Plural Gaps Patents (Class 360/121)
  • Patent number: 8264793
    Abstract: A tape head has first and second beams each having a recess in a tape bearing surface thereof, a face where the faces of the beams either face each other or face away from each other. A first chip is positioned in the recess of the first beam, and a second chip is positioned in the recess of the second beam. Each chip has circuitry selected from a group consisting of read elements, write elements, and combinations thereof. A tape bearing surface of each chip is generally aligned with the tape bearing surface of the associated beam. Also, an end of each chip is generally aligned with the face of the associated beam. Where closures are used, this eliminates the need to aligning the closure to skiving edges of the beam.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, James Howard Eaton
  • Patent number: 8248727
    Abstract: A magnetic head in one embodiment comprises a plurality of components separated from each other by insulative portions; and at least one connective element coupling the components together. A magnetic tape head in another embodiment comprises a substrate; a closure separated from the substrate by an insulative portion; and at least one connective element coupling the substrate and closure together.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Calvin Shyhjong Lo
  • Patent number: 8240024
    Abstract: In one general embodiment, a method for fabricating magnetic structures using post-deposition tilting includes forming a thin film magnetic transducer structure on a substantially planar portion of a substrate such that a plane of deposition of the thin film transducer structure is substantially parallel to a plane of the substrate. Additionally, the thin film transducer structure is caused to tilt at an angle relative to the plane of the substrate. The thin film transducer is fixed at the angle after being tilted.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Laurent Dellmann, Michel Despont, Philipp Herget, Pierre-Olivier Jubert
  • Patent number: 8243385
    Abstract: A magnetic head in one embodiment includes a first array of writers interleaved with readers; a second array of writers interleaved with readers, the writers of the first array being generally aligned with the writers of the second array in a direction of media travel relative thereto, the readers of the first array being generally aligned with the readers of the second array in a direction of media travel relative thereto; and a third array of writers interleaved with readers, the third array being positioned between the first and second arrays, the writers of the third array being generally aligned with the readers of the first and second arrays in a direction of media travel relative thereto, the readers of the third array being generally aligned with the writers of the first and second arrays in a direction of media travel relative thereto. Other embodiments are also presented.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Jason Liang
  • Patent number: 8233246
    Abstract: A magnetic head comprises identical, opposing modules each comprising an array of paired data transducers, the transducers including data readers, data writers, or combinations thereof. For each array, the transducers in each subset may have about the same center to center spacing. A first subset of the transducers is operable for reading or writing data in a first tape format. A second subset of the transducers is operable for reading or writing data in a second tape format, with at least some of the transducers being present in both subsets. Also, each module includes a lone writer at one end of one of the subsets, a lone reader at an opposite end of the one of the subsets, and servo readers positioned outside the array.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventor: Peter VanderSalm Koeppe
  • Patent number: 8230582
    Abstract: One preferred method for use in making a device structure with use of the resist channel shrinking solution includes the steps of forming a first pedestal portion within a channel of a patterned resist; applying a resist channel shrinking solution comprising a resist channel shrinking film and corrosion inhibitors within the channel of the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel of the patterned resist; removing the resist channel shrinking solution; and forming a second pedestal portion within the reduced-width channel of the patterned resist. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pedestal during the act of baking the resist channel shrinking solution.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 31, 2012
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Rene Bonhote, Jila Tabib, Dennis Richard Mckean, Daniel Wayne Bedell, Jyh-Shuey Lo, Heiu Lam, Kim Y Lee
  • Patent number: 8225486
    Abstract: In a manufacturing process of a head slider, a plurality of head elements are formed on a wafer, each head element comprising: a return pole, a coil, and a main pole. The wafer is cut into respective head elements so that individual head sliders are formed. A ratio of an amplitude of an electrical signal applied to the coil of the write head on the head slider to an amplitude of output from an independent magnetic field sensor not embedded in the head slider is calculated, where the independent magnetic field sensor is disposed near the main pole so as to be opposed to the main pole across the air bearing surface, and where the ratio is calculated while a displacement between the main pole and the magnetic field sensor is swept. A flare point height of the main pole is determined from the calculated amplitude ratio.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Toshio Takahashi, Akihiro Namba, Masafumi Mochizuki
  • Patent number: 8225488
    Abstract: A method for providing a PMR pole in a magnetic recording transducer comprises providing a mask on an intermediate layer, the mask including a line having at least one side, providing a hard mask on the mask, a first portion of the hard mask residing on the at least one side and a second portion residing on a surface of the intermediate layer, the hard mask including a dry-etchable layer and a high removal ratio layer on the dry-etchable layer, removing at least part of the first portion of the hard mask, at least a portion of the line being exposed, removing the line, thereby providing an aperture in the hard mask corresponding to the line, forming a trench in the intermediate layer under the aperture using a removal process, and providing the PMR pole, at least a portion of the PMR pole residing in the trench.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 24, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Yun-Fei Li, Ying Hong
  • Patent number: 8209847
    Abstract: A method of fabricating a magnetic head is provided. The method of fabricating the magnetic head includes forming a writing head on a writing head area, forming an insulating layer having an inclined surface, forming a reading head on the inclined surface of the insulating layer, and forming an air bearing surface by polishing the surfaces of the writing head. Forming the reading head includes forming a first shield layer, a reading sensor, and a second shield layer.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: July 3, 2012
    Assignee: Seagate Technology International
    Inventor: Kyusik Sin
  • Patent number: 8201320
    Abstract: A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 19, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Yingjian Chen, Andrew Chiu, Liubo Hong, Wen-Chien D. Hsiao, Edward H. P. Lee, Fenglin Liu, Katalin Pentek, Kyusik Shin, Yi Zheng, Qiping Zhong, Honglin Zhu
  • Patent number: 8201321
    Abstract: Provided is a method of manufacturing a perpendicular magnetic recording head which can enhance accuracy and simplify the manufacturing process. The method includes: forming a photoresist pattern having an opening part; forming a non-magnetic layer so as to narrow the opening part by a dry film forming method such as ALD method; stacking a seed layer and a plating layer so as to bury the opening part provided with the non-magnetic layer; and forming a main magnetic pole layer by polishing the non-magnetic layer, the seed layer, and the plating layer by CMP method until the photoresist pattern is exposed. The final opening width is unsusceptible to variations, thus reducing the number of the steps of forming the main magnetic layer.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 19, 2012
    Assignees: TDK Corporation, SAE Magnetics (H.K.) Ltd.
    Inventors: Naoto Matono, Tatsuya Harada
  • Patent number: 8199434
    Abstract: A magnetic recording tape according to one embodiment includes a plurality of servo tracks, each servo track comprising a series of magnetically defined bars, wherein an average height of the bars is less than about 50 microns, wherein about eight to about twenty six data bands are present on the tape. A magnetic recording tape according to another embodiment includes a plurality of servo tracks, each servo track comprising a series of magnetically defined bars, wherein an angle between at least some of the bars is greater than about 10 degrees, wherein an average height of the bars is less than about 50 microns. A magnetic recording tape according to another embodiment includes at least about eight data bands, the data bands being defined between servo tracks, wherein about eight to about twenty six data bands are present on the tape.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Wayne Isami Imaino
  • Patent number: 8191234
    Abstract: A method for protecting a thin film structure including fabricating a plurality of island structures in a recording gap of a magnetic recording head, exposing a substantial portion of the plurality of island structures by removing at least a portion of the surrounding recording gap material via at least one etching process, including ion milling, coating the magnetic recording head containing the plurality of island structures with a coating material, including silicon nitride or aluminum oxide, and removing at least a portion of the coating material via a removal process, including chemical-mechanical polishing or lapping, to expose an uppermost region of at least a portion of said plurality of island structures.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Calvin S. Lo, Cherngye Hwang
  • Patent number: 8191238
    Abstract: A magnetic writer comprises a write pole, a substrate and a non-magnetic, oxygen-free buffer material. The write pole has a leading edge, a trailing edge, a first side and second side. The substrate is at the leading edge of the write pole. The non-magnetic, oxygen-free buffer material is located between the write pole and the substrate.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: June 5, 2012
    Assignee: Seagate Technology LLC
    Inventors: Alexandre Vasilievish Demtchouk, Thomas Roy Boonstra, Michael Christopher Kautzky
  • Patent number: 8191237
    Abstract: A method for providing a structure in a magnetic transducer is described. The method includes performing a first planarization that exposes a top surface of the magnetic transducer. This first planarization also terminates before a portion of a first planarization buffer layer is removed. The method also includes providing a second planarization buffer layer after the first planarization is performed. The second planarization buffer layer is above the first planarization buffer layer. The method also includes performing a second planarization. This second planarization does not completely remove the second planarization buffer layer. The method also includes performing a third planarization terminating after the first planarization buffer layer is exposed and before the first planarization buffer layer is completely removed.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: June 5, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanghong Luo, Ge Yi, Dujiang Wan, Lei Wang, Xiaohai Xiang, Ming Jiang
  • Patent number: 8186040
    Abstract: A method in one embodiment includes forming a resist structure above an upper surface of a substrate, wherein a portion of the upper surface of the substrate is a shaping layer, wherein the resist structure has an undercut; depositing a layer of magnetic material above exposed regions of the substrate, wherein a portion of the layer of magnetic material tapers towards the substrate as it approaches the undercut; removing the resist structure; and forming a write pole above the layer of magnetic material. Additional methods are disclosed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 29, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Wen-Chien David Hsiao, Vladimir Nikitin, Trevor W. Olson, Yuan Yao
  • Patent number: 8171618
    Abstract: A method of forming a write pole for a magnetic recording device is provided. The method comprises providing a layer of magnetic material covered with a secondary hard mask layer and a patterned primary hard mask, milling at a first milling angle to transfer a pattern from the patterned primary hard mask to the secondary hard mask, and milling at a second milling angle to transfer the pattern from the secondary hard mask to the layer of magnetic material to form the write pole. The second milling angle is greater than the first milling angle. The method further comprises milling at a third milling angle to adjust a side wall angle of the write pole to about a desired side wall angle, and milling at a fourth milling angle to reduce a track width of the write pole to a desired track width.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: May 8, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Ge Yi
  • Patent number: 8166632
    Abstract: A method and system for providing a PMR transducer including an intermediate layer. The method and system include providing a hard mask layer on the intermediate layer. The hard mask layer is for a reactive ion etch of the intermediate layer. The method and system also include providing a bottom antireflective coating (BARC) layer on the hard mask layer. The BARC layer is also a masking layer for the hard mask layer. The method and system also include forming a trench in the intermediate layer using at least one reactive ion etch (RIE). The trench has a bottom and a top wider than the bottom. The method and system also include providing a PMR pole. At least a portion of the PMR pole resides in the trench.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Liubo Hong, Yong Shen, Donghong Li
  • Patent number: 8166631
    Abstract: A method provides a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method includes providing a plurality of trenches in the nonmagnetic layer. A first trench of corresponds to a main pole, while at least one side trench corresponds to at least one side shield. The method also includes providing mask covering the side trench(es) and providing the main pole. At least a portion of the main pole resides in the first trench. The method also includes removing at least a portion of the nonmagnetic layer residing between the side trench(es) and the main pole. The method also includes providing at least one side shield. The shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai, Kevin K. Lin
  • Patent number: 8161627
    Abstract: A method in one embodiment includes forming an electric lapping guide layer; forming a write pole; forming a first gap layer over the write pole; masking a portion of the first gap layer for defining a window over the write pole and at least a portion of the electric lapping guide layer; and forming a bump over the write pole in the window. Additional methods and systems are presented.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 24, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Jeffrey S. Lille, Vladimir Nikitin, Aron Pentek, Neil Leslie Robertson
  • Publication number: 20120081813
    Abstract: A wiring structure includes: positive signal wires configured to transmit a positive signal of differential signals; and negative signal wires configured to transmit a negative signal of the differential signals. The positive signal wires and the negative signal wires are interleaved. A first gap length and a second gap length are different from each other where the first gap length is a gap length between a first wire being an outermost wire among the positive signal wires and the negative signal wires and a first adjacent wire that is adjacent to the first wire, where the second gap length is a gap length between a second wire that is located inside among the positive signal wires and the negative signal wires and a second adjacent wire that is adjacent to the second wire. The second wire and the second adjacent wire are different from the first wire.
    Type: Application
    Filed: August 24, 2011
    Publication date: April 5, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Toru EZAWA, Tomokazu Okubo
  • Patent number: 8146236
    Abstract: A method and system for providing a perpendicular magnetic recording (PMR) transducer from pole layer(s) are disclosed. First and second planarization stop layers are provided on the pole layer(s). A mask is provided on the second planarization stop layer. A first portion of the mask resides on a portion of the pole layer(s) used to form the PMR pole. The PMR pole is defined after the mask is provided. An intermediate layer surrounding at least the PMR pole is provided. A first planarization is performed on at least the intermediate layer. A portion of the second planarization stop layer is removed during the first planarization. A remaining portion of the second planarization stop layer is removed. A second planarization is performed. A portion of the first planarization stop layer remains after the second planarization. A write gap and shield are provided on the PMR pole and write gap, respectively.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 3, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanghong Luo, Liubo Hong, Honglin Zhu, Yun-Fei Li, Yingjian Chen
  • Publication number: 20120075748
    Abstract: A perpendicular write head, the write head having an air bearing surface, the write head including a magnetic write pole, wherein at the air bearing surface, the write pole has a trailing side, a leading side that is opposite the trailing side, and first and second sides; side gaps, wherein the side gaps are proximate the write pole along the first and second side edges; and side shields proximate the side gaps, wherein the side shields have gap facing surfaces and include at least one set of alternating layers of magnetic and non-magnetic materials, wherein only one kind of material makes up the gap facing surfaces at the air bearing surfaces.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark Thomas Kief, Alexandru Cazacu, Kaizhong Gao, Mark Anthony Gubbins, Ibro Tabakovic, Christina Laura Hutchinson, David Christopher Seets, James Gary Wessel
  • Patent number: 8141235
    Abstract: A method for manufacturing a perpendicular magnetic recording transducer is described. A metallic underlayer, an insulator on the metallic underlayer, and a metal mask on the insulator are provided. The metal mask has an aperture therein. A trench is formed in the insulator. The trench's bottom is narrower than its top and includes part of the metallic underlayer. The top has a width of not more than 0.28 micron. A nonmagnetic seed layer that substantially covers at least the trench bottom and sides and that has a thickness of at least five hundred Angstroms is provided. A perpendicular magnetic pole material is plated on at least part of the seed layer. A CMP is performed, removing part of the perpendicular magnetic pole material. A remaining portion of the perpendicular magnetic pole material forms a perpendicular magnetic recording pole. The nonmagnetic seed layer is a stop layer for the CMP.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 27, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventor: Lei Larry Zhang
  • Patent number: 8144424
    Abstract: A servo head capable of verifying at least one timing based pattern printed on media is provided. The servo head includes a magnetic structure having at least one magnetic element arranged and configured to form at least one magnetic gap parallel to the timing based pattern. In one embodiment, the magnetic element is arranged and configured to have a plurality of magnetic gaps being parallel to each other but not co-linear to each other. In the second embodiment, the magnetic element is arranged and configured to have a magnetic gap being parallel to and co-linear to the timing based pattern.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: March 27, 2012
    Inventors: Matthew P. Dugas, Gregory L. Wagner
  • Patent number: 8136228
    Abstract: A method for manufacturing a magnetic write head that avoids the challenges associated with the formation of fence structures during write pole definition. A magnetic write pole material is deposited. A mask structure is deposited over the magnetic write pole material. The mask structure includes a first hard mask, a marker layer, a physically robust, inorganic RIEable image transfer layer, a second hard mask structure over the image transfer layer and a photoresist layer over the second hard mask. A reactive ion etching process can be used to transfer the image of the photoresist mask and second hard mask layer onto the image transfer layer. An ion milling is performed to define the write pole. A layer of non-magnetic material such as alumina is deposited. An ion milling is performed until the marker layer has been reached, and another reactive ion etching is performed to remove the remaining hard mask.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 20, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 8139318
    Abstract: A planar bidirectional tape head with planar read and write elements for reading and writing data on a magnetic recording tape includes a substrate, a tape bearing surface for engaging the magnetic tape, one or more write element arrays formed on the substrate, and one or more read element arrays formed on the substrate. The one or more write element arrays and the one or more read element arrays comprise plural thin film layers oriented in generally parallel relationship with the tape bearing surface.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventor: Robert G. Biskeborn
  • Patent number: 8130467
    Abstract: A planar write module and a hybrid planar write-vertical read bidirectional tape head comprising the write module and one or more vertical read modules. The write module has a write module tape bearing surface for engaging the magnetic recording tape. Plural write elements in the write module each comprise plural thin film layers oriented in generally parallel planar relationship with the write module tape bearing surface. The write elements are arranged so that the transducing gaps (write gaps) of adjacent write elements are generally aligned in a direction that is transverse to a streaming direction of the magnetic recording tape. Each read module has a read module tape bearing surface for engaging the magnetic recording tape. Plural read elements in the one or more read modules each comprise plural thin film layers oriented in generally perpendicular relationship with the read module tape bearing surface.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Calvin S. Lo
  • Patent number: 8117738
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with a self-aligned pole tip shielded laterally by a separated pair of side shields and shielded from above by an upper shield. The side shields are formed from a shield layer by a RIE process characterized by a mask and gases producing a variety of etch rates. The differential in etch rates maintains the opening dimension within the mask and allows the formation of a wedge-shaped trench within the shield layer that then separates the layer into two shields. The pole tip is then plated within the trench and an upper shield is formed above the side shields and pole.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 21, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Min Li, Fenglin Liu, Jiun-Ting Lee
  • Patent number: 8117736
    Abstract: A method of lapping a magnetic head slider includes a step of lapping a lapping surface of a row bar provided with a plurality of MR read head elements arranged along at least one line, a step of obtaining at least one output signal from at least one of the plurality of MR read head elements of the row bar during lapping, the at least one output signal corresponding to element resistance, a step of detecting at least one peak value of the obtained at least one output signal, and a step of controlling an amount of lapping of the row bar depending upon the detected at least one peak value.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 21, 2012
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Takeo Kagami
  • Patent number: 8117737
    Abstract: A manufacturing method for a magnetic head includes the steps of: forming a structure on a lower shield, the structure including a lower gap, a main magnetic pole and first and second side gaps; forming first and second side shields; forming an upper gap; and forming an upper shield. In the step of forming the structure, an initial lower gap layer is formed on the lower shield, the initial lower gap layer including a pre-lower-gap portion, and two to-be-removed portions that are located on opposite sides of the pre-lower-gap portion. Then, a protrusion including the main magnetic pole and the first and second side gaps is formed on the pre-lower-gap portion. With the top surface of the protrusion covered with a mask, the initial lower gap layer is etched in part to thereby form the lower gap.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 21, 2012
    Assignee: TDK Corporation
    Inventors: Hisayoshi Watanabe, Masachika Hashino, Michitoshi Tsuchiya, Koichi Otani, Tatsuhiro Nojima, Tsutomu Nishinaga, Hideyuki Ukita
  • Patent number: 8108985
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: February 7, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yi Zheng, Yimin Hsu, Wen-Chien David Hsiao, Ming Jiang, Aron Pentek, Sue Siyang Zhang, Edward Hin Pong Lee, Hung-Chin Guthrie, Ning Shi, Vladimir Nikitin, Prabodh Ratnaparkhi, Yinshi Liu
  • Patent number: 8108986
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording, the write head having a write pole with an increased bevel (taper) angle. The write pole is constructed by forming a mask structure over a magnetic write pole material, and then performing a combination of sweeping or rotation with static (non-rotating, non-sweeping) ion milling at an angle relative to normal. The ion milling is performed while moving the wafer laterally within the ion milling tool to ensure that the ion milling is performed uniformly across the wafer during static milling.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 7, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Yinshi Liu
  • Patent number: 8099855
    Abstract: Methods of recording head fabrication are provided to fabricate a region of separation material between a write pole and a shield of a write head that forms a controlled spacing between the write pole and the shield of the write head. The method comprises forming a mask structure having an opening exposing a write pole of the write head and forming separation material above the portions of the write pole exposed by the opening. The method further comprises removing the mask structure and forming a shield of the write head above the separation material. The separation material forms a spacing between the write pole and the shield, which controls the amount of flux from the write pole absorbed by a shield (e.g., a wrap around shield) of the write head.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: January 24, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventor: Quang Le
  • Patent number: 8091209
    Abstract: A magnetic sensor includes a sensor stack having a first magnetic portion, a second magnetic portion, and a barrier layer between the first magnetic portion and the second magnetic portion. The first magnetic portion and/or the second magnetic portion comprises a multilayer structure including a first magnetic layer having a positive magnetostriction adjacent to the barrier layer, a second magnetic layer, and an intermediate layer between the first magnetic layer and the second magnetic layer. The magnetic sensor exhibits a magnetoresistive ratio of at least about 62% with a resistance-area (RA) product of about 0.45 ?·?m2.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: January 10, 2012
    Assignee: Seagate Technology LLC
    Inventors: Zheng Gao, Dimitar V. Dimitrov, Song S. Xue
  • Patent number: 8089722
    Abstract: A read/write head for magnetic tapes configured with an in situ radio frequency (RF) shield is provided. The RF shield of the invention inhibits device elements reading data from reading RF radiation irradiated by other device elements writing data. The RF shield may be situated between the device elements of one module and the device elements of a second module. The dimensions and materials of the RF shield may be selected depending upon the operating frequencies of the head and skin depth of materials comprising the RF shield. The data cable may be bonded to device element pads of a module using ACF bonding. AFC bonding the cable to the module may allow a metal ground plane on the cable to be extended to provide additional RF shielding.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: January 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Icko E. T. Iben, Luis H. Palacios, Andrew C. Ting
  • Patent number: 8082657
    Abstract: A method for manufacturing a magnetic write head that allows the location of the flare point of a write pole to be accurately located relative to the air bearing surface. The method includes the construction of a lapping guide having an edge feature that is easily and accurately located relative to the flare point of the write pole. This edge feature provides an abrupt change in electrical resistance across the lapping guide at a point when lapping should be terminated. And, since this feature can accurately located relative to the flare point, this provides an easily discernable ending point for lapping.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Edward Hin Pong Lee, Vladimir Nikitin, Michael Ming Hsiang Yang, Yuan Yao
  • Patent number: 8079135
    Abstract: A method for providing a perpendicular magnetic recording (PMR) transducer is described. The PMR transducer provided includes a PMR pole and yoke structure coupled with the PMR pole. The method includes providing a hard mask and an intermediate layer. A first portion of the hard mask resides on the PMR pole. A second portion of the hard mask resides on another structure. The intermediate layer surrounds at least the PMR pole. The method also includes performing a planarization on at least the intermediate layer, removing the first portion of the hard mask on the PMR pole without completely removing the second portion of the hard mask on the other structure. The method further includes removing a remaining portion of the hard mask on the other structure, providing a write gap on the PMR pole, and providing a shield on the write gap.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 20, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yong Shen, Liubo Hong, Guanghong Luo, Honglin Zhu, Lei Wang, Yingjian Chen
  • Patent number: 8074345
    Abstract: A method of measuring a bevel angle in a write pole comprises the step of providing a mask over a wafer containing the write pole. The mask has a first opening over the write pole and a second opening over a sacrificial region of the wafer. The sacrificial region comprises a same material as the write pole. The method further comprises the steps of performing a beveling operation on the write pole and the sacrificial region to form a first bevel in the write pole and a second bevel in the sacrificial region, and measuring an angle of the second bevel in the sacrificial region to determine the bevel angle of the write pole.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: December 13, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Alexandre Anguelouch, Donghong Li
  • Patent number: 8065787
    Abstract: A thermally assisted magnetic head is formed by performing a head forming process, a mounting part forming process and a light source mounting process in that order. In the head forming process, a planned area is secured on a light source placing surface of a slider substrate, then a magnetic head part is formed on a head area other than the planned area and a spacer for securing a mounting space for the laser diode is formed on the planned area. In the mounting part forming process, a light source mounting part is formed by removing the spacer. In the light source mounting process, a laser diode is mounted on the light source mounting part formed by the mounting part forming step.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 29, 2011
    Assignees: Headway Technologies, TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8065786
    Abstract: Provided is a manufacturing method of heat-assisted magnetic recording head, in which a light source unit can be easily joined to a slider with sufficiently high accuracy, under avoiding the excessive mechanical stress. The manufacturing method comprises the steps of: moving relatively the light source unit and the slider, while applying a sufficient voltage between an upper electrode of the light source and an electrode layer provided in the slider; and setting the light source unit and the slider in desired positions in a direction perpendicular to the element-integration surface of the slider substrate. The desired positions are positions where the light source just emits due to a surface contact between: the protruded portion of the lower surface of the light source; and the upper surface of the electrode layer, which is a portion of the wall surface of a step formed on the head part.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: November 29, 2011
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yasuhiro Ito, Eiji Komura, Seiichi Takayama, Kosuke Tanaka
  • Patent number: 8065788
    Abstract: A method for manufacturing a magnetic head for magnetic data recording, that allows a lapping termination point to be easily and accurately determined during lapping. The method includes constructing a lapping guide that has an electrically is formed to provide an abrupt change in resistance at a point where lapping should be terminated. This point of abrupt resistance change is located relative to the flare point of the write pole that the distance between the flare point and the air bearing surface can be accurately maintained. This abrupt resistance change also makes it possible to monitor both a stripe height defining rough lapping and an angled kiss lapping process using a single measurement channel.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: November 29, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Unal Murat Guruz, Edward Hin Pong Lee, Vladimir Nikitin, Michael Ming Hsiang Yang, Yuan Yao
  • Patent number: 8056214
    Abstract: A magnetic head includes a pole layer, first and second side shields, and an encasing layer having a pole groove that accommodates the pole layer and first and second side shield grooves that accommodate the first and second side shields. In a manufacturing method for the magnetic head, the pole groove and first and second initial side shield grooves are formed in a nonmagnetic layer using an etching mask layer having first to third openings. In the manufacturing method, a wall face of the first initial side shield groove that is closer to the pole groove and a wall face of the second initial side shield groove that is closer to the pole groove are etched by dry etching to thereby complete the first and second side shield grooves.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 15, 2011
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Kazuo Ishizaki, Hironori Araki, Hiroyuki Ito, Shigeki Tanemura, Atsushi Iljima
  • Patent number: 8056213
    Abstract: A PMR head comprises a substrate, a magnetic pole formed over the substrate, the pole having a pole tip having a cross-sectional tapered shape wherein the pole tip is surrounded by a write gap layer, an integrated shield comprising side shields on the substrate laterally surrounding the pole tip and a trailing shield overlying the pole tip and integral with the side shields.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Lijie Guan, Joe Smyth, Moris Dovek
  • Patent number: 8051551
    Abstract: A method for fabricating a magnetic head having multiple readers includes forming a plurality of generally laterally positioned lower shields; forming a lower gap layer above each lower shield; forming a sensor above each lower gap layer; forming an upper gap layer above each sensor; and forming an upper shield above each upper gap layer; wherein an overall gap thickness is defined between vertically aligned pairs of the upper and lower shields, wherein the overall gap thickness between one of the pairs of upper and lower shields is thicker than the overall gap thickness between another of the pairs of upper and lower shields.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventor: Peter Vandersalm Koeppe
  • Patent number: 8051552
    Abstract: A wrap around shield of a write head is fabricated in multiple processes, with side shields fabricated in one process, and a trailing shield formed in another process. These multiple processes form a stitched wrap around shield, resulting in more flexible and accurate placement of the trailing shield and side shields with respect to the write pole. These processes also independently form the dimensions (shapes and sizes) of the side shields and the trailing shield which allows better control of writeability, saturation, and adjacent track interference of the perpendicular recording write head.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: November 8, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Ming Jiang, Yi Zheng
  • Patent number: 8045290
    Abstract: A tape head assembly for writing data to and reading data from a tape includes a tape head member having an engagement surface that is configured to engage the tape as the tape moves past the tape head member. A plurality of arrays of interactive elements are supported on the engagement surface. Each array is longitudinally offset from each other array. Each individual array includes a read group having only read elements and a write group having only write elements. Each read group is laterally offset from each write group within each array.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: October 25, 2011
    Assignee: Oracle America, Inc.
    Inventors: Kevin D. McKinstry, Francis Campos
  • Patent number: 8042259
    Abstract: A magnetic recording head and a method of manufacturing the same. The magnetic recording head includes a stack containing a main pole and a return pole. The stack includes a first magnetic layer having a groove formed therein; an insulating layer covering a surface of the groove; and a second magnetic layer pattern filling the groove covered with the insulating layer.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-san Lee, Young-hun Im, Yong-su Kim
  • Patent number: 8035919
    Abstract: A multi-channel thin-film magnetic head includes a substrate, a plurality of thin-film magnetic head elements formed on the substrate, a closure fixed onto the plurality of thin-film magnetic head elements, a protection film laminated on a whole area of a TBS of the plurality of thin-film magnetic head elements and the closure, and many micro-grooves formed in a surface of the protection film.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: October 11, 2011
    Assignee: TDK Corporation
    Inventors: Seiji Yari, Yasufumi Uno, Yuji Ito, Hideaki Sato, Nozomu Hachisuka
  • Patent number: 8028399
    Abstract: Write elements and methods of fabricating magnetic write poles are described. For one method, a vertical mask structure is formed on a magnetic layer in locations of a pole tip and a yoke of a write pole. The vertical mask structure may be formed by coating vertical surfaces of resists with an atomic layer deposition (ALD) process or a similar process. A removal process is then performed around the vertical mask structure to define the pole tip and part of the yoke of the write pole, and the vertical mask structure is removed. A lower portion of the pole tip is them masked while the upper portion of the pole tip and the part of the yoke is exposed. The upper portion of the pole tip and the part of the yoke are then expanded with magnetic material, such as with a plating process.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: October 4, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Amanda Baer, Jeffrey S. Lille, Aron Pentek