deflected with a tiny initial deflection angle, the reflective light-beam is deflected therewith and the deflection angle is enlarged. The curvature of the curved-surface reflective mirror can be adjusted to obtain different accelerated deflections.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 22, 2010
    Applicant: Shenzhen University
    Inventors: Jingzhen Li, Qingyeng Wu
  • Patent number: 7746571
    Abstract: The present invention discloses a large-field unit-magnification projection optical system. The optical system includes an optical axis, a spherical concave reflection mirror; a lens group with positive refracting power arranged adjacent the mirror with an air space therebetween. The lens group includes a first plano-convex lens, a negative meniscus lens adjacent the plano-convex lens, a positive lens adjacent the negative meniscus lens, a negative double-convex lens spaced apart far from the positive lens, and a second plano-convex lens. The optical system further includes a pair of prisms each having respective first and second surface. The second surfaces are arranged adjacent the flat surface of the plano-convex lens element on opposite sides of the optical axis and the first surfaces are arranged adjacent object planes and image planes, respectively.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 29, 2010
    Assignee: Shanghai Micro Electronics Equipment Co., Ltd.
    Inventors: Tiejun Li, Ling Huang, Jun Wei
  • Patent number: 7746565
    Abstract: An optical lens includes a recessed part and a refracting part. The recessed part has a substantially circular plan view and a substantially V shaped cross-section. The recessed part forms an angle of no more than an angle of about 20° with respect to a vertical line. The recessed part has a plurality of curved surfaces including different radii so that a light incident into the recessed part is totally reflected from the curved surfaces. The refracting part has a substantially circular plan view extended from the recessed part. A light incident into the refracting part and the reflected light from the recessed part are refracted from the refracting part. Therefore, a luminance uniformity and a color uniformity are improved.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: June 29, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Wook Paek, Jin-Soo Kim, Eun-Jeong Kang, Jin-Sung Choi, Sang-Hoon Lee, Si-Joon Song
  • Publication number: 20100149662
    Abstract: A catadioptric objective configured to inspect a specimen is provided. The catadioptric objective includes a Mangin element having one surface at a first axial location and an extension element positioned together with the Mangin element. The extension element provides a second surface at a second axial location. Certain light energy reflected from the specimen passes to the second surface of the extension element, the Mangin element, and through a plurality of lenses. An aspheric surface may be provided, and light energy may be provided to the specimen using diverting elements such as prisms or reflective surfaces.
    Type: Application
    Filed: October 25, 2007
    Publication date: June 17, 2010
    Inventor: J. Joseph Armstrong
  • Patent number: 7738188
    Abstract: A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |?|<1. The optical elements form a dry objective adapted with regard to aberrations to a gaseous medium with refractive index n?<1.01 filling an image space of finite thickness between an exit surface of the projection objective and the image surface. The optical elements include a largest lens having a maximum lens diameter Dmax and are configured to provide an image-side numerical aperture NA<1 in an effective image field having a maximum image field height Y?. With COMP=Dmax/(Y?·(NA/n?)2) the condition COMP<15.8 holds.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 15, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, Aurelian Dodoc, Heiko Feldmann, Hans-Juergen Rostalski
  • Patent number: 7738189
    Abstract: The present invention provides a side emitting lens that may reduce optical loss and improve light emitting ratios, and a backlight unit and liquid crystal display including the side emitting lens. The side emitting lens may have a substantially dome-shaped body. The body includes a base part on which external light is incident, a refracting part to refract incident light and emit the light from side surfaces, and a reflecting part. The reflecting part is in the shape of a conical recess at a central portion of the refracting part to fully reflect the incident light toward one of the refracting part and the base part and the reflecting part comprises two or more reflecting surfaces. Each of the two or more reflecting surfaces is a curved surface.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 15, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se Ki Park, Gi Cherl Kim, Seock Hwan Kang, Eun Jeong Kang
  • Publication number: 20100097809
    Abstract: A condensing element, array, and methods thereof include a bowl-shaped outer section and a lens-shaped inner section. The outer section provides substantially total internal reflection of light entering at an input surface of the outer section. The inner section is recessed within the outer section at a distance from the entering light that is within the focal position of the inner section. The outer and inner sections are configured in a preferred embodiment so that substantially all the light exiting the condensing element is substantially parallel to the optical axis of the entering light. In an alternate embodiment, the configuration of the condensing element can be modified to selectively adjust the desired degree of collimation of the exiting light.
    Type: Application
    Filed: October 20, 2008
    Publication date: April 22, 2010
    Applicant: Reflexite Corporation
    Inventors: James F. Munro, Penny J. Munro
  • Patent number: 7688525
    Abstract: A hybrid optical component that collects and concentrates incident light. The hybrid component includes both refractive and reflective elements. In preferred embodiments, refractive and reflective components focus rays on a common focal plane generally located at the bottom of the reflector where they are absorbed by a device such as a photovoltaic (solar) cell. Additionally, the optical component combines both imaging and non-imaging optical elements into a single device, for improved overall performance.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 30, 2010
    Assignee: Soliant Energy, Inc.
    Inventors: Braden E. Hines, Richard L. Johnson, Jr.
  • Patent number: 7688526
    Abstract: A light-emitting assembly comprising a lens, a first optical source, a second optical source and a third optical source, wherein the lens is disposed forward of said first, second and third optical sources; the third optical source is intermediate the first and second optical sources; and the lens and the first, second and third optical sources are arranged so that light emitted from the first and second optical sources merges at the third optical source after undergoing internal reflection at the lens.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: March 30, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co. Ltd.
    Inventors: Ming Lu, Lei Shi, Chak Hau Pang
  • Publication number: 20100053738
    Abstract: New and useful concepts for an imaging optical system configured to simultaneously image a reticle to a pair of imaging locations are provided, where the imaging optics comprise a pair of arms, each of which includes catadioptric imaging optics. In addition, the imaging optics are preferably designed to image a reticle simultaneously to the pair of imaging locations, at a numerical aperture of at least 1.3, and without obscuration of light by the imaging optics.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 4, 2010
    Applicant: Nikon Corporation
    Inventors: David M. Williamson, Michael B. Binnard, Douglas C. Watson
  • Publication number: 20100046092
    Abstract: A catadioptric system is provided comprising a correcting plate and an optical system. The correcting plate is configured to condition electromagnetic radiation to correct at least one aberration. The optical system is configured to reflect a first portion of the conditioned electromagnetic radiation, to refract a second portion of the conditioned electromagnetic radiation, and to focus the reflected first portion of the conditioned electromagnetic radiation onto a target portion of a substrate. The first portion of the electromagnetic radiation is not refracted by an optical element, allowing the catadioptric optical system to operate in a broad spectral range.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Applicant: ASML Holding N.V.
    Inventors: Yevgeniy Konstantinovich Shmarev, Stanislav Y. Smirnov, Irina I. Pozhinskaya
  • Patent number: 7660047
    Abstract: A flat panel lens system as a tapered light guide that has minimal or no margin for fan out. The tapered light guide includes a thin end, and a thick end of which is a bevelled mirror or an optical equivalent. Light is injected into the thin end and the mirror is such that rays injected through a point at the thin end emerge collimated from one of the light guide surfaces, and that collimated rays injected at an appropriate angle through one of the light guide surfaces emerge from a point at the thin end. Bragg gratings can be utilized for color implementations as well. The tapered light guide can be fabricated as a single piece, by extrusion, injection molding, or the combination/variation of extrusion and injection molding, as well as other commonly known techniques.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 9, 2010
    Assignee: Microsoft Corporation
    Inventors: Adrian Travis, Timothy A. Large, Neil Emerton
  • Patent number: 7645057
    Abstract: An optical sheet includes a substrate onto which light is incident, and a convex part protruded from the substrate by a predetermined thickness. A thickness of the convex part increases from an edge to a center thereof.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: January 12, 2010
    Assignee: Miraenanotech Co., Ltd.
    Inventors: Cheul Yong Kim, Sang Mook Kim, Jong Wook Huh, Dong Ryoul Kim, Ki Won Jeon, Ju Won Lee, Eun Jung Ham, Myung Su Lee
  • Patent number: 7643226
    Abstract: Objectives and other optical assemblies include a reflective surface that is truncated at or near a focus based on a curvature of the reflective surface. A specimen is situated at or near the focus of the reflective surface, so that the reflective surface captures and collimates optical radiation emitted from the specimen. The reflective surface can be defined on an optical substrate along with a lens surface, so that an illumination flux is focused on the specimen by the lens surface, and a secondary light flux produced in response to the illumination flux is captured and collimated by the reflective surface.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: January 5, 2010
    Assignee: Salk Institute for Biological Studies
    Inventors: Dejan Vucinic, Thomas M. Bartol, Terrence J. Sejnowski
  • Patent number: 7639419
    Abstract: A system for use with a reduced size catadioptric objective is disclosed. The system including the reduced size objective includes various subsystems to allow enhanced imaging, the subsystems including illumination, imaging, autofocus, positioning, sensor, data acquisition, and data analysis. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and elements of the objective are less than 100 mm in diameter. The objective comprises a focusing lens group and at least one field lens oriented to receive focused light energy from the focusing lens group and provide intermediate light energy. The objective also includes a Mangin mirror arrangement. The design imparts controlled light energy with a numerical aperture in excess of 0.65 and up to approximately 0.90 to a specimen for imaging purposes, and the design may be employed in various environments.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: December 29, 2009
    Assignee: KLA-Tencor Technologies, Inc.
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, David R. Shafer
  • Publication number: 20090316256
    Abstract: An objective having a plurality of optical elements arranged to image a pattern from an object field in an object surface of the objective to an image field in an image surface region of the objective at an image-side numerical aperture NA>0.8 with electromagnetic radiation from a wavelength band around a wavelength ?, includes a number N of dioptric optical elements, each dioptric optical element i made from a transparent material having a normalized optical dispersion ?ni=ni(?0)?ni(?0+1 pm) for a wavelength variation of 1 pm from a wavelength ?0. The objective satisfies the relation ? ? i = 1 N ? ? ? ? n i ? ( s i - d i ) ? ? 0 ? NA 4 ? A for any ray of an axial ray bundle originating from a field point on an optical axis in the object field, where si is a geometrical path length of a ray in an ith dioptric optical element having axial thickness di and the sum extends on all dioptric optical elements of the objective. Where A=0.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicant: Carl Zeiss SMT AG
    Inventors: Alexander EPPLE, Heiko FELDMANN
  • Patent number: 7633675
    Abstract: A reduced size catadioptric inspection system employing a catadioptric objective and immersion substance is disclosed. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The objective comprises a focusing lens group, a field lens, a Mangin mirror arrangement, and an immersion substance or liquid between the Mangin mirror arrangement and the specimen. A variable focal length optical system for use with the objective in the catadioptric inspection system is also disclosed.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: December 15, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: J. Joseph Armstrong, Yung-Ho Chuang, David R. Shafer
  • Publication number: 20090303616
    Abstract: A rear-view system for a motor vehicle including a catadioptric assembly of at least one external or internal rearview mirror including a non-planar mirror and at least one diopter forming part of a side window of the vehicle or integrated thereto. The mirror and the diopter are configured and designed such that the image of the object restored by the mirror-diopter assembly is not substantially deformed and such that the blind spot or zone not covered by the system is minimized.
    Type: Application
    Filed: December 16, 2005
    Publication date: December 10, 2009
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Aurelie Couery, Corinne Payen
  • Patent number: 7626766
    Abstract: A zoom lens system comprising a plurality of lens units each composed of at least one lens element, wherein an interval between at least any two lens units is changed so that an optical image is formed with a continuously variable magnification, the zoom lens system comprises a first lens unit having positive power, a second lens unit that includes a lens element having a reflecting surface and has negative power and subsequent lens units including at least one lens unit having positive power, and the condition: 0.50<(C?S)/H<1.00(C=?{square root over ( )}(2R·dR?dR2), S is a sag of the image side surface of the most object side lens element in the second lens unit at height H, H is one-half of an optical axial thickness of the lens element having a reflecting surface, R is a radius of curvature of the image side surface, and dR is an interval between the most object side lens element and the lens element having a reflecting surface) is satisfied.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Keiki Yoshitsugu, Takakazu Bito
  • Patent number: 7573655
    Abstract: A catadioptric projection objective has, along an optical axis, a concave mirror; a positive lens group with positive refractive power arranged adjacent to the concave mirror and spaced apart therefrom; a first prism and a second prism each having respective first fiat surfaces and second flat surfaces, wherein the second flat surfaces are arranged adjacent to the positive lens group and on opposite sides of the optical axis, and wherein the first flat surfaces are arranged adjacent to an object plane and an image plane, respectively, of the projection objective. The projection objective has unit magnification and at least one focus at a wavelength in a design wavelength band that includes mercury g-, h- and i-lines. At least the thickest optical element of the positive lens group and the first and second prism are made from optical material having an absorption coefficient k<0.001 cm?1 in the design wavelength band.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: August 11, 2009
    Assignee: Carl Zeiss SMT AG
    Inventor: David Shafer
  • Publication number: 20090185290
    Abstract: The present invention discloses a large-field unit-magnification projection optical system. The optical system includes an optical axis, a spherical concave reflection mirror; a lens group with positive refracting power arranged adjacent the mirror with an air space therebetween. The lens group includes a first plano-convex lens, a negative meniscus lens adjacent the plano-convex lens, a positive lens adjacent the negative meniscus lens, a negative double-convex lens spaced apart far from the positive lens, and a second plano-convex lens. The optical system further includes a pair of prisms each having respective first and second surface. The second surfaces are arranged adjacent the flat surface of the plano-convex lens element on opposite sides of the optical axis and the first surfaces are arranged adjacent object planes and image planes, respectively.
    Type: Application
    Filed: December 4, 2006
    Publication date: July 23, 2009
    Applicant: SHANGHAI MICRO ELECTRONICS EQUIPMENT Co., LTD.
    Inventors: Tiejun Li, Ling Huang, Jun Wei
  • Patent number: 7564633
    Abstract: A catadioptric imaging system for micro-lithographic projection features a high numerical aperture objective where most of the focusing power is produced by reflection and refraction angles are limited to avoid additional aberration. A field correcting optic is appended to a Mangin mirror in an immersive configuration for raising the numerical aperture. The optical connection between the Mangin mirror and the field correcting optic is arranged to control refraction angles by limiting angles of incidence or refractive index differences. A radially symmetric polarizing effect is achieved in a pupil to improve image contrast.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: July 21, 2009
    Assignee: Corning Incorporated
    Inventor: James Edson Webb
  • Patent number: 7554676
    Abstract: A positional measurement system includes an electromagnetic wave source which emits an electromagnetic wave, a lens system which has a first lens surface, an electromagnetic wave shield section provided around a center axis of the first lens surface, and a second lens surface, and causes the electromagnetic wave having entered by way of the first lens surface exclusive of the electromagnetic wave shield section to exit from the second lens surface, to form an electromagnetic wave concentrated area at a position opposite the electromagnetic wave source, a receiving device which detects the electromagnetic wave concentrated area formed by the lens system, and a computing device which measures a position of the electromagnetic wave source based on information detected by the receiving device on the electromagnetic wave concentrated area.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 30, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Yasuji Seko
  • Publication number: 20090153954
    Abstract: The present invention is directed to off-axis catadioptric projection optical systems for use in lithography tools for processing modulated light used to form an image on a substrate, such as a semiconductor wafer or flat panel display. In one embodiment the optical system includes an off-axis mirror segment, a fold mirror, a relay, an aperture stop and a refractive lens group. Modulated light is transmitted through the system to form an image on a substrate. In a second embodiment the projection system includes an off-axis mirror segment, an aperture stop and a refractive lens group. In a third embodiment the projection system includes an off-axis mirror segment, a negative refractive lens group, a concave mirror, a relay, an aperture stop, and a refractive lens group. A method to produce a device using a lithographic apparatus including a projection system with an off-axis mirror segment as the first element in a projection optics system is also provided.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Applicant: ASML Holding N.V.
    Inventors: Stanislav SMIRNOV, Mark Oskotsky
  • Patent number: 7545584
    Abstract: A high intensity lighting apparatus (400) includes an outer housing (402); a curved support disk (414) having an array of diode or laser-based integrated light source (410) attached thereto disposed within the housing. Each of the light source (110) includes a tube (112) having a laser or diode chip (111) at one end of the tube. The tubes each have at least one concave shaped exit surface (113) on an end opposite the chip, wherein the concave exit surface converges light emitted from each of the light source to focal points within the housing (402). A shape of the curved support disk (414) converges the respective focal points into a light beam having a common focal plane (441). Adjustable secondary optics (431) are disposed in the housing after the focal plane (441) for creating various angles of transmission of the light beam. The laser can be a diode laser, while the diode can be a light-emitting diode (LED).
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: June 9, 2009
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Martin A. Gold, Stanley Kaye
  • Patent number: 7532414
    Abstract: A lens arrangement is presented. The lens arrangement comprises a first element having a concave reflective surface and defining an optical axis of the lens arrangement, and a second substantially flat and at least partially reflective element spaced-apart from the first element along the optical axis. The second element is configured to allow light passage therethrough and is oriented with respect to the optical axis and the first element such that at a predetermined angle of incidence of an input light beam onto the second element, the input light beam is reflected onto the reflective surface of the first element and reflected therefrom to pass through the second element.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: May 12, 2009
    Assignee: Nova Measuring Instruments, Ltd.
    Inventors: David Scheiner, Michael Winik, Yakov Lyubchik
  • Publication number: 20090116124
    Abstract: A projection type image display device comprising: a projection optical system having a first refracting optical section having a plurality of lenses, a reflecting optical section having at least one concave reflecting surfacer and a second refracting optical section in order from a reduction side; and an image forming optical section disposed on an anterior stage of a light path as the reduction side of the projection optical system, wherein the second refracting optical section has an exit lens having either: (1) a roughly constant thickness and disposed in a posterior stage of the light path from an exit pupil position at which a principal ray reflected by the reflecting surface and proceeding towards the maximum field angle and the optical axis of the reflecting optical section intersect with each other, and an optical surface of a magnification side of the exit lens has a shape convex towards the magnification side; or (2) a roughly constant thickness and disposed between the reflecting optical section
    Type: Application
    Filed: October 7, 2008
    Publication date: May 7, 2009
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Nobutaka MINEFUJI
  • Patent number: 7529032
    Abstract: A disclosed projection optical system for projecting and forming an enlarged image of an image displayed in a planar manner as an object includes: a lens system including, from an object side, at least a lens group providing telecentricity to an object space side, a lens group controlling divergence of angles of view, a diaphragm, a lens group converging the angles of view, and a lens group converging and subsequently enlarging the angles of view; and a catoptric system disposed on an image side relative to the lens system and including a mirror having negative power. Each lens group of the lens system and the mirror having negative power share an optical axis and the optical axis is shifted relative to a center of an object surface.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: May 5, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Atsushi Takaura, Issei Abe, Kazuhiro Fujita
  • Patent number: 7524098
    Abstract: The optical lens embodiment of the invention refracts and reflects light emitted from the light emitting diode chips on a unique combination of curved surfaces to obtain the desired coupling to a lateral light guide. The system of curved surfaces redirects rays from multiple LED chips laterally by multiple refraction and/or reflection. The optical lens has an optical axis, and comprises a bottom surface and a curved reflecting surface having a concave side. The concave side is oriented to face said bottom surface at an oblique angle. The reflecting surface surrounds the optical axis. The lens comprises a first curved refracting surface having a concave side facing the concave side of the reflecting surface and a second refracting surface extending as a smooth curve from the bottom surface to the first refracting surface.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: April 28, 2009
    Assignee: Dicon Fiberoptics, Inc.
    Inventors: Perig Vennetier, Jean-Yves Naulin
  • Publication number: 20090091797
    Abstract: A catadioptric imaging system combines a rectifying mirror, a lens system and subsequent image processing. This approach can produce a small form factor desktop document imaging system capable of producing high-quality, high-resolution images of paper documents.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 9, 2009
    Applicant: RICOH CO., LTD.
    Inventor: M. Dirk Robinson
  • Patent number: 7498071
    Abstract: It is an object of the present invention to provide a laminated member with an recorded information code, having a high reading accuracy, which do not detract from product design and which do not require a special reading apparatus. A laminated member 10 of the present invention comprises a transparent material layer 12 on which an information code is recorded, and a reflection-reduction layer 14 provided at the opposite side from a side where the information code is observed. The transparent layer 12 comprises low-reflectance portions 18 and high-reflectance portions 16 having a higher reflectance than the low-reflectance portions 18. The information code is recorded as a distributed pattern of the high-reflectance portions 16. The reflection-reduction layer 14 reduces reflected light advancing to the transparent material layer 12.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: March 3, 2009
    Assignee: Shiseido Co., Ltd.
    Inventors: Kenichi Sakuma, Masayoshi Wada, Asa Kimura
  • Patent number: 7493032
    Abstract: A camera module (100) includes a housing (110), a lens (120), an optical group (130), a drive mechanism (160) and two image sensors (180, 190). The optical group includes a first and a second mirror (132, 134) respectively having a reflective surface (133, 135) and a middle lens (136). The drive mechanism moves the first mirror between a first and a second position. The second reflective surface of the second mirror faces being oriented so as to be able to reflect light to the second image sensor. When the first mirror is in the first position, the first reflective surface is oriented so as to be able to reflect light to the first image sensor. When the first mirror is in the second position, the first reflective surface is oriented so as to allow the light to pass through the middle lens and reach the second mirror.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: February 17, 2009
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Jen-Tsorng Chang
  • Publication number: 20090040628
    Abstract: In one embodiment, a lens structure has an object surface, an image surface, and an axicon mirror. The axicon mirror is defined by an inner diameter, an outer diameter, and a tilt angle, with the tilt angle being defined by a plane of the axicon mirror and the surface of the axicon mirror. The image surface is positioned within the inner diameter of the axicon mirror. The lens structure may be incorporated into an optical transmitter having a light source and a photodetector. The light source is positioned to transmit light toward the object surface of the lens structure, and the photodetector is positioned to receive light reflected from the axicon mirror. A method for producing lens structures with different optical attenuation properties is also disclosed.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 12, 2009
    Applicant: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Eric Vancoille
  • Patent number: 7489453
    Abstract: A near field lens for an automotive light assembly which has a reduced thickness. Generally, the near field lens includes a main body of light transmitting material. A pocket is formed in the main body for receiving light from a light source. The pocket is defined by an inner radially facing surface and an inner axially facing surface. The inner radially facing surface is structured to reduce the thickness of the lens.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: February 10, 2009
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Jeyachandrabose Chinniah, Amir P. Fallahi, Jeffrey Allen Erion, Edwin Mitchell Sayers, Thomas Lee Jones
  • Publication number: 20090009735
    Abstract: A scanning exposure apparatus of the present invention is one for transferring a pattern of a first object onto a second object while projecting an image of the first object placed on a first plane, onto the second object placed on a second plane and changing a positional relation between the image of the first object and the second object in a scanning direction. The scanning exposure apparatus has a first projection optical system having a first field of view on the first plane and adapted to project an enlargement image of a portion of the first object in a first projection region on the second plane, based on light from the first field of view, and a second projection optical system having a second field of view on the first plane and adapted to project an enlargement image of a portion of the first object in a second projection region on the second plane, based on light from the second field of view.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 8, 2009
    Applicant: NIKON CORPORATION
    Inventor: Masaki KATO
  • Patent number: 7463422
    Abstract: A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 9, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Vladimir Kamenow, Daniel Kraehmer, Michael Totzeck, Toralf Gruner, Aurelian Dodoc, David Shafer, Wilhelm Ulrich, Rudolf von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 7457051
    Abstract: The present invention provides an imaging apparatus capable of imaging a wide area, controlling parallax to achieve an excellent image quality, and utilizing an imaging element with a relatively large package.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: November 25, 2008
    Assignee: Sony Corporation
    Inventor: Koichi Yoshikawa
  • Publication number: 20080285157
    Abstract: A motor vehicle rearview mirror for producing an image of an object situated outside and behind the vehicle, the rearview mirror comprising a lens (1; 1?; 1?; 1??) and a mirror (2) and being characterized in that the lens is a diverging concave lens having an optical axis (Al) and an optical focus (Fl; Fl?; Fl?), and the mirror is a mirror that is substantially concave, light beams (Fse, Fc, Fsi) passing through the diverging lens towards the mirror that reflects them in converging manner substantially without optical distortion in a direction that corresponds to the viewing axis of the driver looking at the mirror, characterized in that the mirror (2) defines a concave reflective surface (21) that corresponds substantially to a segment of a cylinder.
    Type: Application
    Filed: December 8, 2006
    Publication date: November 20, 2008
    Applicant: HOLOPHANE SA
    Inventor: Daniel Goraguer
  • Publication number: 20080285121
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective comprises: a first objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part for imaging the first intermediate imaging into a second intermediate image; a third objective part for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface.
    Type: Application
    Filed: April 9, 2008
    Publication date: November 20, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 7446299
    Abstract: A multi-spectrum image capturing device includes a multi-spectrum illuminating device comprising LED's for emitting lights of different wavelengths from one another, a plurality of optical rods for relaying the lights emitted from the LED's, an optical diffusion element for diffusively reflecting the lights from the optical rods by a white diffusion surface and an aluminum-coated reflecting surface to be irradiated at an angle of about 60° with respect to an image-capturing optical axis, and an optical sheet for further diffusing the lights from the optical diffusion element, and also includes an image-capturing optical system and a CCD for forming an image based on lights reflected from an irradiated surface under illumination by the multi-spectrum illuminating device to capture the formed image. An image output captured by the CCD is analyzed to measure color components of the irradiated surface.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 4, 2008
    Assignee: Olympus Corporation
    Inventor: Hiroyoshi Kobayashi
  • Publication number: 20080223443
    Abstract: In one embodiment of a solar concentrator, a tailored aspheric lens augments the solar-concentrator performance of a concave mirror, widening its acceptance angle for easier solar tracking, making it more cost-competitive for ultra-large arrays. The molded-glass secondary lens also includes a short rod for reducing the peak concentration on a photovoltaic cell that is optically bonded to the end of the rod. The Simultaneous Multiple Surface method produces lens shapes suitable for a variety of medium and high concentrations by mirrored dishes. Besides the rotationally symmetric parabolic mirror itself, other aspheric deviations therefrom are described, including a free-form rectangular mirror that has its focal region at its edge.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 18, 2008
    Applicant: Light Prescriptions Innovators, LLC
    Inventors: Pablo Benitez, Juan Carlos Minano, Maikel Hernandez, Aleksandra Cvetkovic, William A. Parkyn
  • Patent number: 7426082
    Abstract: A projection exposure lens has an object plane, optical elements for separating beams, a concave mirror, an image plane, a first lens system arranged between the object plane and the optical elements for separating beams, a second double pass lens system arranged between the optical elements for separating beams and the concave mirror, a third lens system arranged between the optical elements for separating beams and the image plane. The second lens system has a maximum of five lenses.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 16, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Alexander Epple, Aurelian Dodoc, Helmut Beierl, Wilhelm Ulrich